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Abstract—In this paper, we consider the following higher-order neutral delay difference equations
with positive and negative coefficients:

Am(-’?n + Cl'n—)c) + PnZn—r — nTn-1 =0, n > no,

where c € R, m > 1, k.> 1, 7,1 > 0 are integers, and {pn}aL,, and {gn}nL,, are sequences of
nonnegative real numbers. We obtain the global results (with respect to ¢) which are some sufficient
conditions for the existences of nonoscillatory solutions. (© 2003 Elsevier Science Ltd. All rights
reserved.
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1. INTRODUCTION

In this paper, we shall consider the following higher-order neutral delay difference equations with
positive and negative coefficients:

Am(mn + C-’L'n—lc) + PnTn_r — @nTn-1 =0, n>ng € {01 L,2,... }7 (1)

where c € R, m > 1, k > 1, r,l > 0 are integers, and {p,}32, and {g.}52,, are sequences of
nonnegative real numbers. The forward difference A is defined as usual; i.e., Az, = Tpt1 — Tp.

Let 0 = max{k,r,l} and Ny > ng be a fixed nonnegative integer. By a solution of (1), we
mean a real sequence {z,} which is defined for all n > Ny — o and satisfies (1) for n > No.

Recently, there have been a lot of activities concerning the oscillations and nonoscillations of
delay difference equations; see, for example, {1-11]. Agarwal and Wong [2], Agarwal et al. [3],
Agarwal and Grace [4], and Zhang and Yang [9] investigate the oscillatory behavior of solutions
of nonlinear neutral difference equations of order m(> 1) of the following form:

A™(Zn + Tpk) + Puf(Tn-r) =0,  n2mo. (2)
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The oscillation and nonoscillation of solution of the first-order neutral delay difference equation
with positive and negative coefficients

A(-Tn + C-Tn—k) + PnTnor — gnTn_1 =0, n 2 no, (3)

have been investigated by Chen and Zhang [5], Lalli and Zhang (7], Zhang and Wang [8], and
Zhou [11]. The higher-order neutral difference equation with positive and negative coefficients
received much less attention, which is due mainly to the technical difficulties arising in its analysis.
In particular, there is no nonoscillation result for (1).

In this paper, we obtain the global results (with respect to ¢) in the nonconstant coefficient
case, which are some sufficient conditions for the existence of a nonoscillatory solution of (1) for
all values of ¢ # + 1.

As is customary, solution {z,} of (1) is said to oscillate about zero or simply to oscillate if
the terms z,, of the sequence {z,,} are neither eventually all positive nor eventually all negative.
Otherwise, the solution is called nonoscillatory. For t € R, we define the usual factorial expression

()0 = T (¢ — i) with ()@ =1.

2. NONOSCILLATION OF ODD ORDER EQUATIONS

In this section, we assume that m > 1 is an odd integer.

THEOREM 1. Assume that 0 < ¢ < 1 and that
[ ] o0
Z i lp; < o0, Z i™lg; < o0, (4)
i=ng i=ng

Further, assume that there exist a constant & > 1/(1 — ¢) and a sufficiently large N1 > ng such
that
Pn > 0gq,,  forn2> Nj. (5)

Then (1) has a bounded nonoscillatory solution.
PRroOF. By (4) and (5), there exists a ny > max{Ny, no + o} sufficiently large such that

1

c+—(——|Zz—n+m-—1)(m'1)(p i +qi) <61 <1, for n > ny, (6)
=n
where 0, is a constant, and
1 o0
0< ——=> (i-n+m=-1)""V(aMp, - Mg)<c—1+aM, forn2m, (7)
(m—1)! pa—
hold, where M is a positive constant such that
1- l1-c¢
8
o - 1 + ca )

holds.
Consider the Banach space 170 of all real sequences z = {z,}32,, with the norm |z| =
SUP,,>n, |Tn|. We define a closed bounded subset 2 of I3 as follows:

Q={z={z,} €l : M <z, <aM, n>np}.
Define an operator T : 2 — I as follows:

l—c—cxpni+——= S (i—n+m-1)"V(pz,_, —qzriy), n>ny,

Txp,, ng <n<n.
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We shall show that TQ C Q. In fact, for every z €  and n > ny, using (7) and (8), we get

1 oo}
—1—p— - ; =1
Tepn=1-c—cTnk+ =) ;zn(z n+m-—1) (PiTi—r — qiTi-1)
- — o —1)(m-1) . — Ma:
<l-c+ o) ién(z n4+m—1) (aMp; — Mg;)
< aM.

