
Biochimica et Biophysica Acta 1837 (2014) 1533–1539

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbab io

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
pH sensitivity of chlorophyll fluorescence quenching is determined by
the detergent/protein ratio and the state of LHCII aggregation☆
Katherina Petrou a, Erica Belgio b, Alexander V. Ruban b,⁎
a Plant Functional Biology & Climate Change Cluster, University of Technology, Sydney, Australia
b School of Biological and Chemical Sciences, Queen Mary University of London, UK
☆ This article is part of a Special Issue entitled: Photosynth
Keys to Produce Clean Energy.
⁎ Corresponding author at: School of Biological and C

University of London, Fogg Building, Mile End Road, L
2078826314; fax: +44 2089830973.

E-mail address: a.ruban@qmul.ac.uk (A.V. Ruban).
URL: http://webspace.qmul.ac.uk/aruban/publications

0005-2728/$ – see front matter © 2013 Elsevier B.V. All r
http://dx.doi.org/10.1016/j.bbabio.2013.11.018
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 3 October 2013
Received in revised form 22 November 2013
Accepted 26 November 2013
Available online 7 December 2013

Keywords:
LHCII
Non-photochemical quenching
ΔpH
Chlorophyll fluorescence lifetime
Detergent
Protein aggregation
Here we show how the protein environment in terms of detergent concentration/protein aggregation state,
affects the sensitivity to pH of isolated, native LHCII, in terms of chlorophyll fluorescence quenching. Three
detergent concentrations (200, 20 and 6 μM n-dodecyl β-D-maltoside) have been tested. It was found that at
the detergent concentration of 6 μM, low pH quenching of LHCII is close to the physiological response to
lumen acidification possessing pK of 5.5. The analysis has been conducted both using arbitrary PAM fluorimetry
measurements and chlorophyll fluorescence lifetime component analysis. The second led to the conclusion that
the 3.5 ns component lifetime corresponds to an unnatural state of LHCII, induced by the detergent used
for solubilising the protein, whilst the 2 ns component is rather the most representative lifetime component
of the conformational state of LHCII in the natural thylakoid membrane environment when the non-
photochemical quenching (NPQ) was absent. The 2 ns component is related to a pre-aggregated LHCII that
makes it more sensitive to pH than the trimeric LHCII with the dominating 3.5 ns lifetime component. The
pre-aggregated LHCII displayed both a faster response to protons and a shift in the pK for quenching to higher
values, from 4.2 to 4.9. We concluded that environmental factors like lipids, zeaxanthin and PsbS protein that
modulate NPQ in vivo could control the state of LHCII aggregation in the dark that makes it more or less sensitive
to the lumen acidification. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability:
Keys to Produce Clean Energy.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Photosynthetic organisms first appeared and evolved in the water
environment, which primarily prevents high light input into the photo-
synthetic machinery. Therefore, photosynthetic bacteria and algae have
developed light harvesting systems (LHC), or antennae that bind
numerous pigments capable of efficiently absorbing and delivering
photon energy to the photosynthetic reaction centres where primary
charge separation occurs. Hence, the photosynthetic antennae function
to increase input of light energy into the photosynthetic reaction cen-
tres [1]. Occupation of land by photosynthetic organisms resulted in
their more frequent exposure to rapid and large fluctuations in light
intensity [2,3]. High light exposure leads to the increase in the fraction
of “unused” excitation energy in the photosynthetic membrane [2,3].
esis Research for Sustainability:

hemical Sciences, Queen Mary
ondon, E1 4NS, UK. Tel.: +44

.htm (A.V. Ruban).

