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Abstract. In this paper we consider, discuss, improve and generalize recent fixed point
results for mappings in b-metric, rectangular metric and b-rectangular metric spaces estab-
lished by Ðukić et al. (2011), George and Rajagopalan (2013) and Roshan et al. (2015). Also,
we prove a Geraghty type theorem in the setting of b-metric spaces as well as a Boyd–Wong
type theorem in the framework of b-rectangular metric spaces, in both cases, without using
Hausdorff assumption. One example is given to support the results.
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1. INTRODUCTION AND PRELIMINARIES

It is well known that the Banach contraction principle [5] is a fundamental result in the
fixed point theory, which has been used and extended in many different directions. Also,
there are several generalizations of usual metric spaces. Three well known generalizations of
(usual) metric spaces are b-metric spaces [4,7] or metric type spaces—MTS by some authors
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[22,15,19,28], generalized metric spaces (g.m.s.) [6] or rectangular metric spaces [9,12,16,
17,21] and rectangular b-metric space [11] or a b-generalized metric space (b-g.m.s.) [26].

The following definitions are consistent with [4,7,6] and [11,26], respectively:

Definition 1.1 ([4,7]). Let X be a (nonempty) set and s ≥ 1 be a given real number. A func-
tion d : X × X → [0, ∞) is a b-metric on X if, for all x, y, z ∈ X , the following conditions
hold:

(b1) d (x, y) = 0 if and only if x = y,
(b2) d (x, y) = d (y, x) ,
(b3) d (x, z) ≤ s [d (x, y) + d (y, z)] (b-triangular inequality).

In this case, the pair (X, d) is called a b-metric space (metric type space).

Further, for all definitions of notions as b-convergence, b-completeness, b-Cauchy in the
setting of b-metric spaces see [1,4,7,8,3,22,14,15,19,20,23,24,27].

Definition 1.2 ([6]). Let X be a nonempty set, and let d : X × X → [0, ∞) be a mapping
such that for all x, y ∈ X and all distinct points u, v ∈ X , each distinct from x and y:

(r1) d (x, y) = 0 if and only if x = y,
(r2) d (x, y) = d (y, x) ,
(r3) d (x, y) ≤ d (x, u) + d (u, v) + d (v, y) (rectangular inequality).

Then (X, d) is called a rectangular or generalized metric spaces (g.m.s.).

For all definitions of notions regarding this new class of generalized metric spaces see
[6,9,10,12,16,17,21,26] and references in [17].

Definition 1.3 ([11,26,18]). Let X be a nonempty set, s ≥ 1 be a given real number and let
d : X × X → [0, ∞) be a mapping such that for all x, y ∈ X and distinct points u, v ∈ X ,
each distinct from x and y:

(rb1) d (x, y) = 0 if and only if x = y,
(rb2) d (x, y) = d (y, x) ,
(rb3) d (x, y) ≤ s [d (x, u) + d (u, v) + d (v, y)] (b-rectangular inequality).

Then (X, d) is called a b-rectangular metric space or a b-generalized metric space
(b-g.m.s.).

Note that every metric space is a rectangular metric space (g.m.s.) and every rectangular
metric space is a rectangular b-metric space (with coefficient s = 1). However the converse
is not necessarily true ([11], Examples 2.4. and 2.5.). Also, every metric space is a b-metric
space (metric type space) and every b-metric space is a b-rectangular metric space.

Note also that every b-metric space with coefficient s is a b-rectangular metric space with
coefficient s2 but the converse is not necessarily true ([11], Examples 2.7).

Hence we have the following diagram

metric spaces −−−−→ b-metric spaces 
rectangular metric spaces −−−−→ b-rectangular metric spaces

where arrows stand for inclusions. The inverse inclusions do not hold.
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Note that the limit of a sequence in a b-rectangular metric space (the same as in a
rectangular metric space (g.m.s.)) is not necessarily unique and also every rectangular metric
convergent sequence in a b-rectangular metric space is not necessarily b-rectangular metric
space-Cauchy ([11], Examples 2.7).

