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Abstract-In this paper, we consider the following higher-order neutral delay difference equations 
with positive and negative coefficients: 

A”‘(,n + a-d + P,G-, - qnzn-t = 0, 72 2 no, 

where c E W, m 2 1, k 2 1, r,Z 2 0 are integers, and {pn}~zn=n, and {qn}r&, are sequences of 
nonnegative real numbers. We obtain the global results (with respect to c) which are some sufficient 
conditions for the existences of nonoscillatory solutions. @ 2003 Elsevier Science Ltd. All rights 
reserved. 
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1. INTRODUCTION 

In this paper, we shall consider the following higher-order neutral delay difference equations with 
positive and negative coefficients: 

A’%, + GA) + pnxw-, - qnxn-z = 0, n 2 no E (0, 1,2,. . . }, (1) 

where c E R, m 1 1, k > 1, T, 1 2 0 are integers, and {p,}~&, and {qn}F!no are sequences of 
nonnegative real numbers. The forward difference A is defined as usual; i.e., Axe, = x,+1 - x,. 

Let o = max{ k, T, 1) and No 2 no be a fixed nonnegative integer. By a solution of (l), we 
mean a real sequence {x,} which is defined for all n > ZVe - o and satisfies (1) for n 2 No. 

Recently, there have been a lot of activities concerning the oscillations and nonoscillations of 
delay difference equations; see, for example, [l-11]. Agarwal and Wong [2], Agarwal et al. [3], 
Agarwal and Grace [4], and Zhang and Yang [9] investigate the oscillatory behavior of solutions 
of nonlinear neutral difference equations of order m(> 1) of the following form: 

Am(xn + CGA) + pnf(xn-r) = 0, 72.2 720. (2) 
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The oscillation and nonoscillation of solution of the first-order neutral delay difference equation 
with positive and negative coefficients 

A@, + CL-~) + pnxn-, - qnxn-l = 0, 77.2 no, (3) 

have been investigated by Chen and Zhang [5], Lalli and Zhang [7], Zhang and Wang [8], and 
Zhou [ll]. The higher-order neutral difference equation with positive and negative coefficients 
received much less attention, which is due mainly to the technical difficulties arising in its analysis. 
In particular, there is no nonoscillation result for (1). 

In this paper, we obtain the global results (with respect to c) in the nonconstant coefficient 
case, which are some sufficient conditions for the existence of a nonoscillatory solution of (1) for 
allvaluesofc#f 1. 

As is customary, solution {zcn} of (1) is said to oscillate about zero or simply to oscillate if 
the terms 2, of the sequence {x1(} are neither eventually all positive nor eventually all negative. 
Otherwise, the solution is called nonoscillatory. For t E R, we define the usual factorial expression 
(t)(“) = nEi’(t - i) with (t)(O) = 1. 

2. NONOSCILLATION OF ODD ORDER EQUATIONS 
In this section, we assume that m 2 1 is an odd integer. 

THEOREM 1. Assume that 0 I c < 1 and that 

2 i”-lqi < cc). 
i=no 

(4 

Further, assume that there exist a constant cy > l/(1 - ) c an a sufficiently large Nr 2 no such d 
that 

Pn - wn, > for n 2 Nr. (5) 

Then (1) has a bounded nonoscillatory solution. 

PROOF. By (4) and (5), there exists a nr > max{Nr, no + o} sufficiently large such that 

c+~~(i-n+m-l)(m-1)(p~+q~)~81<1, fornznr, 
* 2-n 

(6) 

where Br is a constant, and 

(“-l)(aMpi - Mqt) 5 c - 1+ cuM, for n > 721, (7) 

hold, where it4 is a positive constant such that 

l-c 1-C 
-<MI- 

1+ccr (8) 

holds. 
Consider the Banach space 1% of all real sequences z = {z,}r&,, with the norm ]]z]] = 

su~,~,~ I4 W e d fi e ne a closed bounded subset R of 12 as follows: 

R = {x = {x,} E 12 : M I: z, 5 aM, n 2 no}. 