ights reserved.
This excess energy can cause damage to the photosynthetic reaction
centres, particularly those of photosystem II (PSII), leading to the
sustained photoinhibition of its efficiency and eventual damage to the
photosynthetic membrane [4–7]. In order to avoid photoinhibition,
photosynthetic organisms evolved a molecular strategy within the PSII
light harvesting antenna that enables them to control absorbed energy
fluctuations and dissipate any excess energy into heat [8–10]. The
energy dissipation is often indirectly monitored as a decline in the
antenna chlorophyll fluorescence yield of photosystem II (PSII) — a
phenomenon known as non-photochemical quenching (NPQ) [10].
The kinetics of NPQ formation and fluorescence recovery reveals a com-
plex picture. The major component is energy-dependent quenching
(qE) that forms within several minutes and relaxes equally quickly
in the dark. It is this component of NPQ that is believed to be of a
photoprotective nature. In addition, some slower components of
NPQ also reflect photoprotective energy dissipation and could be due
to the formation of zeaxanthin (qZ) and entrapment of protons within
the quenched antenna [9,10]. The mentioned fast (qE) and slow
photoprotective components of NPQ are frequently referred to as
photoprotective NPQ [9,10]. In addition, a part of slowly-reversible
NPQ is attributed to the onset of photodamage — photoinhibitory
quenching (qI). What distinguishes NPQ from other ordinary in vitro
quenchingmechanisms (like, for example, the light-induced quenching
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of antenna complexes initially observed in [11] and [12]) is: i) a
dependence from the ΔpH across the photosynthetic membrane;
ii) the reversibility of the process. Consequently, NPQ can be induced
and sustained in the darkness by artificially inducing ΔpH across the
photosynthetic membrane [13].

Apart from ΔpH, two more key elements that control photo-
protective NPQ in the light harvesting antenna are the de-epoxidation
state of the xanthophyll cycle carotenoids, and the PsbS protein
[14–18]. Despite a long history of NPQ research, its exact molecular
features are not well understood, although the majority of the modern
NPQ theories agree that structural changes within the peripheral PSII
antenna system, LHCII, are behind the mechanics of the process
[10,19]. PsbS protein was suggested to play a role of pH sensor that
transduces a signal into LHCII system, triggering its transition into the
quenched state [18–21]. All theories tend to agree that this transition
involves lateral remodelling of the antenna [21–23]. This remodelling
has been recently and carefully documented in intact, unsolubilised
PSII membranes using freeze-fracture electron microscopy [24]. It was
shown that the transition into the NPQ state required a clustering of
LHCII complexes, leading to the establishment of quenching aggregates,
as was previously proposed [25]. The degree of this aggregation was
found to be promoted by the presence of the xanthophyll cycle caroten-
oid zeaxanthin that emerged as a result of violaxanthin de-epoxidation
[26]. These recent data directly confirmed a long standing idea proposed
by Horton's group [25] that aggregation of the light harvesting antenna
complexes lies at the heart of the mechanism of protective NPQ. This
idea has been developing for a number of years with more evidence
emerging that, in principle, both, trimeric and monomeric LHCII's,
could be involved in the process [27–31] and that all the antenna com-
plexes, including those isolated from diatoms, can in principle undergo
an intrinsic transition into the inefficient, quenched state that is trig-
gered by environmental elements such as lipid/protein ratio, protein
overcrowding in the membrane, magnesium and low pH resulting in
protein aggregation [10,19,21,32–37]. Indeed, it was shown that the
aggregation is rather a consequence of the conformational transition
of the LHCII complex into the quenched state and happens only at
high protein concentration, such as that in the thylakoid membrane
[38–42]. The mechanism of PsbS action in NPQ has not been revealed.
However, recent work with the use of ΔpH enhancer across the thyla-
koidmembrane, diaminodurene (DAD), has demonstrated that the pro-
tein is not strictly required for qE, provided the lumen pH reaches a
somewhat lower level than that of the control one, since the pK for
quenching in the absence of PsbS was found to be shifted from 5 to
4.2–4.7, depending on the xanthophyll cycle carotenoid composition
[41]. Therefore it was proposed that PsbS somehow increases sensitivity
of the LHCII system to lumen pH, bringing the pK up to 6.0 in mutants
overexpressing PsbS [10]. It was suggested that since PsbS was found
to promote LHCII aggregation in vivo [22,24] it is possible that partially
aggregated LHCII becomes more responsive to protons [10]. The mech-
anism of this enhanced sensitivity was proposed to be the increase in
the hydrophobic environment of proton-receiving lumen-exposed
amino acids [10]. Indeed, there is clear experimental evidence that
hydrogen bonding, steric hindrance and the dielectric constant of the
environment can all affect the pK of amino acids [42–44]. For example
the pK of the carboxyl group on aspartate can be as low as 2.4 in a
water environment, due to hydrogen bonding, while in a hydrophobic
environment, the pK can be as high as 6.4 [44] It has recently been
demonstrated that the pK of LHCII can be shifted towards higher values
by single-pointmutagenesis of the acidic, lumen-exposed residue gluta-
mate E94, when this is replaced by neutral Glycine, providing a hint of
where the potential regulatory epitope can be localised within LHCII
[40,45]. In order to address the idea of the link between the environ-
ment and indeed aggregation of LHCII and pH sensitivity of the fluores-
cence quenching we have used an in vitro quenching approach
[27,34,40,53] to determine the pH response of LHCII trimers incubated
at different concentrations of detergent and in different aggregation
states. Although a number of papers dealt with the effect of the deter-
gent on the spectroscopic properties of LHCII such as changes in time
resolved triplet-minus-singlet signal [46] or variable linear dichroism
and circular dichroism signals [47], no studies so far have been focused
onmeasuring the pK for quenching of LHCII in different detergent envi-
ronments and upon variations of the aggregation state. Previously, pH
titrations of quenching in isolated LHCII trimers showed an increase in
pK in the complexes that contained zeaxanthin in comparison to those
that were enriched in violaxanthin [48], both xanthophylls bound to
the extrinsic V1 site [49]. This was a first indication that othermolecules
could potentially interact with LHCII like membrane lipids or indeed
detergents in isolated complexes would affect the quenching pK.
However, this has never been specifically tested on LHCII in the case
of lipids or detergents. In addition, the effect of LHCII pre-aggregation
on pK has never been shown and quantified. In this work we demon-
strated increased sensitivity of pH-induced quenching upon the
decrease in detergent/protein ratio, as well as the increase in the extent
of aggregation. Hence, our findings provide an explanation of how the
state of LHCII antenna aggregation could make its efficiency more or
less sensitive to the lumen pH, making the idea that the mechanism of
this control could lie within the alteration in the hydrophobicity of the
environment of proton-receiving amino acids of LHCII more plausible.

