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Suppose r = (rr ,..., YM), r, > 0, yl, > 0 integers, k = I, 2 ,..., N’, j 7 
1,2,..., M, ya . r = x, yrlr, The purpose of this paper is to study the behavior 
of the zeros of the function Ir(A, a, r) = 1 + xyz1 a,e-Ar>‘r, where each a, is a 
nonzero real number. More specifically, if Z(a, Y) = closure(Re X: /r(& a, r) = O:, 
we study the dependence of Z(a, Y) on a, r. This set 1s continuous m a but 
generally not in Y. However, it is continuous m Y if the components of r are 
rationally independent. Specific crrterion to determine when 0 $ i?(a, r) are 
given. Several examples illustrate the complicated nature of Z(a, I). The results 
have immediate implication to the theory of stability for difference equations 
x(t) - xE1 Ag(t - rI,) = 0, where x 1s an n-vector, since the characteristic 
equation has the form given by h(h, a, r). The results give information about the 
preservation of stability with respect to variations in the delays. The results 
also are fundamental for a discussion of the dependence of solutions of neutral 
differential difference equations on the delays. These implications ~111 appear 
elsewhere. 

I. INTRODUCTION 

Let [w =- (- co, Co), rWi = (0, Co), lW = [0, Oo), a = (aI ,..., aN) E [w”, 

Y = (rl ,..., yM) E (R+)l”, yJ = (rII ,..., yJM), yIk nonnegative integers, j = 
I, 2 ,..., 117, k = 1, 2 ,..., AT, y, . Y = Cf=“=, ~,~r, . Let a, = 1, y. = (0 ,..., O), 
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a, # 0, j = 1, 2 ,..., N. Our purpose in this paper is to study the behavior of 
the real parts of the zeros of the function 

More specifically, if 

N 

h(X, a, Y) = c a,e-A”‘r. (l-1) 
,=n 

Z(a, Y) = {Re A: h(h, a, r) = 0) (1.2) 

and Z(a, Y) = cl .Z(u, Y), the closure of Z(u, Y), we study the dependence in the 
Hausforff metric of Z(u, r) on a, r. It is shown that Z(u, Y) is continuous in u 
with a certain type of uniformity in Y. It has been known for some time (see 
Melvin [6] or Henry [4]) that z( a r is not continuous in Y. However, we show , ) 
that it is continuous in Y if the components of r are rationally independent. 

We also give a characterization of ,?(a, r) in a way which is amenable to 
computation. For the case in which A’ -= M and the function h(h, a, Y) is given as 

h(h, a, Y) = 1 + f u,e-“‘J, 
3=1 

(1.3) 

the characterization of ,??(a, Y) is more complete and the computation of Z(u, Y) 

can be given rather explicitly. 
Finally, we give several characterizations of the property that Z(a, r) n 

[--6, S] = I?) 6 > 0; that is, the polynomial h(h, a, Y) is hyperbolic. The case 
Z(u, r) C (-GO, A], 6 > 0 is also discussed in detail. This corresponds to 
uniform asymptotic stability. 

The implications of the results for difference equations are immediate. In fact, 
consider the equation 

M 

x(t) - x A,.r(t - rB) = 0 (1.4) 
k-l 

where s E [w” and each A, is an 12 x n matrix. For any4 E C = C([-lz, 01, UP), 
h 3 max(r,), there is a unique solution s = x(4) of (1.4) for t > --h which 
satisfies s(+)(t) = +(t), tE [-h, 01. If we let ~(+)(t + 0) = (S(t)+)(e), --I2 < 
0 < 0, then S(t): C - C, t > 0, is a strongly continuous semigroup of bounded 
linear operators. Furthermore, if 

a(a, r) = inf{b: 3k with 1 S(t)1 < @‘I 

then it is known (see Henry [4], Hale [2]) that 

ol(u, r) = sup{Re A: 12(X, a, r) = 0: 

h(h, a, Y) = det I - f A, exp(--Xv,) . 
P=l 1 

409/73/W 
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Therefore, the above results give information about the behavior of the order 
or(a, r) of the semigroup S(t) as a function of a, Y. 

The results also have implications for neutral functional differential equations 
of the type 

; [x(t) - 2 A,x(t - r,)] =f(xt) 
k=l 

(1.5) 

where f: C--f Iw’” and ~$0) = x(t $ 8), --h < 0 < 0. The solution operator 
for Equation (1.5) can be written as a sum of a completely continuous operator 
and the operator S(t) above (see Hale [2]). Iff ’ 1 1s inear, this gives information 
about the spectrum of the solution operator. One can then prove certain theorems 
on the continuous dependence in the delays. Results of this type will appear 
in Avellar and Hale [l]. 