Define an operator T : Sl -+ 12 as follows: 

TX, = 
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We shall show that TR c R. In fact, for every z E R and n 2 nr, using (7) and (8), we get 

co 

Tx~=l-c-~3n-lt(_l~)!~=~ ~C(i-n+m-l) trn-l) (pixi+ - Q&-l) 

Cm-l) (aMpi - Mqi) 

Furthermore, in view of (5) and (8), we have 

00 

TX, = 1 -c-an-k + cm ! 1)! i=n ~C(i-n+m-l) Cm-l) (PjX& - Q&-l) 

+l)(Mpi - aMqa) 

>l-c-caM 
2 M. 

Thus, we proved that TCl c 0. 
Now we shall show that operator T is a contraction operator on R. In fact, for x, y E Cl and 

n 1 nl, we have 

ITx, - Tynl < ‘+n-k - ?/n-k1 + & $(i - n + m - l)(“-‘)pilxi-, - yi-+l 

. 2-n 

+ & $(i - n + m - l)(“-l)qilxi-~ - yi-~1 
. 2-n 

[ 

co 
< c+ &)! i=71 PC(i-n+m-l) @-(Pi + 4i) 1 112 - YII 

I &llx - YII. 

This implies that 
lITa: - TYII I hllx - YII, 

where in view of (6), 81 < 1, which proves that T is a contraction operator on R. Therefore, 
T has a unique fixed point x in R, which is obviously a bounded positive solution of equation (1). 
This completes the proof of Theorem 1. 

THEOREM 2. Assume that 1 < c < +co and that (4) holds. Further, assume that there exist a 
constant /3 > c/(c - 1) an d a sufficiently large Nr 1 no such that 

Pn 2 PQn, for n 2 Nl. (9) 

Then (1) has a bounded nonoscillatory solution. 

PROOF. By (4) and (9), th ere exists a ni > max{ Nr , C} sufficiently large such that 

c(,‘l), ,$J (i-n-k+m-l)(m-1)(pi+qi)102<1, forn>nr, (10) 
’ t=n+k 

where 02 is a constant, and 

(i-n-k+m-l)m ( -qpflpi - Hqi) 5 1 - c + c/3H, for n 2 ni, (11) 
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where H is a positive constant such that 

c-l c-l 
-<HL- 

PC c+P (12) 
holds. 

Let 1% be the set as in the proof of Theorem 1. Set 

Cl = {x = {xn} E 12 : H I: 2, 5 PH, n 2 no}. 

Define an operator T : R + 1% as follows: 

1 - A- Axn+h 
c c 

TX, = 1 + 
E 

c(m - l)! i=n+k 
(i -n - k + m - l)(m-‘)(pixi+. - qizi-l), n 1wr 

TX,, , no<n<ni. 

We shall show that TR c a. In fact, for every x E Q and n > ni, using (11) and (12), we get 

TX, = 1 - :- :x,+~ + 
c c c(m~li, ,F (i-n-Ic+m-l)(m-l)(pi~i-,-qixi_l) 

* c=n+k 

<l-i+ 
C 

.(,\ 1), ,F (i - n - k + m - l)(“-l)(pHpi - Hqi) 
’ z=n+k 

I PH. 

Furthermore, in view of (9) and (12), we get 

TX, = 1 - 1 - ‘x,+k + 
c c .(,y 1), ,c (i - n - k + m - l)(m-l)(pixi--r - qiximl) 

. a=n+k 

>I-LPH+ - 
C C .(,y 1), ,g (i - n - k + m - l)(“-l)(Hpi - pHqi) 

’ a=n+k 

>I-1-E - 
C C 

Thus, we proved that TSZ c Cl. 
Now we shall show that operator T is a contraction operator on R. In fact, for x, y E R and 

n 2 ni, we have 

ITxn -T~nl 5 ~bh+k - Yn+kl -i- .(,\ 1), ,g (i - n - k + m - l)(m-‘)pilxi--r - y+,.l 
z=n+k 