Furthermore, in view of (5) and (8), we have

IR m—
Tzp,=1—c—cTn_i+ m z=Zﬂ(l —n+m-— 1)( D(p,;.’):'i_,- — Qizi—l)
1 oo
21—c—caM+(m—_l)!;(i—n+m_1)(m—1)(Mpi_ani)

>1—c—caM
> M.

Thus, we proved that TQ C Q.
Now we shall show that operator T is a contraction operator on . In fact, for z,y €  and
n > ny, we have

1 K. m—
Tz, — Tyn| < €|Tn—k — Yn—i| + m Z(z —n+4+m-— 1)( l)pi|xi_,. ~ Yier]
i=n

1 X —
+(m—_1)-|2(7:—’n+m“1)( I)Qill'i—l—yi—ll

1 . -
< C+m2(l‘"+m—1)(m Yipi+q)| lz—yl
<bilz -yl

This implies that
Tz — Ty|| < 61|z~ yl),

where in view of (6), 6, < 1, which proves that T is a contraction operator on . Therefore,
T has a unique fixed point z in , which is obviously a bounded positive solution of equation (1).
This completes the proof of Theorem 1.

THEOREM 2. Assume that 1 < ¢ < 400 and that (4) holds. Further, assume that there exist a
constant 3 > ¢/(c — 1) and a sufficiently large N1 > ng such that

Pn > Ban, for n > Nj. (9)

Then (1) has a bounded nonoscillatory solution.
PRrROOF. By (4) and (9), there exists a n; > max{N;, o} sufficiently large such that

1 1
o e — _1\Ym=1)¢,. .
p + pE—Y i_2n+k(z n—k+m-—1) (pi+q)<62<1, for n > nj, (10)

where 8, is a constant, and

1

0= -1

> (i-n—k+m—1)""D(BHp;, - Hg) <1-c+cfH, forn>mny, (11)
i=n+k
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where H is a positive constant such that

c—1 c—1
<H<< —
Be Tc+p (12)

holds.
Let 32 be the set as in the proof of Theorem 1. Set

Q={z={zn} €l H<z, <BH, n>ne}.
Define an operator T :  — 7 as follows:

1
1—=_2
¢ otk

1 o0 . .
ce(m—1)!; D k(z —n—k+m-— 1)(m_ )(pizi—r —qiTi_y), n>nyg,
*t=n+

Tznla np < n < ny.

T(L'n = +

We shall show that TQ C Q. In fact, for every z € Q and n > n;, using (11) and (12), we get

Tz,=1- 1 l£'3n+lc + m=1)! Z —n—k+m-1)""D(pz;,_, — gz
¢ Di=n+tk
c1-ii_ 1 _ i (i—n—k+m-1)™"Y(3Hp, — Hg,)
- c cm-1 ‘ ¢
i=n+k
< BH.

Furthermore, in view of (9) and (12), we get

oo

1

1 1
=1—-_= —E:'__ B R G N
T.’En =1 p czn+k + c(m — 1)' i=n+k(7/ n—=k +m 1) m (ptzl_r q‘,,-'.cl_[)
1 ﬂH 1 > _
>l - — 1)(m-1) L )
1 i (m—-l)! i=2n+k(z n—k+m-—1) (Hp; — BHq;)
>1_L1_PH
¢ c
> H.