2. CONTINUOUS DEPENDENCE 

In this section, we present some results on the dependence of the set Z(a, I) 
on a, r. We need the Hausdorff metric which is defined as follows: 

For any sets E, F C [w and any point p E [w, let 

(9 d(f, 4 = i&E I P - t I 

(ii) @, F) = SUP,,E d(p, F) 

(iii) D(E, F) = max{G(E, F), S(F, E)). 

The number D(E, F) is called the Hausdorff distance between the sets E, F 
in (w. 

We need the following result from Levin [5, p. 2681, the proof of which is 
omitted. 

LEMMA 2. I. For a given cy < 8, the following conclusions hold: 

(i) There is an integer p such that, for all real t, there are no more than p 
zeros of h in the box 

(ii) For my 6 > 0, there is an m(S) > 0 such that whemxer 01 < Re h < /3 
and A is at a distance > 6 from every zero of h, one has / h(h)1 >, m(6). 

Our first objective is to obtain an interval which contains Z(u, Y). Observe 
that h = p + ill satisfies h(h, a, Y) = 0 if and only if 

where & = 0 if uk > 0, +k = n if ak < 0. 
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For further reference, let us state this result as 

LEMMA 2.2. If the equation h(p + iv, a, r) = 0 is satisfied for some real p, v, 
then the lengths (1 ak 1 e-urk.r, k = 0, l,..., IV} can form a closed polygon; that is, 
no one of these terms is greater than the sum of the others: 

( a3 1 ePvl.* ,< 1 1 a, ( e-uy*‘r, j = 0, I,...) N. (2.1) 
k#3 

Following Henry [4], define p3 = p,(a, r), j = 0, 1,2 ,..., N, if they exist, 
by the relations 

1 aj 1 e-p~y~‘r = E, 1 ak 1 e-OJyk’r, j = 0, l,..., N. (2.2) 

If yN r > yj r > 0 forj = 1, 2,..., N - 1, it is easy to verify that pN and p,, 
are uniquely defined by Relation (2.2) and 

fN = PO if N = 1, pN < p. if N>2. (2.3) 

LEMMA~.~. IfO<y,.r<...<yN.r,then 

Z(a, r) C [pN(a, 9, pota, 41. 

Proof. Let zLk = yk . r. From Relations (2.2) we have 

N-l 
I aN 1 _ c I a, I epN(wN-wUn-); 

k=O 

/ a, / = f j a, I eP”“r. 
k=l 

We also have wN - Wk > 0, k = 0, l)...) N - 1; WI, > 0, k = I,...) iv. so, 

N-l 

(i) p < pN * I aN 1 epuwN > C I al, / e-ua’k 
k=O 

a, I eP+. 
k=l 

Lemma 2.2 implies h(p + iv, a, r) # 0 in either case, which proves the result. 
The complete structure of z(a, r) is known for the case when the components 

of r are commensurable. This will be stated as 

LEMMA 2.4. If r1 , yj ,..., rAf are commensurable, that is, rk = n,/3 for some 
,l3 > 0 and integers nk , k = 1 ,..., M, then h(A, a, r) is a polynomial of some degree p 
in e-6A, 

h(A, a, r) = aN fi (e@B - s,) 
v=l 
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and 

Z(u, r) = Z(a, r) = I- $ In / s, I , v = 1, 2 ,..., pi . 

Proof. Obvious. 

THEOREM 2. I. Z(a, r) 1s continuous in a in the Hausdorfl metric. Also, zf 
S C (EX$” is a given set and there exist 01 < /3 such that Z(a, I) C ((Y, /?) for r E S, 
then there e.u’st a 6 > 0 such that z(b, 1’) C (iy, /3) for 1 b - a / < 6. 

Proof. From the relation 

for any 6 > 0, there is a 6 > 0 such that 

I h(h, b, r) - h(h, a, r)j < E for Re h E [pM(a, r) - E, ~,,(a, Y) f E], 1 b - a 1 < 6 

that is, h(X, 6, r) - h(A, a, r) - 0 as b ---f a uniformly for Re X E [p.v(a, r) -- E, 

Po@, y) -t 61. 
If p E Z(b, r) then h(p + ill, b, r) = 0 for some I’ = v(b). If, in addition, 

b -+ a, then every limit point z of the set Z(b, r) as b + n satisfies z E z(a, Y) 

from Lemma 2. I. This shows that S(Z(b, r), Z(a, F)) -b 0 as b + a. Conversely, 
ifp E Z(a, Y), then there is a 5 = c(a) such that h(p + it(a), a, r) =:: 0. Therefore, 
h(p 4 i{(a), 6, Y) + 0 as b + a and Lemma 2.1 implies p E z(b, Y). Thus 
S(z(a, r), i’;(b, Y)) 4 0 as b -j a and the continuity of Z(a, Y) is proved. 