+ c(m! l)! ,F (i - 12 - k + m - l)(“-l)qilxi4 - yi-ll 
r=n+k 

l+ (my l)! i=n+k 
2 (i-n-Ic+m-l)(“-‘)(pi+qi) 1 11x-yll 

This implies that 
IITx - TYII 5 e2llx - YII, 

where in view of (lo), 02 < 1, which proves that T is a contraction operator. Consequently, T has 
the unique fixed point x, which is obviously a bounded positive solution of equation (1). This 
completes the proof of Theorem 2. 
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THEOREM 3. Assume that -1 < c < 0 and that (4) holds. Further, assume that there exist a 
constant y > 1 and a sufficiently large Nr 2 ne s’uch that 

Pn - Y4n7 > for n 2 Nr. (13) 

Then (1) has a bounded nonoscillatory solution. 

PROOF. By (4) and (13), th ere exists an n1 2 Nr sufficiently large such that the inequalities 

03 

-c + (m t l)! i=n 
x(i-n+m-1) (m-l)(pi +qii) 5 83 < 1, for n 2 711, (14 

where 0s is a constant, and 

O L (m : l)! i=n 
-F(i-n+m-1) (m-1)(yJ4Pi - Ml%) - < (c + 1)(-d& - I>, for 72 1121, (15) 

hold, where the constant Mr satisfies 

1 

r 
<MrI.l. (16) 

Let 12 be the set as in the proof of Theorem 1. Set 

Define an operator T : R -+ 12 as follows: 

TX, = 
if c - anek + (m L l)! ig(i - n + m - l)(“-l)(~ixi--r - wi-d, n 2 nl, 

TX,, , no < n 5 121. 

For every x E R and n > nl , using (15) and (16)) we get 

00 
Tz,=l+~-~~-~+(~~~)!~=~ C(i--n+m-1) Cm-l) (PiX:i-, - qixi-l) 

(m-l)(yMl~i - Mlqi) 

Il+c-cyMr+(c+l)(yMr-1) 
= TM,. 

Further, in view of (13) and (16), we have 

00 

Tx,=~+c-~"x+(~~~~~_, C(i-n+m-1) Cm-l) (PiX& - qixi-l) 

00 

~l+c-cMl+(m!q!i=n PC(i-n+m-l) (“-(khpi - rMlqi) 

>l+c-cMl 

1 MI. 

Thus, we proved that TR c s1. 
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For x, y E s2 and n 2 nr, we have 

IT% - TYnI I -clx*-k - Yn-kl + ~~(i-n+m-l)(m-l)pilxii-y~-~l 
. 2-n 

+ & E(i - n + m - l)(“-r)qilx&~ - y&J 
* *--71 

co 

< [ -e+ (m A)! i=n 
-C(i-nfm-1) (m-l)(Pi + qii) 1 llz - Yll 

I f33llx - YII. 

This implies that 
IP - TYII 5 e311x - Yll, 

where in view of (14), 65 < 1. This proves that T is a contraction operator. Consequently, T has 
the unique fixed point x, which is obviously a bounded positive solution of equation (1). This 
completes the proof of Theorem 3. 

THEOREM 4. Assume that --oo < c < -1 and that (4) holds. Further, assume that there exists 
a constant 6 > 1 and a sufficiently large Nl 2 no such that 

Pn 1 h, for n 2 NI. (17) 

Then (1) has a bounded nonoscillatory solution. 

PROOF. By (4) and (17), there exists a n1 1 no sufficiently large such that the inequalities 

1 --- 
c 

c(,!lj, ,g (i-n-k+m-l)‘m-1’(pi+qi)Ie4<1, fornLnr, (18) 
* a=n+k 

where 84 is a constant, and 

0 I & ,-g (i-n-Ic+m-l)(m-l)(SHlpi-Hlqi) 2 (C+l)(Hl-1), for n 2 711, (19) 
* t--n+k 

hold, where the positive constant HI satisfies 
1 
61H~<1. (20) 

Let 12 be the set as in the proof of Theorem 1. Set 

52 = {x = {xn} E 12 :HI<x,ISH1, nzn,,}. 