The following four crucial lemmas are useful in proving all main results in [27] and [26]
(see also [25]):

Lemma 1.1 ([27], Lemma 1.6). Let (X, d) be a b-metric space with s ≥ 1, and suppose that
{xn} and {yn} are b-convergent to x, y, respectively. Then we have

1
s2
d (x, y) ≤ lim inf

n→∞
d (xn, yn) ≤ lim sup

n→∞
d (xn, yn) ≤ s2d (x, y) , (1.1)

in particular, if x = y, then we have limn→∞ d (xn, yn) = 0. Moreover, for each z ∈ X , we
have,

1
s
d (x, z) ≤ lim inf

n→∞
d (xn, z) ≤ lim sup

n→∞
d (xn, z) ≤ sd (x, z) . (1.2)

Lemma 1.2 ([27], Lemma 1.7). Let (X, d) be a b-metric space with s ≥ 1 and let {xn} be a
sequence in X such that

lim
n→∞

d (xn, xn+1) = 0. (1.3)

If {xn} is not a b-Cauchy sequence, then there exist ε > 0 and two sequences {m (k)} and
{n (k)} of positive integers such that for the following four sequences

d

xm(k), xn(k)


, d


xm(k), xn(k)+1


, d


xm(k)+1, xn(k)


and

d

xm(k)+1, xn(k)+1


,

(1.4)

it holds:

ε ≤ lim inf
n→∞

d

xm(k), xn(k)


≤ lim sup

n→∞
d


xm(k), xn(k)


≤ sε, (1.5)

ε

s
≤ lim inf

n→∞
d


xm(k), xn(k)+1


≤ lim sup

n→∞
d


xm(k), xn(k)+1


≤ s2ε, (1.6)

ε

s
≤ lim inf

n→∞
d


xm(k)+1, xn(k)


≤ lim sup

n→∞
d


xm(k)+1, xn(k)


≤ s2ε, (1.7)

ε

s2
≤ lim inf

n→∞
d


xm(k)+1, xn(k)+1


≤ lim sup

n→∞
d


xm(k)+1, xn(k)+1


≤ s3ε. (1.8)

Lemma 1.3 ([26], Lemma 1). Let (X, d) be a b-g.m.s. with s ≥ 1 and let {xn} be a Cauchy
sequence in X such that xn ≠ xm whenever n ≠ m. Then {xn} can converge to at most one
point.

Lemma 1.4 ([26], Lemma 2). Let (X, d) be a b-g.m.s. with s ≥ 1.
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(a) Suppose that sequences {xn} and {yn} in X are such that xn → x and yn → y as
n → ∞, with x ≠ y, and xn ≠ x, yn ≠ y for n ∈ N. Then we have

1
s
d (x, y) ≤ lim inf

n→∞
d (xn, yn) ≤ lim sup

n→∞
d (xn, yn) ≤ sd (x, y) . (1.9)

(b) If y ∈ X and {xn} is a Cauchy sequence in X with xn ≠ xm for infinitely many
m,n ∈ N, n ≠ m, converging to x ≠ y, then

1
s
d (x, y) ≤ lim inf

n→∞
d (xn, y) ≤ lim sup

n→∞
d (xn, y) ≤ sd (x, y) , (1.10)

for all x ∈ X.

2. MAIN RESULTS

In our first result we generalize, complement and improve recent Geraghty type result [13]
from ([29], Theorem 3.8) for b-metric spaces. For the use in b-metric spaces (with the given
s > 1) we will consider the class of functions Bs, where β ∈ Bs if β : [0,+∞) → [0, 1

s ) and
has the property

β (tn) → 1
s

implies tn → 0. (2.1)

An example of a function in Bs is given by β (t) = 1
se

−t for t > 0 and β (0) ∈ [0, 1
s ).

In the following result we generalize and improve Theorem 3.8. from [29]. Note that we
do not assume that the b-metric d is continuous.

Theorem 2.1. Let (X, d) be a b-metric space with s > 1, and let f, g : X → X be two self
maps such that f (X) ⊆ g (X), one of these two subsets of X being complete. If for some
function β ∈ Bs,

d (fx, fy) ≤ β (d (gx, gy)) d (gx, gy) (2.2)

holds for all x, y ∈ X , then f and g have a unique point of coincidence ω. Moreover, for each
x0 ∈ X , a corresponding Jungck sequence {yn} can be chosen such that limn→∞ yn = ω.

If, moreover, f and g are weakly compatible, then they have a unique common fixed point.