The last statement of the theorem is also a consequence of an argument 
similar to the above. 

Our nest objective is to discuss the dependence of z(a, r) on r. The following 
example given by Silkowski [SJ, shows this problem is much more difficult. 

ExAnimc 2.1. Let 

h(A, Y) = h(A, r 1 , ye) = 1 + ieeArl + +e-“‘2. 

For r = (1, 2), that is, 

h(h, 1, 2) = 1 + +e+ + $eezA, 

it is easy to see that the zeros of h(A, 1,2) satisfy Re A = -(ln 2)/2 < 0. There- 
fore, Z(Y) == [-(ln 2)/2} if I = (1, 2). 

Now let us consider i: = (?r , ie) close to (1, 2). In particular, take ? := 
(I - 4/(4?l + 3), 2) where n is any nonnegative integer. 

It is easy to verify that 

h(i(4n -1. 3)~/2, 1 - 4/(4n + 3) 2) = 0. 
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Therefore, z(F) 1 (0) if ? = (1 - 4/(4n + 3, 2) and so, Z(Y) is not continuous 
in Y. 

The numbers p,, , pZ for this example are p,, = 0, pa -= --In 2 for Y = (I, 2). 
Also, p,(r) = 0 for all Y. Therefore, Z(Y) C [P*(Y), 0] where p,(r) + --In 2 as 
Y -+(I, 2). 

What is happening to the zeros of h, in Example 2.1, as Y varies ? By RouchCs’s 
theorem, for any given r. and any compact set K in @ for which no zeros of 
h(h, Y”) lie on LX, there is an E > 0 such that 1 Y - r0 1 < E implies h(/\, Y) has 
the same number of zeros as h(X, Y,,) in K. However, a small change in Y does 
not necessarily give a small change in h uniformly in a strip as was the case when 
the coefficients were varied as in Theorem 2.1. The noncompactness of the 
strip plays an essential role when I’ is varied. 

For the purpose of intuition, it is worthwhile to note the following fact about 
Example 2.1. For Y = (1,2), the zeros of h belonged to a vertical line Re h = 
-(In 2)/2 and were given byh = -(In 2)/2 + i(tan-id/7 + 2&r), k = 0, 1,2,.... 
For a small change in Y, this vertical line of zeros is moved a large distance. 
In fact, it may include Re h = 0. The figure below is suggestive of the way the 
line on which the zeros of A lie could vary with E. 

4 
Im A 

--w - 
Re A 

-+ 
Re X 
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We shall see below that it is actually possible for the real parts of the zeros 
of h to fill an interval. 

The above example shows that ~?(a, Y) is not necessarily continuous in Y. 

However, it is always lower semicontinuous as shown in the next lemma. 
We write Z(Y) = Z(a, Y) since a is fixed. 

LEMMA 2.5. Z(Y) is lower semicontinuous in Y, that is, 

hi0 qqy,), -@N = 0. 

Proof. Suppose p E Z(Y,). Then there exists a (T such that h(p + iu, yo) = 0. 
We also have 

h(p + ia, Y) = f a,e- (rr+lo)vr.~Oe-(~+i~)YI.(r-70) - 0 as r+rO. 
X=0 

Therefore, S(.~?(Y~), Z(Y)) -+ 0 as Y + Y, . This proves the lemma. 
If the components of Y are rationally independent, the next theorem states 

that Z(a, Y) is continuous. 

THEOREM 2.2. If y. E ( R$,)lw is fixed and the components of r. are rationally 
independent, then Z(Y) -+ Z(Y,) in the Hausdorff metric as Y 4 y. . 

Proof. Suppose p(r) E Z(Y), h(p(r) + b(r), Y) = 0 for some real U(Y). For 
any sequence rj + r. we may assume p(rj) --f p. . 

Consider h(p, + iv, yo). For any Y, 

h(p, + iv, yo) = 2 
ake-mYk.rOe-iwk.ro 

k=O 

= $ ‘ke 
-svr.roe-io(r)~X:.fei~l.(u(r)r-vrO) 

= go ‘ke 
-(Do+io(r))v,.reooYk.(r-r~)e~~~.(a(r)r-vr~) 

Therefore, 

h(p, + iv, yo) - h(p(y) + idy), y) 

= go ake- (pb)+zdr)hQ.r tP(r)-PolYk.re~OYL.(r-rO)eiYL.(O(T)r--ur~b) 
[e - 11. 