2. Materials and methods

2.1. LHCII isolation from spinach leaves

Unstacked thylakoids were prepared from 100 g dark-adapted
spinach leaves with the mid-rib removed. Leaves were homogenised
in 300 ml of icy grindingmedium (0.33 M sorbitol, 10 mMNa4P2O7.H2O
and 130 mg D-iso-ascorbate; pH 6.5) and the homogenate filtered
through a bi-layer of muslin cloth, followed by a secondary filtration
through 4 layers of muslin interlaid with cotton wool. Thylakoids
were then centrifuged (4000 ×g) for 10 min and the pellet gently
re-suspended in washing medium (0.33 M sorbitol and 10 mM MED)
before additional centrifugation. The pellet was then re-suspended in
re-suspension medium (0.33 M sorbitol, 1 mM EDTA, 50 mM HEPES;
pH 7.6) and osmotically shocked by mixing in 50 ml of break medium
(10 mM HEPES; pH 7.6). After 30 s osmotic potential was returned to
normal with the addition of 50 ml of osmoticum medium (0.66 M
sorbitol, 40 mM MES; pH 6.5) and thylakoids centrifuged (4000 ×g)
for 10 min. The final pellet was re-suspended in re-suspensionmedium
and aliquots frozen immediately in liquid nitrogen.

LHCII trimerswere isolated fromunstacked spinach thylakoids using
isoelectric focussing [50–52]. The protein band corresponding to LHCII
was collected and eluted in elution buffer containing 0.01% n-dodecyl
β-D-maltoside (~200 μM), then followed by size exclusion purification
to remove ampholites (PD-10 columns, GE Healthcare). Aliquots of
LHCII prepared at the same concentration (OD = 6) were immediately
frozen in liquid nitrogen for later use in fluorescence analyses.

2.2. In vitro chlorophyll a fluorescence quenching of isolated LHCII trimers

Chlorophyll a fluorescence was measured using Dual PAM 100
(Walz GmbH, Effeltrich, Germany) chlorophyll fluorescence photosyn-
thesis analyzer. Illumination was provided by low blue light
(b20 μmol photonsm−2 s−1) and the samplewas stirred continuously.
The experimental set upwas similar to the onedescribed in [53]. Briefly,
quenching was induced by diluting an aliquot of isolated LHCII into
buffer containing 10 mM Hepes pH 7.4, 10 mM tri-sodium citrate
with 6 μM, 20 μM or 200 μM n-dodecyl β-D-maltoside (β-DM, final
concentrations) [34,48]. The pH adjustments (values between 7.33
and 3.5) were made by the addition of small amounts of HCl after
1 min of recording fluorescence and fluorescence quenching measured
for an additional 4 min (see Supplemental Fig. S1). Absorption spectra
were recorded following lifetime fluorescence measurements to ensure