Proof. Let us prove that the point of coincidence of f and g is unique (if it exists). Suppose
that ω1 and ω2 are distinct points of coincidence of f and g. From this follows that there exist
two points u1 and u2 such that fu1 = gu1 = ω1 and fu2 = gu2 = ω2. Then (2.2) implies
that

d (ω1, ω2) = d (fu1, fu2) ≤ β (d (gu1, gu2)) d (gu1, gu2)

= β (d (ω1, ω2)) d (ω1, ω2) <
1
s
d (ω1, ω2) < d (ω1, ω2) , (2.3)

which is a contradiction.
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In order to prove that f and g have a point of coincidence, take an arbitrary point x0 ∈ X
and, using that f (X) ⊆ g (X), choose sequences {xn} and {yn} in X such that

yn = fxn = gxn+1, for n = 0, 1, 2, . . . . (2.4)

If yn0 = yn0+1 for some n0 ∈ N, then gxn0+1 = yn0 = yn0+1 = fxn0+1 and f and g have
a point of coincidence. Suppose, further, that yn ≠ yn+1 for all n ∈ N. Putting x = xn+1,
y = xn in (2.2) we obtain that

d (yn+1, yn) = d (fxn+1, fxn)

≤ β (d (gxn+1, gxn)) d (gxn+1, gxn) <
1
s
d (yn, yn−1) (2.5)

for all n ∈ N. From (2.5) further follows that d (yn+1, yn) → 0, as n → ∞.
Let us prove that {yn} is a b-Cauchy sequence in b-metric space (X, d). According to

Lemma 1.2 if {xn} is not a b-Cauchy sequence, then there exist ε > 0 and two sequences
{m (k)} and {n (k)} of positive integers such that

n (k) > m (k) > k, d

ym(k), yn(k)


≥ ε and d


ym(k), yn(k)−1


< ε (2.6)

for all positive k. Now, putting x = xm(k)+1, y = xn(k) in (2.2) we obtain

d

ym(k)+1, yn(k)


≤ β


d


ym(k), yn(k)−1


d


ym(k), yn(k)−1


≤ β


d


ym(k), yn(k)−1


ε, (2.7)

that is,

d

ym(k)+1, yn(k)


ε

≤ β

d


ym(k), yn(k)−1


<

1
s
, (2.8)

whenever n (k) > m (k) > k for all positive k.
Hence, by (1.7) of Lemma 1.2 and (2.8) we have

1
s

=
1
ε

· ε
s

≤ lim inf
n→∞

d

ym(k)+1, yn(k)


ε

≤ lim inf
n→∞

β

d


ym(k), yn(k)−1


≤ lim sup

n→∞
β


d


ym(k), yn(k)−1


≤ 1
s
, (2.9)

that is,

lim
k→∞

β

d


ym(k), yn(k)−1


=

1
s
. (2.10)

From this further implies that d

ym(k), yn(k)−1


→ 0, as k → ∞. However, this is impossi-

ble, because by (1.5) of Lemma 1.2 we obtain that

ε

s
≤ 1
s
d


ym(k), yn(k)


≤ d


ym(k), yn(k)−1


+ d


yn(k)−1, yn(k)


→ 0, (2.11)

as k → ∞. Therefore, {yn} is a b-Cauchy sequence.
Suppose, e.g., that the subspace g (X) is complete (the proof when f (X) is complete is

similar). Then {yn} tends to some ω ∈ g (X), where ω = gz for some z ∈ X . To prove that
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fz = gz, we have

1
s
d (fz, gz) ≤ d (fz, fxn) + d (gxn+1, gz)

≤ β (d (gz, gxn)) d (gz, gxn) + d (gxn+1, gz)

<
1
s
d (gz, gxn) + d (gxn+1, gz)

→ 1
s

· 0 + 0 = 0. (2.12)

Hence, fz = gz = ω is a unique point of coincidence of f, g.
If f, g are weakly compatible, well-known Jungck’s result implies that f and g have a

unique fixed point (here it is ω). �

Taking g = IX (identity mapping of X) in Theorem 2.1 we obtain the following variant
of Geraghty-theorem in b-metric spaces (with correct proof).

Corollary 2.2 ([29], Theorem 3.8). Let s > 1, and let (X, d) be a complete b-metric space.
Suppose that a mapping f : X → X satisfies the condition

d (fx, fy) ≤ β (d (x, y)) d (x, y) , (2.13)

for all x, y ∈ X and some β ∈ Bs. Then f has a unique fixed point z ∈ X , and for each
x ∈ X the Picard sequence {fnx} converges to z in (X, d) .

The following theorem can be proved in a very similar way as ([15], Theorem 3.11.).