By Kronecker’s Theorem, for any sequence Y, + yo, choose {v~.~}, v,,r -+ CX) 
as l- ix), such that 
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By the diagonalization procedure, we can choose a subsequence {fij}, Pj + 00 
as j- co, such that 

e ivk.(o(r,)r,-J,ro) - 1 as I.- co. 

Thus, h(p,, + i?j , T,,) + 0 as j -+ co and every limit point p,, of Z(Y) as Y + Y,, 
satisfies p,, E Z(Y~). This shows that ~(Z(Y), ,Z(Y~)) + 0 as Y -+ ye . Lemma 2.5 
completes the proof. 

3. CHARACTERIZATION OF Z(U,Y) 

The following characterization of Z(Y) = z((a, Y) was stated without proof 
by Henry [4]. 

THEOREM 3.1. If 

h(h, r) = a, + f uke-Avk’7, y = (y1 9 y2 ,.**, TM) 
t=1 

H(p, 19, r) = a, + f ukem0Yk’7eirs.e, (3.1) 
P=l 

e = (4 , 4 ,..., f%4>, 0 < Bj < 2~ 

and the components of Y are rationally independent, then p E Z(Y) $ and oni’y if 
there is a 0 such that H(p, 8, Y) = 0. 

Proof. If h(P + iv, Y) = 0, then 38 = VY such that H(p, 8, Y) = 0. 
Conversely, suppose there exist 0 = (0, ,..., e,), ej E [O, %-I, j = I,..., M, 

such that 
N 

u, + c uke-~wteivr.e = 0. 
P=l 

By Kronecker’s Theorem, there exists a sequence {P}, such that 

e”Y’. k-2r) - 1 as n--t co. 

Therefore, 

h(p + iv”, y) = u, + f uke-PYk.re-ivnQ.’ 
I+1 

= u, + f uRe-PYI.'e-ivaeeivs.(e-""P) --f 0 

k=l 

as n + co. But this implies that p E E(Y). 
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Theorem 2.2 states that z( r is continuous at those vectors r with rationally ) 
independent components and Theorem 3.1 gives a way for computing z(r) at 
such vectors r. 

An important consequence of Theorem 3.1 is the following result. 

COROLLARY 3.1. The following statements are equivalent 

(i) 0 E z(r”) for some r” with rationally independent components. 

(ii) 0 E z(r) for all r with rationally independent components. 

Proof. Since H(0, 8, r) in Relation (3.1) is independent of r, it is clear from 
Theorem 3.1 that (i) + (ii). The other way is obvious. 

Another easy consequence of Theorem 3.1 is 

COROLLARY 3.2. For any r E (R,) + nf, Z(r) is the union of a finite number of 
intervals. 

Proof. If the components of r are rationally independent, then z(r) is 
characterized by the solutions of H(p, 0, r) = 0. Since these solutions are analytic 
varieties, it is impossible to have the following property: there exists a p E z(r) 
{p,)zi C z(r), p, -+ p asj --f cc, (p3+i , p>) n Z(r) = G . This proves the corollary 
when the components are rationally independent. 

For any r E (08:)“’ there exists a /3 E (rW:)Q for some integer q such that the 
components of /I are rationally independent. Apply the previous result to ,G 
to complete the proof. 

Another easy consequence of Theorem 3.1 and Theorem 2.2 is 

COROLLARY 3.3. i-j 

p(r) = min{p: 38 E UP’ with H(p. 0, r) = 0} 

u(r) = max{p: 30 E W with H(p, 0, Y) = 0) 

T-(r) = max{p(r) < p < 0: 38 E [w” with H(p, 8, r) = 01 
if p(r) < 0, 7-(r) = p(r) if p(r) > 0 

T+(r) = min{u(r) 3 p 3 0: 38 E [w”’ with H(p, 8, r) = 0) 
if u(r) 3 0, T+(r) = u(r) if u(r) < 0. 

(3.2) 

Then p(r), u(r), T-(r), I+ are continuous in r, and either T-(r) < 0 < T+(r) 
for all r or T-(r) = T+(r) for all r, and 

-%> c b(r), +>I ” b+(r), 4r)l. 
Furthermore, p(r), T-(r), T+(r), u(r) E z(r) if th e components of r are rationally 
independent. 
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We remark that a finer structure theorem for Z(Y) than Corollary 3.3 could be 
given by specifying a finite number of intervals which vary continuously with Y 
and which coincide with Z(Y) when the components of Y are rationally independent. 
However, the number of disjoint intervals would not be constant in r (examples 
will be given later). On the other hand, the structure theorem in Corollary 3.3 
is independent of r. In fact, for any YO with rationally independent components, 
there is a neighborhood U(rO) of YO such that only one of the following situation 
occur: 

(i) T-(Y) = T+(T) = 0 for all Y; that is, Z(Y) contains zero for all T E U(r0). 