Fig. 1. Time course of chlorophyll a fluorescence of LHCII trimers suspended in 200, 20 and
6 μMn-dodecyl β-D-maltoside (β-DM) buffer. Traces shown are following the adjustment
of the pH through the addition of HCl. Traces are the average of at least four independent
measurements.

Table 1
pH versus quenching titration curve fitting parameters in LHCII trimers.a

DM concentration Hill
coefficient

Estimated
pK

% quenching max
(experimental)

% quenching max
(theoretical)

200 μM – – 4.6 –

20 μM 2.8 4.2 65.7 80.6
6 μM 3.2 5.5 77.6 77.3
20 μM, 2 ns 4.0 4.9 41.2 43.0

a Titration parameters for data presented in Fig. 2 were determined by fitting the data
with the equation [% quenching = quenchingmaxΔpHn / (ΔpHn + ΔpHn

0)], where
quenchingmax is the theoretical maximum fluorescence quenching, ΔpH is the change in
pH from the control (7.33), ΔpH0 is the level of ΔpH at which quenching = 0.5
quenchedmax, and n is the sigmoidicity parameter (Hill coefficient). pK was estimated by
converting ΔpH0 to lumen pH by subtracting from the control pH (7.33).
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no formation of pheophytin/sample denaturation as a result of acidifica-
tion and pH measured to confirm final pH of sample [52].

2.3. Fitting of quenching kinetics

Fluorescence quenching data were fitted with a 3-parameter hyper-
bolic decay [y = y0 + (ab) / b + x)] using SigmaPlot software (SPSS,
Chicago, IL, USA), where a is the maximum F, b is the x value at which
a = 50% (pK) and y0 is the amplitude of fluorescence quenching does
not relax within 300 s [48]. Quenching parameters (fluorescence
quenching percentage and average fluorescence lifetime) derived
from the pH titrations were then plotted as a function of pH and ΔpH
and the values fitted with a Hill function [y = (axb) / (cb + xb)],
where a is the theoretical maximum, c is the x value at which
a = 50% (pK) and b is the sigmoidicity parameter (Hill coefficient) [54].

2.4. Chlorophyll fluorescence lifetime

Time-correlated single photon counting measurements were
performed using a FluoTime200 picosecond fluorometer (PicoQuant,
Germany) [55]. Excitation was provided by a 470 nm laser diode at a
repetition rate of 10 MHz. Fluorescence was detected at 682 nm with
a 2 nm slit width. FluofFit software (PicoQuant, Germany) was used
for the analysis of the fluorescence lifetime data and the quality of the
fit determined by the χ2 parameter [55].

3. Results and discussion

Fig. 1 displays pH-dependent chlorophyll fluorescence quenching
experiments performed on LHCII complexes at three different β-DM
concentration (200, 20 and 6 μM). It must be mentioned that
pH-induced quenching of Fm level has been first observed on isolated
thylakoids from spinach and possessed similar properties to that of
the isolated LHCII [48,54,56]. Here we undertook a similar approach
for isolated LHCII, using the cmc as a threshold reference value. An
example of the methodology used is reported in Supplemental Fig. S1
showing the timing for sample injection, acidification and lifetime
measurements. 200 μM was also the concentration of detergent in the
samples before injection. Upon acidification, at detergent concentration
above cmc (200 μM) only a little fluorescence quenchingwas observed,
whilst at the concentrations below cmc (20 and 6 μM) the progressive
quenching followed the gradual decrease in the buffer pH. In particular,
the sample diluted into 6 μM β-DM buffer possessed higher sensitivity
to low pH than the sample incubated at 20 μM detergent displaying
faster and larger quenching than that induced in the sample incubated
at 20 μM β-DM (Fig. 1, Table 1). From these traces a pH titration curve
of quenching was calculated and is presented in Fig. 2. Comparison
among the three detergent conditions revealed a significant shift
towards higher levels of pH for samples incubated at lower concentra-
tion of detergent. Interestingly, despite the fact that both the 20 and
6 μM β-DM concentrations were below cmc, LHCII incubated at the
lower concentration of detergent responded to low pH more readily
than the sample incubated at 20 μM of β-DM. This fact suggests that
not only the detergent micelle state but also the absolute amount of
free detergent in the buffer determines the protein sensitivity to pro-
tons. Accordingly, whilst the pK of the 20 μM β-DM sample was found
to be around 4.2 – a fairly low value compared to the physiological
lumen range – the one for the 6 μM β-DM sample increased to 5.5 — a
more dramatic effect than the one induced by violaxanthin replacement
by zeaxanthin in isolated LHCII that was previously reported [48]. At
β-DM of 200 μM only a very little quenching (see Fig. 1, Table 1)
occurred only at pH of 3.3. This is about 4 pH units if calculated for
ΔpH in vivo which is a rather improbable value that has never been
reported before. On the other hand, the pK of 5.5 estimated for LHCII
quenching in 6 μM β-DM was perfectly within the physiological range
and close to the pK of qE for chloroplasts quenching (5.0) and is identi-
cal to the one reported for LHCII isolated from Arabidopsis [54].