Theorem 2.3. Let (X, d) be a b-metric space with s > 1, and let f, g : X → X be two
mappings such that f (X) ⊆ g (X) and one of these subsets of X is complete. Suppose that
there exists λ ∈ [0, 1

s ) such that for all x, y ∈ X

d (fx, fy) ≤ λM (f, g;x, y) (2.14)

where

M (f, g;x, y)

= max

d (gx, gy) , d (gx, fx) , d (gy, fy) ,

d (gx, fy) + d (gy, fx)
2s


. (2.15)

Then f and g have a unique point of coincidence. If, moreover, the pair (f, g) is weakly
compatible, then f and g have a unique common fixed point.

In the sequel we announce two lemmas which are useful for the proofs of some things in
the setting of rectangular and b-rectangular metric spaces.

Lemma 2.4. Let (X, d) be a b-rectangular metric space with s ≥ 1, and let f : X → X be
a self maps. If Picard’s sequence {fnx} , x ∈ X and fnx ≠ fn+1x for all n ∈ N satisfies

d

fn+1x, fnx


≤ λd


fnx, fn−1x


, (2.16)

for all n ∈ N, where λ ∈ (0, 1), then fnx ≠ fmx whenever n ≠ m.
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Proof. Suppose that fnx = fmx for some n > m. Now, we have fn+1x = f (fnx) =
f (fmx) = fm+1x. Then (2.16) implies that

d

fn+1x, fnx


< d


fnx, fn−1x


< · · · < d


fm+1x, fmx


= d


fn+1x, fnx


.

(2.17)

A contradiction. Hence, n ≠ m implies fnx ≠ fmx. �

Lemma 2.5. Let (X, d) be a b-rectangular metric space with s ≥ 1, and let f, g : X → X
be two self maps such that f (X) ⊆ g (X). If Jungck sequence yn = fxn = gxn+1, x0 ∈ X
and yn ≠ yn+1 for all n ∈ N satisfies

d (yn+1, yn) ≤ λd (yn, yn−1) , (2.18)

for all n ∈ N, where λ ∈ (0, 1), then yn ≠ ym whenever n ≠ m.

Proof. Suppose that yn = ym for some n > m then we choose xn+1 = xm+1 (which is
obviously possible by the definition of Jungck’s sequence yn) and hence also yn+1 = ym+1.
Then (2.18) implies

d (yn+1, yn) < d (yn, yn−1) < · · · < d (ym+1, ym) = d (yn+1, yn) . (2.19)

A contradiction. We obtain that n ≠ m implies yn ≠ ym. �

Let Ψ denote set of all continuous functions ψ : [0, ∞) → [0, ∞) for which ψ (t) = 0
if and only if t = 0. In the following result we generalize, complement and improve main
results from ([9], Theorem 4) and ([12], Theorem 3.1) with much shorter proofs and without
using Hausdorff assumption.

Theorem 2.6. Let (X, d) be a rectangular metric space and let f, g : X → X be two self
maps such that f (X) ⊆ g (X), one of these two subsets of X being complete. If, for some
ψ, φ ∈ Ψ , L ≥ 0, the function ψ is non-decreasing,

ψ (d (fx, fy)) ≤ ψ (M (x, y)) − φ (M (x, y)) + Lψ (N (x, y)) (2.20)

for all x, y ∈ X , where

M (x, y) = max {d (gx, gy) , d (gx, fx) , d (gy, fy)} (2.21)

N (x, y) = min {d (gx, fx) + d (gy, fy) , d (gx, fy) , d (gy, fx)} , (2.22)

then f and g have a unique point of coincidence. If, moreover, f, g are weakly compatible,
then they have a unique common fixed point.

Proof. First of all, it is easy to check that the conditions (2.20), (2.21) and (2.22) imply that
the point of coincidence of f and g is unique (if it exists). In order to prove that f and g have
a point of coincidence, similarly as in Theorem 2.1, take an arbitrary point x0 ∈ X and, using
that f (X) ⊆ g (X), choose sequences {xn} and {yn} in X such that

yn = fxn = gxn+1, for n = 0, 1, 2, . . . . (2.23)
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If yk = yk+1 for some k ∈ N, then gxk+1 = yk = yk+1 = fxk+1 and f and g have a point
of coincidence. Suppose, further, that yn ≠ yn+1 for all n ∈ N. Putting x = xn+1, y = xn

in (2.20) we obtain that

ψ (d (yn+1, yn)) = ψ (d (fxn+1, fxn))
≤ ψ (M (xn+1, xn)) − φ (M (xn+1, xn)) + Lψ (N (xn+1, xn)) (2.24)

where

M (xn+1, xn) = max {d (yn, yn−1) , d (yn, yn+1)} (2.25)

and

N (x, y) = min {d (yn, yn+1) + d (yn−1, yn) , d (yn, yn) , d (yn−1, yn+1)} = 0.(2.26)