Define an operator T : R --f 1% as follows: 

1+ f - $,+k 

TX, = 1 + 5 (i-7X-k +T7L-l)(m-1)(piXi-~ -qiXi-I), 
'$m - I>! i=n+k 

722121, 

. 

TX,, , no 5 n 5 nr. 

For every x E R and n 2 n1 , using (17) and (20), we get 

TX, = 1 + f - $n+k + .(,y l), ,e (i - n - k + VI, - l)(m-l)(PiXi--m - &Xi-l) 
’ s=n+k 

1 PHI 
s l+ c - c+ c(m-l)! i=n+k 

’ 2 (i-n-k+m-l)(m-‘)(Hlpi-GHlqi) 
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Furthermore, in view of (19) and (20), we have 

TX, = 1+ ; - ;Zn+k + .(,‘- 1), ,F (i - n - k + m - l)(m-l)(pGz&. - qgci-l) 
. z=n+k 

1 HI 21-t--- + A(c + l)(Hl - 1) c c c 
= HI. 

Thus, we proved that TR c 52. 
For x, y E Q and n 2 ni, we have 

lTxc, - TY,I I -k\xn+k - yn+kJ - .(,! 1), ,g (i - n - k + m - l)(m-l)p~)x+- - ~4 
’ z=n+k 

- .(,‘- 1), 2 (i - n - k + m - l)(“-l)qi(zi-l - yi--ll 
’ i=n+k 

l+ (772 t l)! i=n+k 
2 (i-n-k+m-l)(“-‘)(pi+qi) 1 Ija-?/II 

This immediately implies that 
IF - TYII L e4llx - YII. 

In view of (18), fl4 < 1. This proves that T is a contraction operator. Consequently, T has 
the unique fixed point x, which is obviously a bounded positive solution of equation (1). This 
completes the proof of Theorem 4. 

In the special case where qn s 0, conditions (5), (9), (13), and (17) are redundant. By 
Theorems 1-4, we have the following result. 

COROLLARY 1. Assume that -co < c < foe, c # -1 and that 

2 F-lpi < co. 
i=nCl 

Then the neutral difference equation 

A-(x,, + c&-k) -t P,x,-~ = 0 

has a bounded nonoscillatory solution. 

3. NONOSCILLATION OF EVEN ORDER EQUATIONS 
In this section, we assume that m 2 2 is an even integer. 

THEOREM 5. Assume that 0 5 c < 1 and that 

2 P-lqi < 00, 

(21) 

(22) 

Further, assume that there exist a constant cx > l/(1 - c) and a sufficiently large Ni 1 nc such 
that 

4n - apn, > for n 2 Nl. (23) 

Then (1) has a bounded nonoscillatory solution. 
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PROOF. By (22) and (23), there exists an n1 > max{Ni, no + 0) sufficiently large such that 

c+~~(i-n+m-l)r”“)(pi+pi)~e~<l, ’ forn>nr, 
. 2-n 

where t$ is a constant, and 
1 cm 

hold, where A4 is a positive constant such that 

l-c l-c 
T<M<-- 

1+ ccl 
holds. 

Consider the Banach space 12 of all real sequence 5 = {z~}:==,,, with the norm ((zll = 

su~,>,~ hl. W e d fi e ne a closed bounded subset R of 1% as follows: 

R = {x = {xCn} E zz : M 5 z, 5 crM, n 2 no}. 

Define an operator T : R + 12 as follows: 

TX, = 
1 -c-an-k + (mi l)! izn(i -n+m - l)(“-i) (qixid -pix+), n 2 nl, 

TX,, , no In < 711. 

It can be proved that T has the unique fixed point x, which is a bounded positive solution of 
equation (1). The rest of the proof is similar to that of Theorem 1, and thus, is omitted. 

THEOREM 6. Assume that 1 < c < +oo and that (22) holds. Further, assume that there exist a 
constant p > c/(c - 1) an d a sufficiently large Nr 2 no such that 

Qn 1 PPn, for n 2 Nl. (24) 

Then (1) has a bounded nonoscillatory solution. 