Thus, we proved that TQ C Q.
Now we shall show that operator T is a contraction operator on €. In fact, for z,y €  and
n > ny, we have

1 1
IT-'L'n - Tynl S _lx‘"+k - yn+k| + ""—— Z (z n—k +m-— 1)(m l)p,ll‘,_r yl—Tt
c e(m —1)! R

c(m— o) Z n—k+m—1)(m_1)¢1z'|$i—l — Yi-i]

i=n+k
1
- — (m—l) . ) _
<M me 1)5_%(1 w= k= Do) ool
< Oaflz -yl

This implies that
1Tz — Ty|| < b2)|z — yll,

where in view of (10), §; < 1, which proves that 7" is a contraction operator. Consequently, T has
the unique fixed point z, which is obviously a bounded positive solution of equation (1). This
completes the proof of Theorem 2.
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THEOREM 3. Assume that —1 < ¢ < 0 and that (4) holds. Further, assume that there exist a
constant v > 1 and a sufficiently large N1 > ng such that

Pn = Yqn, for n > Nj. (13)

Then (1) has a bounded nonoscillatory solution.
PRrOOF. By (4) and (13), there exists an ny > N sufficiently large such that the inequalities

[o <]

1 . m—
—c+m2(z—n+m—1)( 1)(pi+q,~)§03<1, for n > n4, (14)

where 63 is a constant, and
0<;i(i—n+ — 1)) (yMyp; — Myq;) < (c+1)(yM; —1) for n > ny, (15)
= m 1)« m YM1Dpi 19i) = (¢ Y ’ Or o Z Ny,

=n
hold, where the constant M, satisfies

;1; <M <1 (16)

Let 70 be the set as in the proof of Theorem 1. Set
Q={z={z.} €l}s: M) <z, <M, n>no}.

Define an operator T : @ — 20 as follows:

o0
1 — _ . —1)™m=V(pz: , — qizi , > i,
Tz, = te-cn k+(m—-1)!i‘::n(l n+m-—1) (piz GiTi—1), n=m
Til:n17 no S n S ny.

For every z € Q and n > ny, using (15) and (16), we get

1 o, —
Tzp=14c—ctp_r+ (m——l)'_ ;(1 —n+m-— 1)( l)(Piﬂfi—r — Qi)

1 ‘
. (m-1) L .
< 1—|—c——c*yM1+—( o E (i-n+m-1) (YMipi — Mig:)

<l4+c—ceyMy+(c+1)(vM; 1)
="}’M1.

Further, in view of (13) and (16), we have

1
(m—1)

[o o]
Tz, =14c—ctn_r+ Z(z —n4+m—-1D"Y(pa_, —qx;))

1 = ‘
2 1e—eMy+ g 3 (= ntm =) (Myp — yMig)
Ti=n

>14c—cM;
> M.

Thus, we proved that TQ C Q.
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For z,y € Q and n > n,;, we have

ITxn Tynl < —Clzn k— yn—kl + ' Z —n+m— 1)(m—l)pi|xi—'r - yi—rl
i=
1 (m-1)
+(—_—1'Zz—n+m—l) qlle—y,_[l
i=n

1 oo )
B - = o —
< c+(m—1)!,z=n(z n+m—1)"V(p;+q)| |z -yl

< O3z — g

This implies that
ITz — Ty|| < 63|z - yll,

where in view of (14), 5 < 1. This proves that T is a contraction operator. Consequently, T has
the unique fixed point z, which is obviously a bounded positive solution of equation (1). This
completes the proof of Theorem 3.

THEOREM 4. Assume that —oo < ¢ < —1 and that (4) holds. Further, assume that there exists
a constant § > 1 and a sufficiently large N1 > ng such that

Pn > 0n, for n > Nj. (17)

Then (1) has a bounded nonoscillatory solution.
Proor. By (4) and (17), there exists a n; > ng sufficiently large such that the inequalities

L e — Z —n—k4+m-1)"mDp +q)<0, <1, for n > ny, (18)

where 8, is a constant, and
1 (m-1)
0< Cyy Z (i—-n—k+m—1) (§Hipi— Hiq;) < (c+1)(Hy-1),  forn >ny, (19)
i=n+4k
hold, where the positive constant H; satisfies
% < H1 <1. (20)
Let 70 be the set as in the proof of Theorem 1. Set
Q={r={z,} €3’ : H <z, <8H1, n>ne}.
Define an operator T : 2 — I29 as follows:
1+ L l.'v
c c n+k
Ten=9q 4 L Y (i-n-k+m-1)"D(pz;_, —qziy), n2mn,

e(m— 1!,k
Tz, ng <n<ng.