(ii) 7-(r) < 0 < T+(T) for all I E U(rO); that is, Z(r) contains elements 
< 0 and > 0 for all values of Y E U(rO). 

(iii) T-(Y) = O(Y) = T+(Y); that is, either Z(r) n [0, 03) = '3 for all 
I’ E U(YO) or Z(Y) n [0, cc) = (0) for all Y E U(r0). 

(iv) T+(Y) = p(r) = T-(T); that is, either Z(Y) n (---co, 0] = 3 or Z(Y) n 
(- $33, 0] = (0) for all Y E U(rO). 

These remarks will be related to stability in a later section. 

4. A SPECIAL CASE 

When the function h(h, a, Y) has the special form 

h(X, a, r) = 1 + f uJeBa” 
I=1 

(4.1) 

one can give a more precise description of the set Z(Y) = z(u r). This cor- 
responds to the case where N = M and yJk. = 0 ifj # k, yjj = 1, j = 1, 2 ,..., N. 
It is the purpose of this section to discuss the zeros of the function h in Relation 
(4.1). The following result is essentially in Henry [4], Moreno [7]. 

THEOREM 4.1. Suppose 0 < rl < . < rN and define p. ,.. ., pN by relation 
(2.2). If the set {yk, k = I, 2 ,..., N> IS rationally independent, then p E z(u, Y) I.. 
and only if (1 a, 1, / Us / emDTn-, k = I, 2 ,..., -V] can form a closed polygon. Also, 
[~~(a, r), ~~(a, Y)] is the smallest closed interval containing Z(a, Y) and Z(a, Y) is a 
finite union of closed intercals. Infact, ifI, C [&a, Y), ~~(a, r)], j = 1, 2,.... N - 1 
is the set (it may be empty such) that 1 a, / e-o’, > xk:,, 1 ak 1 e-ore for p E Ii , then 

qa, 1.) = [PN , p,I\Ui”=;‘I, . 

Proof. If N = 1, the theorem is trivial. Thus, assume N > 2 and define 
a,=l,r,=O, 

f,(p) = 1 ai 1 emwJ - C 1 uk I emwK, j = 0, 1, 2 ,..., N. 
k#j 
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The set (1 a, /, 1 1 uk e-Orr, k = 1, 2 ,..., N} can form a closed polygon if and only 
iffj(p) < 0 for all j = 0, 1, 2 ,..., N. The function H in Theorem 3.1 for (4.1) is 

H(p, 0, 7) = a, + 2 a,e+jeiSJ. 
3=1 

It is clear that “jj(p) < 0 for all j and some p” is equivalent to “there exist a 
0 E IF’ such that H(p, 8, Y) = 0”. Thus, the first part of the lemma is proved. 
The second part is Corollary 3.2. The last part is simply writing down explicitly 
what it means to havefj(p) > 0 for somej. This proves the theorem. 

COROLLARY 4.1. Suppose 0 < rl < ... < rN and define p,, ,..., pN by Relation 
(2.2). If 

pacr) = maxMy): h(r) < pi(r) < 0, j = 0, 1, L., W, 

= pN(r) if pN(r) > 0. 

pscT) = min(p,(y): p&r) 3 h(y) 3 O,j = 0, 1, Z..., W, 

= pa(y) if pa(r) < 0. 

Then pa(,) , pstr) are continuou in Y and either p.(,.) < 0 < pac7) for all Y or 

patr) = pstr) for all r. Furthermore, 

@9 c [PNW~ P&d ” [Pew ! POW1 

and the endpoints of these intervals belong to Z(Y) if the components of r are rationally 
independent. 

Proof. This is a consequence of Corollary 3.3. 

5. STABILITY AND HYPERBOLICITY 

In this section h(h, u, I) is the function defined in Relation (1.1); that is 

h(X, a, r) = 1 + 5 ageKAYk”. (5.1) 
,=l 

We need the following definitions. 

DEFINITION 5.1. The function h(h, a, r) is said to be hyperbolic at r” if 
0 $ Z(a, r”). The function h(A, a, r) is hyperbolic locally at 1.0 if there is a neigh- 
borhood U of r” and 6 > 0 such that Z(a, r) n [A, 61 = o for all 7 E U. The 
function h(X, a, Y) is hyperbokc gZobaZZy in Y if 0 # Z(a, I) for each r E (KQ+)“r. 
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DEFINITION 5.2. The function h(h, a, r) is said to be unsformly asymptotically 
stable at ~0 if h(A, a, ~0) is hyperbolic and z((a, ro) n [0, co) = a. It is uniformly 

asymptotically stable locally at r 0, if it is hyperbolic locally at r’J and z(a, Y) n 
[O, CO) = a for r E U. It is uniformly asymptotically stable globally in Y if it is 
hyperbolic globally in Y and z((a, Y) n [0, co) = o for all r. 