Further from (2.24), (2.25) and (2.26) follows that

ψ (d (yn+1, yn)) ≤ ψ (max {d (yn, yn−1) , d (yn+1, yn)})
− φ (max {d (yn, yn−1) , d (yn+1, yn)}) . (2.27)

If d (yn, yn−1) < d (yn+1, yn) for some, then from (2.27) follows

ψ (d (yn+1, yn)) ≤ ψ (d (yn+1, yn)) − φ (d (yn+1, yn)) < ψ (d (yn+1, yn)) , (2.28)

which is a contradiction. Hence, we have that

ψ (d (yn+1, yn)) ≤ ψ (d (yn, yn−1)) − φ (d (yn, yn−1)) < ψ (d (yn, yn−1)) , (2.29)

or d (yn+1, yn) < d (yn, yn−1) for all n ∈ N (because ψ is non-decreasing). Hence, there ex-
ists limn→∞ d (yn+1, yn) = d∗ ≥ 0, as n → ∞. From (2.28) follows that ψ (d∗) ≤ ψ (d∗) −
φ (d∗) ≤ ψ (d∗), that is, d∗ = 0.

Now, we easy get that yn ≠ ym whenever n ≠ m. Indeed, if yn = ym for some n > m,
then we choose xn+1 = xm+1 (and hence also yn+1 = ym+1). Then we have

d (yn+1, yn) < d (yn, yn−1) < · · · < d (ym+1, ym) = d (yn+1, yn) . (2.30)

A contradiction.
The rest of the proof that {yn} is a Cauchy sequence is further as in ([12], page 46).
Suppose, e.g., that the subspace g (X) is complete (the proof when f (X) is complete is

similar). Then yn tends to some gz for some z ∈ X . In order to prove that fz = gz, suppose
that fz ≠ gz. By (2.24), we have

ψ (d (fxn, fz)) ≤ ψ (M (xn, z)) − φ (M (xn, z)) + Lψ (N (xn, z)) , (2.31)

where

M (xn, z) = max {d (gxn, gz) , d (gxn, fxn) , d (gz, fz)} → d (gz, fz) ,
as n → ∞ (2.32)



On some fixed point results in b-metric, rectangular and b-rectangular metric spaces 159

and

N (xn, z) = min {d (gxn, fxn) + d (gu, fu) , d (gxn, fz) , d (gz, fxn)} → 0,
as n → ∞. (2.33)

Taking upper limit as n → ∞ in (2.31), we obtain

ψ


lim sup

n→∞
d (fxn, fz)


≤ ψ (d (gz, fz)) − φ (d (gz, fz)) < ψ (d (gz, fz)) , (2.34)

and using the non-decreasing of function ψ, we get

lim sup
n→∞

d (fxn, fz) < d (gz, fz) . (2.35)

On the other hand, by Lemma 1.3, it follows that yn differs from both fz and gz for n
sufficiently large. Hence, we can apply the rectangular inequality to obtain

d (fz, gz) ≤ d (fz, fxn) + d (fxn, fxn+1) + d (fxn+1, gz) , (2.36)

from which it follows

d (fz, gz) ≤ lim sup
n→∞

d (fxn, fz) , (2.37)

because d (fxn, fxn+1) → 0 and d (fxn+1, gz) → 0, as n → ∞. Now, (2.34) by (2.35) and
(2.37) becomes

ψ (d (gz, fz)) ≤ ψ (d (gz, fz)) − φ (d (gz, fz)) , (2.38)

or φ (d (gz, fz)) = 0, that is, fz = gz, a contradiction with the assumption that fz ≠ gz.
In the case when f and g are weakly compatible, well-known Jungck’s result implies that

f and g have a unique common fixed point. �

Let Φ denote the set of all functions φ : [0, ∞) → [0, ∞) satisfying:

(a) φ (0) = 0;
(b) φ (t) < t for all t > 0;
(c) φ is upper semi-continuous from the right (that is, for any sequence {tn} in [0, ∞) such

that tn → t as n → ∞, we have lim supn→∞ φ (tn) ≤ φ (t)).