Upon injection in a buffer with lower detergent concentration than
the one required for solubilisation, any antenna complex displays



Fig. 2. Effect of pH onfluorescence quenching in native LHCII trimers suspended in 200, 20
and 6 μM of β-DM. Quenching was induced by the addition of HCl acid at a range of pH
values between 7.33 and 3.5. Lines represent the curve fit using the Hill function. Data
represent average of four independent experiments ± SE.

Fig. 3.Time correlated single photon counting analysis of chlorophyll fluorescence lifetime
of LHCII complexes suspended in (A) high, (B)medium and (C) lowdetergent buffer (200,
20 and 6 μM, respectively) at pH 7.33 (Fm), pH 4.0 (Fm′).
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fluorescence quenching, a process called “spontaneous quenching” [48].
It has been previously demonstrated that spontaneous quenching
and low-pH induced quenching are not separate effects in LHCII, but
part of a continuum of quenched states of the complex arising from
the same mechanism, where acidification accelerates the rate at which
the state of maximum quenching is reached (see 40 and ref. within).
Therefore, during the time-course of chlorophyll fluorescence of Fig. 1,
a slowly ongoing spontaneous quenching process always sums up to
the pure effect of proton addition on LHCII (see Supplementary
Fig. S2). Because the technique allows for resolving the lifetime compo-
nents originating from the different fluorescence states in the studied
LHCII complexes, we used the fluorescence lifetime component analysis
to better clarify howmuch the spontaneous quenching could affect the
accuracy of pH-induced quenching [48]. In addition, there has never
been a detailed analysis of the effect of quenching induced by acidifica-
tion on the sample fluorescence lifetime components, or, in other
words, a pH titration experiment for fluorescence lifetimes of samples
incubated at different detergent concentrations. Fluorescence lifetimes
were measured for comparison before and after the induction of low-
pH fluorescence quenching. Fig. 3 shows typical fluorescence decay
curves of LHCII measured before (Fm, fluorescence level of the sample
diluted in low fluorescence buffer) and after addition of HCl to achieve
pH 4 (Fm′). It is clear that the amount of spontaneous quenching in
LHCII incubated at 20 and 6 μM β-DM (Fm levels) was relatively small
with average lifetimes being respectively 3.5 and 3.2 ns (see Fig. 4,
points corresponding to pH 7.33) and therefore not more than 10%
of the level of LHCII incubated at 200 μM β-DM. Hence, the arbitrary
fluorescence measurements performed using PAM fluorimetry can be
considered as reasonably accurate. In addition, it is interesting to notice
that the pH titration profiles of the average chlorophyll fluorescence
lifetime matched fairly well those performed using the steady-state
fluorescence (compare Fig. 2 with Fig. 4). The whole quenching process
shown in Fig. 1 was therefore fully characterised by measuring at each
pH point the relative fluorescence lifetime, yielding a titration curve of
lifetime against pH in the three detergent conditions in a similar way
as done for the total arbitrary quenching (see Fig. 4 for average lifetimes
and Fig. 5 for the single component analysis). According to the analysis,
initial average lifetime value for all detergent conditions before addition
of HClwas around 3.5 ns—muchhigher than the average LHCII antenna
lifetime recentlymeasured in vivo [45] (see also below). The component
analysis presented in Fig. 5 revealed that up to 4 different lifetimeswere
necessary to fit the various sample conditions. The longest lifetime com-
ponent at 3.6–4.0 ns was the main and almost the only component
(N96%) besides a ~2.0 ns component (b5% in amplitude) of LHCII in
200 μM detergent, similar to that reported earlier [57]. Similar compo-
nents have been observed for LHCII incubated in 20 μM β-DM at
pH 7.33. For the sample in 6 μM detergent buffer the 2 ns component
was replaced by the 1 ns one. Acidification to pH 4.0 caused the appear-
ance of an additional, 100–200 ps component (2–5% in amplitude) in all
the samples in agreementwith previously reportedmeasurements [57].
Apart from this very fast component, a ~0.8–1.0 ns component emerged
upon acidification of the LHCII incubated at 20 μM and especially at
6 μM β-DM. This component appears to be the major cause of the
pH-induced fluorescence quenching of the 6 μM β-DM sample, which
is also the one attaining the most complete quenching, and it has also
been found in the isolated LHCII crystals as the only fluorescence life-
time component [58,59]. The fact that up to 80% of the photons emitted
by a quenched LHCII sample comes from only one main fluorescence
decay component points towards the existence of a single protein
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Fig. 4. Effect of pH on average fluorescence lifetime in native LHCII trimers suspended
in high, moderate and detergent free buffer (final detergent concentrations of 200,
20 and 6 μM, respectively). Quenching was induced by the addition of HCl acid at a
range of pH values between 7.33 and 3.5. Data represent average of four independent
experiments ± SE.