PROOF. By (22) and (24), there exists a ni 1 max{Ni, 0) sufficiently large such that 

c(m~l),,~ (i-n-~+m-l)(“-l)(qi+pi)I82<1, forn>nr, 
'a=n+k 

where 0s is a constant, and 

05 2 (i-n-k+m-l)(“-1)(PHqi-Hpi)<1-c+cj3H, for n > nl, 

i=n+k 

where H is a positive constant such that 
c-l c-l 
-<Hi- 

PC c+P 
holds. 

Let 12 be the set as in the proof of Theorem 1. Set 

s2 = {x = {xCn} E 12 : H < 2, 5 PH, n 2 no}. 

Define an operator T : R -+ 12 as follows: 

1 - ’ - &,+k 
c c 

Txn = l + E (i-n - ~c+m - l)(m-l)(qix+l -pixi+), 
c(m - I)! i=n+k 

n 2 nl, 

TX,, , no<n<nl. 

It can be proved that T has the unique hxed point x, which is a bounded positive solution of 
equation (1). The rest of the proof is similar to that of Theorem 2, and thus, is omitted. 
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THEOREM 7. Assume that -1 < c < 0 and that (22) holds. Further, assume that there exist a 
constant y > 1 and a sufficiently large Ni 2 no such that . 

4n - YPn, > for n > Ni. (25) 

Then (1) has a bounded nonoscillatory solution. 

PROOF. By (22) and (25), th ere exists a ni 2 Ni sufficiently large such that the inequalities 

co 

-c + (m y l)! i=n 
-x(i--n+m-1) -yqi +pi) < e3 < 1, for n > nl, 

where 13s is a constant, and 

cc 

O s (m ! l)! i=nl 
C(i-n+m-1) +%~19i - Mm) I (c + l)(YMi - I), for n 2 nl, 

hold, where the constant Ml satisfies 

1 

r 
<Mi<l. 

Let 12 be the set as in the proof of Theorem 1. Set 

i-l = {x = {xcn} E 12 : MI I x, I yM1, n 1 no}. 

Define an operator T : R + 12 as follows: 

TX, = 
l)(m-l)(qixi-~ -pii+), n 1 nl, 

n0InInl. 

It can be proved that T has the unique fixed point x, which is a bounded positive solution of 
equation (1). The rest of the proof is similar to that of Theorem 3, and thus, is omitted. 

THEOREM 8. Assume that -co < c -C -1 and that (22) holds. Further, assume that there exists 
a constant 6 > 1 and a sufficiently large Ni 2 no such that 

Then (1) has a bounded nonoscillatory solution. 

PROOF. By (22) and (26), there exists a ni 2 no sufficiently large such that the inequalities 

1 --- 
C 

c(,‘l), ,g (i-n-k+m-l)(m-1)(qi+pi)Le4<1, fornzni, 
’ a=n+k 

where 04 is a constant, and 

co 
O s (m y l)! i=n+k C (i-n+m-1) (m-l)(SHlqi - HIpi) I (c + l)(Hi - l), for n 2 121, 

hold, where the positive constant HI satisfies 
1 
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Let 1% be the set as in the proof of Theorem 1. Set 

Define an operator T : R + 12 as follows: 

1+ t - ;x,,* 
TX, = + ,(,Y 1), .=E+o(i - n - k + m - w-%wi-z -PiXi-7-L n 2 nl, 

‘Z n 
TX,, , no In<n1. 

It can be proved that T has the unique fixed point x, which is a bounded positive solution of 
equation (1). The rest of the proof is similar to that of Theorem 4, and thus, is omitted. 

In the special case where p, c 0, conditions (23)-(26) are redundant. By Theorems 5-8, we 
have the following result. 

COROLLARY 2. Assume that -oo < c < foe and that 

2 im-‘qi < 00. 
i=7Lo 

Then the neutral difference equation 

Am(xn + cx,-k) = qnx,-z (27) 

has a bounded nonoscillatory solution. 
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