For every z € Q and n > n;, using (17) and (20), we get

1 1 1
= — E i—n—k+m—-1"Y0px_ . — gz
Tz, =1+ z - 'C'-Tn+k + c( — 1)' i=n+k(7' n—k+m 1) i (ptxt—m QIzz—l)

1 0H, 1 = . (m—1)
Sl+--—Tt—x Y (i-n—k+m-1) (Hipi — 6 H1q:)
¢ c c(m —1)! e
<1yl 0
c c
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Furthermore, in view of (19) and (20), we have

1 1 1 = . m—
Tzp,=1+ o T GOntk + pr— Z (i—n—k+m—-1)""Y(pa; . gz )
Ci=ntk
1 H 1 =
> .- F o — — 1}{m-1) . )
> 14— — +C(m_1)!i_§k(¢ n—k+m—1)™"V(§Hp; — Hya)
1 Hy 1
S142 -2 Z(e+1)(H -1
214+ - =L e (H -
‘—‘H].
Thus, we proved that TQ C €.
For z,y € Q and n > n;, we have
Tz, = T |<—l]z — |-—~—1—— i(z’—n—k+m-1)("“1) |Ticr — Yier|
n Yn| S c n+k — Un+k c('m—l)! - Di|Ti—r — Yi—r

1 > .
T em—1)! Z (i—n—k+m-1)"Vgle; | -y
i=n+k
<ty S Gk m - 06l
- ¢ (m—l)!i___nM LA
< Oyflz -yl

This immediately implies that

Tz — Ty|| < b4z — yl-
In view of (18), 84 < 1. This proves that T is a contraction operator. Consequently, T' has
the unique fixed point z, which is obviously a bounded positive solution of equation (1). This
completes the proof of Theorem 4.

In the special case where g, = 0, conditions (5), (9), (13), and (17) are redundant. By
Theorems 1-4, we have the following result.

COROLLARY 1. Assume that —oco < ¢ < +o0, ¢ # —1 and that

Z im_lpi < Q.
i=ng
Then the neutral difference equation
A™(Zn + cTn—k) + PnTn_r =0 (21)

has a bounded nonoscillatory solution.

3. NONOSCILLATION OF EVEN ORDER EQUATIONS

In this section, we assume that m > 2 is an even integer.

THEOREM 5. Assume that 0 < ¢ < 1 and that

o0 o0
> i < oo, Y ™l < co. (22)

i=ng i=ng

Further, assume that there exist a constant o > 1/(1 — ¢) and a sufficiently large N1 > ng such
that ,
Qn > OPn, for n > Nj. (23)

Then (1) has a bounded nonoscillatory solution.
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ProoF. By (22) and (23), there exists an ny > max{N1,no + o} sufficiently large such that
1 . _ :
C+Zm—__—miz—;(l—n+m—1)(m 1)(qi+p,’)301<1, for n > nq,
where 6, is a constant, and

1 [e.9)
0< —(_m——l)' Z (t—n+m-— 1)('"_1)(an1- — Mp))<c—1+aM, for n > ny,
iz
hold, where M is a positive constant such that
1-c¢ <M< l1-c¢
14 ca

holds.
Consider the Banach space I3 of all real sequence z = {z,}52
SUP,>n, |Zn|- We define a closed bounded subset §2 of I39 as follows:

Q={z={z,} €l : M <z, <aM, n>ne}.

n, With the norm |jz|| =

Define an operator T : Q — [0 as follows:

1 o0
1= = etk + ——— S (i—ntm— 1) D (gz — piiy), n>
Tz, = e G Hﬂ(m—l)!z;n(Z ntm-—1) | (gi%i1 — piTi—r), n2>mny,
T.Tnla nOSnSnl.

It can be proved that T has the unique fixed point z, which is a bounded positive solution of
equation (1). The rest of the proof is similar to that of Theorem 1, and thus, is omitted.