Fig. 5. Relative time resolved fluorescence lifetime component amplitudes of LHCII
complexes suspended in 200 (A), 20 (B) and 6 (C) μM detergent buffer at pH 7.33
(black) and pH 4.0 (dashed). Open bars in (B) and (C) correspond to the components of
pre-aggregated LHCII in 20 μM detergent at pH 7.33 and following acidification at
pH 4.0, respectively. Data represent mean of four independent measurements ± SEM.
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conformation in the quenched LHCII. This prevailing single component
was observed in all the quenched samples analysed andwas interpreted
as a strong indication of the absence of any source of heterogeneity. The
absence of heterogeneity in the quenched sample is also in agreement
with the previous conclusion of size uniformity of LHCII aggregates
based on themigration profile of native “green” gels (see Supplemental
material of ref. [38]). Interestingly, the time-resolved fluorescence
analysis of plants grown on lincomycin and containing very few photo-
system complexes (b10% of control) revealed total absence of the 3.5–
4.0 ns component with only 2.0–2.5 ns and 1.0–1.3 ns components
being present in the dark-adapted leaves [60]. This finding suggests
that the LHCII 3.5 ns state is never attained in vivo and is rather an
artefactual consequence of the detergent/protein interaction, and that
the actual state of the antenna complex in the natural proteolipidic
environment corresponds to the 2.0–2.5 ns component. Relevant to
this conclusion is the fact that the circular dichroism spectra of trimers
solubilized in β-DM, n-octyl-β,D-glucopyranoside, or Triton X-100
were drastically different in the Soret region to the one of LHCII in the
thylakoidmembranes [47]. Solubilization of LHCII is also always accom-
panied by profound changes in the linear dichroism signal compared to
the one from thylakoids. These data support the notion that the deter-
gent, 4 ns solubilised state of LHCII does not retain the physiological,
native organisation of LHCII in the in vivo thylakoid membrane. On the
other hand the CD spectrum of lamellar aggregates of LHCII was found
to closely resemble those of unstacked thylakoid membranes [47]. The
above observation is consistent with an earlier reported fluorescence
lifetime data obtained on the LHCII incorporated into liposomes that
possessed a specific 2 ns component [32]. Thus it appears that an
in vivo conformation of LHCII exists that does not correspond to a typical
state of the complex in the detergentmicelle. In liposomes, in thylakoid
membranes of lincomycin-treated plants as well as in solution, LHCII
was found to be partially aggregated [32,60]. In order to further explore
the conformational state of LHCII that gives 2 ns fluorescence lifetime
component LHCII was incubated in 20 μM detergent buffer at pH 7.33
for 150 min to achieve gradual decrease (by spontaneous quenching)
of the average fluorescence lifetime from 3.5 to 2.0 ns. As shown in
Supplemental Fig. S3, the 77 K fluorescence spectrum of this sample
revealed a significant shoulder at 700 nm — a typical sign of a partially
quenched state often linked with LHCII aggregation which was
further enhanced upon acidification (Fig. S3, trace 3) [25]. This pre-
aggregated LHCII possessed the main lifetime component of 2.0 ns
with minor contributions from a longer (3.8 ns) and two shorter
(0.8 ns and0.1 ns) components typical of the quenching states normally
achieved upon acidification (see Fig. 5, B and C). Acidification to pH 4 of
the pre-aggregated LHCII caused a very similar effect on the lifetime
component profile as in the case of LHCII quenched by low pH in the
6 μM detergent buffer (Fig. 5C). However, the sample in the pre-
aggregated state was found to be more readily responsive to acidifica-
tion than the 3.5 ns one, although the detergent concentration of the
two was identical. Accordingly, the rate of quenching formation in the
“2 ns” sample was much faster (see Supplemental Fig. S4). The sample
with the 2 ns average lifetime revealed a peculiar pH titration curve of
the fluorescence quenching (Fig. 2, triangles, Table 1). The titration
curve was much steeper than the one of the sample with 3.5 ns average
lifetime and pK was shifted to higher pH values, from 4.2 (unquenched
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sample) to 4.9 of the pre-quenched state. However, the maximum
amount of quenching in the sample with 2 ns average lifetime was
only about 43% in comparison to ~77% of the sample possessing 3.5 ns
lifetime. This is not surprising taking into account that the capacity for
the fluorescence quenching in LHCII complexes in the experimental
system used was found to be always limited to a certain level [48] and
that at 2 ns the state of the complex is already partially quenched. In
return, the 2 ns pre-quenched and pre-aggregated LHCII gained a better
sensitivity to the pH of the medium. It is worth mentioning in this
context that the higher pH sensitivity found for LHCII in aggregated
state has also been observed in other proteins, like the fucoxanthin
chlorophyll protein a (FPCa) isolated from diatoms [35]. In that case
the observed behaviour was even more pronounced since the protein
showed a pH dependence of the fluorescence yield only when proteins
were aggregated (see also Fig. 5B of that report), once more pointing
to the importance of the aggregation state of a protein in the NPQ
mechanism.