It is worth to notice that for every φ ∈ Φ, we have that limn→∞ φn (t) = 0 for each t > 0.
In the following new result we consider Boyd–Wong type theorem for b-rectangular metric

spaces. Namely, we announce the following result:

Theorem 2.7. Let (X, d) be a b-rectangular metric space with s > 1 and let f, g : X → X
be two self maps such that f (X) ⊆ g (X), one of these two subsets of X being complete. If,
for some function φ ∈ Φ,

sd (fx, fy) ≤ φ (d (gx, gy)) (2.39)

holds for all x, y ∈ X , then f and g have a unique point of coincidence say ω ∈ X .
Moreover, for each x0 ∈ X , the corresponding Jungck sequence {yn} can be chosen such
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that limn→∞ yn = ω. In addition, if f and g are weakly compatible, then they have a unique
common fixed point.

Proof. Let us prove first that the point of coincidence of f and g is unique (if it exists).
Suppose that ω1 and ω2 are two distinct points of coincidence of f and g. Then there exist
two points u1 and u2 such that fu1 = gu1 = ω1 and fu2 = gu2 = ω2. Then (2.39) implies
that

d (ω1, ω2) = d (fu1, fu2) ≤ sd (fu1, fu2) ≤ φ (d (gu1, gu2))
= φ (d (ω1, ω2)) < d (ω1, ω2) , (2.40)

which is a contradiction.
In order to prove that f and g have a point of coincidence, take an arbitrary point x0 ∈ X

and, using that f (X) ⊆ g (X), choose sequences {xn} and {yn} in X such that

yn = fxn = gxn+1, for n = 0, 1, 2, . . . . (2.41)

If yn0 = yn0+1 for some n0 ∈ N, then gxn0+1 = yn0 = yn0+1 = fxn0+1 and f and g have
a (unique) point of coincidence. Suppose, further, that yn ≠ yn+1 for all n ∈ N. For the rest,
assume that yn ≠ yn+1 for all n ∈ N. In this case we can show that yn ≠ ym if n ≠ m.
Indeed, let yn = ym for some n > m. Then (2.39) implies that

d (ym, ym+1) = d (yn, yn+1)
= d (fxn, fxn+1) ≤ sd (fxn, fxn+1) ≤ φ (d (gxn, gxn+1))
= φ (d (yn−1, yn)) < d (yn−1, yn) < · · · < d (ym, ym+1) , (2.42)

a contradiction. Thus, in the sequel, we will assume that yn ≠ ym for n ≠ m.
Further, we shall prove that the sequence {d (yn, yn+1)} tends to 0 as n → ∞. In order to

prove this we first have

d (yn, yn+1) = d (fxn, fxn+1) ≤ sd (fxn, fxn+1) ≤ φ (d (gxn, gxn+1))
= φ (d (yn−1, yn)) < d (yn−1, yn) , (2.43)

that is, the sequence {d (yn, yn+1)} is strictly decreasing. Therefore, there exists d∗ ≥ 0 such
that

lim
n→∞

d (yn, yn+1) = d∗. (2.44)

Letting n → ∞ in (2.43) and using the upper semi-continuity from the right of φ, we get that
d∗ = 0. Hence, d (yn, yn+1) tends to 0 as n → ∞.

We next prove that {yn} is a Cauchy sequence. Suppose to the contrary that {yn} is not
a Cauchy sequence (for metric space see [2], Lemma 1). Then there exists ε > 0 for which
we can find two subsequences


ym(k)


and


yn(k)


of {xn} such that n (k) is the smallest

index for which

n (k) > m (k) > k and d

ym(k), yn(k)


≥ ε. (2.45)

This means that

d

ym(k), yn(k)−2


< ε. (2.46)
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Using (2.46) and taking the upper limit as k → ∞, we get

lim sup
n→∞

d

ym(k), yn(k)−2


≤ ε. (2.47)

On the other hand, we have

d

ym(k), yn(k)


≤ sd


ym(k), ym(k)+1


+ sd


ym(k)+1, yn(k)−1


+ sd


yn(k)−1, yn(k)


. (2.48)

Using (2.44), (2.45) and taking the upper limit as k → ∞, we get

ε

s
≤ lim sup

n→∞
d


ym(k)+1, yn(k)−1


. (2.49)