We now prove the following fundamental result. In the statement of the 
theorem, p(r), U(Y), T-(Y), 7+(r) are defined in Relations (3.2). 

THEOREM 5.1. The following statements are equivalent. 

(i) There is an T E (R+)“, r = (yl ,..., Y,,), with the set {ri}E1 rationally 
independent, such that the function h(h, a, Y) is hyperbolic at YO. 

(ii) h(h, a, r) is hyperbolic locally at some r”. 

(iii) h(l\, a, r) is hyperbolic globally in r. 

(iv) T-(r”)7+(fo) # 0 for some r” E (R+)“. 

(4 If 

h(X, a, r) = det I - 2 &e-*r) 
3=1 1 (5.2) 

then 

p(e)1 - F AjepieJ 1 n{IpI = l}=$. (5.3) 
3=1 

Proof. Let us first prove (iv) 0 (v). If h(h, a, T) is given by Relation (5.2), 
then the function H(h, 8, r) in Relation (3.1) is given by 

H(p, 8, Y) = det 
[ 
I - 5 A,e-“‘~eie~ 1 . 

3=1 

The equivalence of statements (iv) and (v) is now immediate. 
From the definitions of T-(Y), -r+(r) and the remarks following Corollary 3.3, 

we have (iv) o (i), (i) o (iii). The fact that ( ) i o ii is a consequence of Theorem ( ) 
2.2. This proves the theorem. 

Since stability is so important in the applications, we restate Theorem 5.1 
for this case. 

THEOREM 5.2. The following statements are equivalent 

(i) There is an Y E (R+)“, T = (rl ,..., rM) with the set {yj}E1 rationally 
independent, such that the function h(h, a, Y) is uniformly asymptotically stable. 

(ii) h(& a, r) is uniformly asymptotically stable locally at some rO E (R+)“. 

(iii) h(/\, a, Y) is uniformly asymptotically stable globally in r. 

(iv) (T(T) < 0 for some Y E (R+)“. 
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h(h, a, Y) = det I- g A,~?‘J 
3=1 1 

Historically, Melvin [6j proved Theorem 5.2 for the scalar equation where 
Condition (v) becomes the simple condition 

Hale [3] proved (ii) o (iii) in the general case. Silkowski [8] introduced the 
equivalent conditions (i) and (v). 

6. EXAMPLES 

In this section we collect some examples to illustrate the above results. 
Throughout the section, the numbers p,(r) are defined in Relations (2.2), the 
numbers p(r), U(Y), T-(Y), 7+(r) in Relations (3.2). 

EXAMPLE 6.1. Let US reconsider Example 2.1; that is, the function 

h(h, Y) = 1 + &-,“‘l + &ePAr2. 

We have seen that pa(r) = 0 for all Y and, for y. = (1,2), Z(Y,) = (-(In 2)/2). 
Now, Theorem 4.1 implies that, for any r = (rl , r2) with rl , r2 rationally 
independent, [p2(r), pa(r)] = [p2(r), 0] is th e smallest closed interval containing 
Z(Y) and p2(r) is continuous in Y, pe(yo) = --In 2. Furthermore, 

1 
& 

-or? _ e-e )+I>07 for p < 0, rl < r2 . 

Therefore It of Theorem 4.1 is the empty set and Z(Y) = [p,(r), 01. Thus, for 
any neighborhood U of ro, there is an Y E U such that Z(Y) is a complete interval 
of length approximately In 2 whereas for Y = r. , i?(yo) is a single point. 

This example shows very clearly how dramatically the set Z(Y) can change with 
Y if the two vector Y = (yl , YJ is permitted to assume all values in (lR+)2. If Y 

is restricted to lie along a ray, say Y = aye, 01 > 0, r. = (TWO, ra”) fixed, then the 
set 
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need not be close to Z(r). In fact, for r0 = (1, 2), that is, the delay r = ~a has 
the property that the second coordinate is always twice the first, we have seen 
that Z, = {-(In 2)/2ar). A similar phenomena will occur with several delays. 
Example 6.5 below gives some details for three delays. 

EXAMPLE 6.2. As for Example 6.1, one shows that Z(r0) = [pe , p,,] N 
[-.27, .37] for the function 

h(h, i-O) = 1 + e-I + e-nA, r” = (1, n). 