THEOREM 6. Assume that 1 < ¢ < +oo and that (22) holds. Further, assume that there exist a
constant 8 > c¢/(c — 1) and a sufficiently large Ny > ng such that

Gn = Ppp,  forn > Ny (24)

Then (1) has a bounded nonoscillatory solution.
PRrROOF. By (22) and (24), there exists a ny > max{/N1, o} sufficiently large such that

1 1

Z+m Z(i-—n—k-i—m——l)(m_l)(qi—i—pi)S02<1, for n > nq,

i=n+k

where 6, is a constant, and

o0
0< Z (t—n—k+m-— 1)('"’1)(,8Hqi — Hp;) €1 —c+cfH, for n > nq,
i=n+k
where H is a positive constant such that

holds.
Let {70 be the set as in the proof of Theorem 1. Set

Q={z={z,} €l :H<Lz, <BH, n>ng}.

Define an operator T : 2 — 22 as follows:

11
L= 2 ook

Txn = 1 SN D™D gz — pe,
+ e(m —1)! i=§|—k(z n—k+m-1)""Nqai — pizi-r), n2zm,
Tmnu no <n<sng.

It can be proved that T has the unique fixed point z, which is a bounded positive solution of
equation (1). The rest of the proof is similar to that of Theorem 2, and thus, is omitted.
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THEOREM 7. Assume that —1 < ¢ < 0 and that (22) holds. Further, assume that there exist a
constant v > 1 and a sufficiently large N1 > ng such that

Gn > YDn, for n > Nj. (25)
Then (1) has a bounded nonoscillatory solution.

PrOOF. By (22) and (25), there exists a ny > N; sufficiently large such that the inequalities

o0
—c+ =11 1 o ;(z —n4+m—-1)m (g +p) <0 <1, for n > n,,
where 83 is a constant, and
1 = _
0< w1 i;(i —n+m-1)""D(yM g — Myp;) < (c+ 1)(yMy — 1), for n > ny,

hold, where the constant M; satisfies

l(M]Sl.
Y

Let I739 be the set as in the proof of Theorem 1. Set
Q={z={r,} €l : M <z, <YMy, n>ng}.

Define an operator T : Q — I7° as follows:

1 0 .
— Tyt T =T - 1) =W(gz; ) — pziy), n>nq,
Ta, — 14+c—cxp_i+ =1 g;l(z n+m—1) (iTi-1 — PiTi—r), B =M
Tz,,, ng <n < ny.

It can be proved that T has the unique fixed point z, which is a bounded positive solution of
equation (1). The rest of the proof is similar to that of Theorem 3, and thus, is omitted.

THEOREM 8. Assume that —oo < ¢ < —1 and that (22) holds. Further, assume that there exists
a constant 6 > 1 and a sufficiently large N1 > ng such that

gn > 0pn,  forn > Nj. (26)

Then (1) has a bounded nonoscillatory solution.
ProoF. By (22) and (26), there exists a ny > np sufficiently large such that the inequalities

1 1 it
_;:.—(m——l)' Z (i—n—k+m—1)(m_1)(qi+pi)§94<1, for n > ny,
¢ Ti=n+k
where 64 is a constant, and
1 o0
0L (m——l)' Z i—-n+m-— 1)(’"‘1)(6H1q¢ ~Hip)) £ (e+1)(H - 1), for n > ny,

i=n+k

hold, where the positive constant H; satisfies

1
Z<H ;
;S 1< 1
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Let [3° be the set as in the proof of Theorem 1. Set
Q={z={z,} €l :H <z, <§H;, n>ne}.

Define an operator T : 8 — [ as follows:

1+-—-z
c cn+k

Tz, = R - N k ety .
+ e(m—1)! 1-=§Lk(Z " +tm-1) (9%t — PiTi-r), N 2m4,
T.’En17 o Snsnl-

It can be proved that T has the unique fixed point z, which is a bounded positive solution of
equation (1). The rest of the proof is similar to that of Theorem 4, and thus, is omitted.

In the special case where p,, = 0, conditions (23)—(26) are redundant. By Theorems 5-8, we
have the following result.

COROLLARY 2. Assume that —00 < ¢ < 400 and that

[oe]
Z i lg; < o0

i=ng

Then the neutral difference equation
Am(xn + czn—k) = qnTn-1 (27)
has a bounded nonoscillatory solution.
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