Using the b-rectangular inequality once again we have the following inequalities:

d

ym(k), yn(k)


≤ sd


ym(k), yn(k)−2


+ sd


yn(k)−2, yn(k)−1


+ sd


yn(k)−1, yn(k)


. (2.50)

Using (2.44), (2.45) and taking the upper limit as k → ∞, we get

ε

s
≤ lim sup

n→∞
d


ym(k), yn(k)−2


. (2.51)

Now, putting x = xm(k)+1, y = xn(k)−1 in (2.39), we obtain

sd

ym(k)+1, yn(k)−1


= sd


fxm(k)+1,fxn(k)−1


≤ φ


d


gxm(k)+1,gxn(k)−1


= φ


d


ym(k), yn(k)−2


. (2.52)

Further, taking the upper limit as k → ∞ in (2.52) and using (2.49) and (2.47) we obtain

ε = s · ε
s

≤ φ (ε) < ε, (2.53)

a contradiction to φ (t) < t for t > 0. Thus, {yn} = {fxn} = {gxn+1} is a b-rectangular
(b-g.m.s.)-Cauchy sequence in (X, d). It follows from the completeness of g (X) (the proof
when f (X) is complete is similar) that there exists z ∈ X such that ω = gz ∈ g (X) and
yn → ω. We shall show that fz = gz. In view of Lemma 1.3 we can assume that yn differs
from both fz and gz for sufficient large n. Hence,

1
s
d (fz, gz) ≤ d (fz, fxn) + d (fxn, fxn+1) + d (fxn+1, gz)

≤ φ (d (gz, gxn)) + d (yn, yn+1) + d (yn+1, gz)
≤ d (gz, yn−1) + d (yn, yn+1) + d (yn+1, gz) → 0, (2.54)

as n → ∞. It follows that fz = gz = ω is a point of coincidence of f and g. Thus, ω is the
unique point of coincidence of f and g.

If f and g are weakly compatible, then by known Jungck’s result ω is the unique common
fixed point of f and g. �
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Putting g = IX in (2.39) we obtain Boyd–Wong type theorem for b-rectangular metric
spaces.

Corollary 2.8. Let (X, d) be a complete b-rectangular metric space with s > 1 and f :
X → X satisfies

sd (fx.fy) ≤ φ (d (x, y)) , (2.55)

for all x, y ∈ X , where φ ∈ Φ. Then f has a unique fixed point, say z ∈ X , and fnx → z as
n → ∞ for all x ∈ X.

The following example supports Theorem 2.3.

Example 2.9. Let X = {0, 1, 3} be equipped with the b-metric d given by d (x, y) =
(x − y)2 with s = 2. Consider the mapping f : X → X defined by f0 = f1 = 1, f3 = 0.
Let λ ∈ [0, 1

9 ]. Then we obtain

d (f0, f3) = d (1, 0) = 1 ≤ λM (0, 3) = λmax


9, 0, 9,
5
4


= 9λ

and

d (f1, f3) = d (1, 0) = 1 ≤ λM (1, 3) = λmax


4, 0, 9,
5
4


= 9λ.

Hence, f satisfies all assumptions of Theorem 2.3 and thus it has a unique fixed point (here
it is 1).

The following example supports Corollary 2.8.

Example 2.10. Let X = A ∪ B, where A =


1
n : n ∈ {2, 3, 4, 5}


and B = [1, 2]. Define

d : X × X → [0, ∞) such that d (x, y) = d (y, x) for all x, y ∈ X and

d


1
2
,
1
3


= d


1
4
,
1
5


= 0.03; d


1
2
,
1
5


= d


1
3
,
1
4


= 0.02;

d


1
2
,
1
4


= d


1
5
,
1
3


= 0.6; d (x, y) = |x − y|2 otherwise.

Then (X, d) is a b-rectangular metric space with coefficient s = 4 > 1. But (X, d) is neither
a metric space nor a rectangular metric space. Let f : X → X be defined as:

f (x) =


1
4

if x ∈ A

1
5

if x ∈ B.

Then f satisfies all conditions of Corollary 2.8 with φ (t) = 12
25 t and has a unique fixed point

x = 1
4 .
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[16] Z. Kadelburg, S. Radenović, Fixed point results in generalized metric spaces without Hausdorff property, Math.

Sci. 8 (125) (2014) 8 pages.
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