EXAMPLE 6.3. Consider the equation 

h(h, u, r) = 1 + ai+ + azeAQ = 0 (6.1) 

where 0 < r1 < r2 and a, , aa are real constants. The numbers pj , j = 0, 1, 2, 
are defined by 

1 a2 1 e--o’s = 1 - 1 Q1 I e-oar, 

1 a2 1 emDlrp = 1 a, / edolrl - 1 (6.3) 

1 u2 1 e?*‘* = 1 + 1 a, / e-‘*rl. 

As remarked earlier, pa < pa . The constant p1 may or may not exist. From 
(6.2), it is clear that p. < 0 if and only if 1 a, 1 + 1 a2 1 < I. Thus, h(/\, a, r) is 
uniformly asymtotically stable globally in r if and only if ) a, j + 1 a, j < 1. 
Also, p2 > 0 if and only if / ua / > I + j a, 1. This means h(h, a, r) is hyperbolic 
globally in r and has Z(a, r) n (- 03, 0] = c if and only if 1 ua / > 1 + [ a, I. 

Let us now analyze the other regions in the (al , aa) parameter space. The 
relation I u2 1 < I + 1 a, 1 implies pp(r) < 0 and ) a, 1 + j a, j > 1 implies 
p,,(r) ;; 0. It follows from Theorem 5.1 and the definition of T-(T), T+(Y) that 
the equation is hyperbolic globally in r in this region if and only if 7-(r) < 
0 < T+(Y). 

It remains to be seen when r-(r) < 0. The number T-(Y) can be related to the 
solutions pi of Equation (6.2). In fact, from Theorem 4.1, T-(Y) < 0 if and only 
if there is a solution pn(r) of Equation (6.2) satisfying pe(r) < pII < 0 and 

/ u2 1 eClr2 < I a, 1 e-“lrl - 1 for P&) < f1 < 0. 

If I % ; < 1 a, 1 - 1, then there is a pi,(r) satisfying the above properties and 
h(X, a, r) is hyperbolic with Z(u, r) n (-cc, 0) i 2, z(a, r) n (0, co) I: is. 
The inequality j a, / < 1 u, 1 - 1 implies ~ a, I + I a, I > I, 1 a, I > 1 a, I - 1. 

If 1 ug 1 ; a, 1 - I then 

I a, 1 e-“l’” > 1 a, 1 eCol’l - 1 for I pi 1 < 6 
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for some 6 > 0. If, in addition, / a, 1 t 1 a, / > 1, 1 a2 1 < I 7m ~ n, i then 
0 E z(u, r) by Theorem 4.1 if the components of r are rationally independent. 
Thus, the function h(h, a, r) is not hyperbolic globally in r. 

In summary, 

(i) h(h, a, r) is uniformly asymptotically stable globally in I’ if and only 

ifl~,/+Ia,1<1. 

(ii) h(h, a, r) is hyperbolic globally in r with Z(u, r) n (-rn, 0) ti c 
ifandonlyif Ia21 > 1 + /uJ. 

(iii) h(h, a, Y) is hyperbolic globally in Y with Z(a, r) n (-x, 0) -I- '.;i, 
qa, P) fl (0, co) f GY ifandonlyif/u,~>l+~u,/. 

(iv) h(X, a, r) is not hyperbolic globally in r if the coefficients a, , a, do not 
satisfy one of the conditions in (i)-(iii). 

The structure of the set z(u, Y) obviously changes as the parameter a varies 
from the region in case (iii) to the region in case (ii) above since two intervals 
had to merge as Z(u, r) moved to positive axis. This structure can also change 
even when the parameters always stay in a region corresponding to one case. 
In fact, suppose 1 a, / -1 1 u2 I < 1; that is, uniform asymptotic stability globally 
in r. Since 1 a, 1 - I < 0, there is an ua sufficiently small so that the equation 

/ a, / Pz = / a, I eP’ - 1 

has two distinct negative solutions prr(r-) < pn,(r) in [pa(r), p,,(r)]. Theorem 4.1 
allows one to conclude that Z(u, Y) consists of two intervals. 

Let us make one other remark about this example. The number of intervals 
in z(a, Y) may also change with Y. In fact, suppose ) ua / = / a, I - 1. The 
function h(A, (I, r) is not hyperbolic globally in Y in this case. The equation 

f(p, a, r) “=‘,’ I a, / ePrz - I u1 I cur, + 1 = 0 

has the solution p = 0. Since 

af(O, 4 r) 
ap 

= - I a‘2 I rz! + I a1 I r1 

andf(p, a, Y) + 1 asp + CO, there will be a positive zero off if / a, 1 Y., > 1 a, 1 r1 . 
Sincef(p, a, P) + + cc as p + - co there will be a negative zero off if / u2 I Y~ < 

Ia1 171. 