Our fluorescence lifetime analysis shows that a conformation/state
that is characterised by ~2 ns fluorescence lifetime is likely to corre-
spond to a physiological condition of the LHCII antenna in vivo in the
dark. It is possible that zeaxanthin causes a small reduction of this
lifetime to about 1.6–1.8 ns [61]. Acidification of LHCII caused the
appearance of a new lifetime component at around 0.6–1 ns, that corre-
sponds to a new, quenching conformation of the complex [59,60] the
structure of which has been solved by X-ray crystallography [49]. The
transition between the two states/conformations can be triggered by
low pH but also the decrease in detergent/protein ratio in solution or
lipid/protein ratio in the liposomal membrane [32]. Can the same tran-
sition be induced in vivo? Recent freeze fracture electron microscopy
provided evidence of clustering of LHCII trimers induced by ΔpH that
is modulated by the xanthophyll cycle [24]. So far there has not been
any evidence obtained to suggest that the decrease in lipid/protein
ratio in vivo can result in the further LHCII aggregation and fluorescence
quenching leading to the decrease in the quantum efficiency of PSII.
However, an extensive study of the effect of thylakoid lipids on LHCII
aggregation in vitro revealed a complex picture of effects of various
types of lipids on the process inmanyways different from that of deter-
gents, suggesting that different types of lipids can play an important role
in LHCII, stabilising both efficient light harvesting and photoprotective
states of LHCII [62]. Further studies on the quenching and structural
properties of LHCII incorporated into various types of liposomes along
with PsbS protein as was recently performed by Wilk et al. [63] but
with an absolute requirement of induction of ΔpH are needed for the
further understanding of the role of environmental factors, protons
and cations in the process of conformational switching of LHCII com-
plexes that underlies the mechanism of NPQ.
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