Therefore, if I ua ( ra # j a, I or , that is, rl + (/ u2 I/( 1 + ~ a, l))rp , rl , r.) 
rationally independent, the set Z(u, r) will consist of two intervals. When 
r1 = (I a, i/(1 + 1 a, i))r, the set Z(u, Y) will consist of one interval. 
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EXAMPLE 6.4. Consider the equation 

h(h, 6) = 1 - 2ce+ + C2P2 = 0. (6.3) 

Let us study z(c) as E -+ 0 and always assume that Ed > <I > 0. 
As a first case, if 6s = 2~~ then h(h, e) = 0 if and only if 1 - ce-Acl = 0, 

ReX = (I/Q) In 1 c I. Thus, if 1 c / > 1, Reh+ +ocj as E~-+O; if 1 c / = 1, 
Re h = 0 for all pi ; ifIcj<l,thenReX-+-~as~l+O. 

If l s > <I > 0, we know that Z(c) C [P*(E), ps(c)] where ps = ps(~), p0 == Pi, 
satisfy the equations 

(4 
(b) 

1 = 2 1 c j e-wo + C2e-wu 

c2e--E2D2 = 1 +21cle-C1’2. 

Now suppose 

(6.4) 

If relation (6.5) is satisfied, then 2 1 c 1 + c2 > 1 and p,, = Pi > 0, P,,(E) -+ 
+ cc as E --f 0. Furthermore, if pz > 0, then 

1 
+ 2 , c I e-‘la = c*e-%P? c2e-w2 

< 
3 

1 ~(~~-2~c~)e-~~~~c”-2~c~ 3 

- c2 -----<--ICI. 1 
2 

Thus, if Relation (6.5) is satisfied, then 6s = Q(E) < 0, ps(~) + -co as E - 0. 
Also, if l s > or > 0 are rationally independent, then [ps(~), p&e)] is the smallest 

interval containing Z(E). Thus, if Relation (6.5) holds, the smallest closed 
interval containing z(e) approaches (- 03, + co) as E --t 0. 

To determine when Z(E) is a single interval, we should find pr(e). The number 
pr(~), if it exists, must be a zero of the function 

f(p, E) = cze-D62 - 2 I c I eCoE1 + I 

this function has a unique minimum at a point given by 

If 1 c 1 < 1, then we can choose e2 > <I such that j c I l 2/2e1 = 1 and thus 
(Y. = 0. Since f(0, E) = (I c I - 1)2 > 0 if j c I < 1, it follows that f(p, c) > 0 
for all p and pr does not exist. This means that z((a, e) = [pa(c), pO(c)]. We can 
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thus choose <I , l a + 0, cl 
If 

then P,,(E) < 0 and pa(~) 

< 

*- 
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E? , so that 1 c / +2~r = 1 andZ(a,E)+(--co, COO). 

ICI < I--? 2 

-co as E+O. If 

ICI =!+ 

(6.6) 

(6.7) 

then pa(e) =-= 0 for all cp 3-s pi > 0, pe(c) < 0, &c) --f - CC as E - 0 and the 
smallest closed interval [Pi, 01, containing Z(C) approaches (- co, 0] as E + 0. 

EXAMPLE 6.5. Let rl < r2 < ra , /z(h, Y) = 1 + P -Ar, + @r3 + e-Ar3. If 

PI 7 y, , 18 ) are rationally independent, then the smallest closed interval con- 
taining Z(Y) is [p3 , pa] where 

e-w, - _ 1 + e-wl + e-Pa’a 

1 = e-wl + e-w’ $. e-Do?l. 

The numbers pr , p2 are defined by 

e-Q’l = 1 + e-l‘l’” + e-o”d 

e -4rq = 1 + e-wr, + e-nL” 

if they exist. This implies necessarily that p1 < 0, pa < 0. On the other hand, 
for p < 0, the functions 

j(p) = e-w + 1 _ e-D’l + e-m-’ 

,&) = e-Pr3 i 1 -c e--w _ e-fl” 

are decreasing and positive for p = 0. Thus, pi , pz do not exist and Z(r) = 

b3 v d if (Q 1 ye , f-4 are rationally independent. 
Now let us consider the zeros of the function 

were w : (wr , wy) E (Iw’)“. There are still three delays w1 , 2w, , w.) but they 
are not linear independent. What is the smallest interval containing Z,(W) r:: 
(Re A: &(A, W) = 0) ? If w1 , w.) are rationally independent, Theorem 3. I 
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implies that p E z,(w) if and only if there is a 6 = (0,) 0,) in Rz such that 

f&, 8, w) = 1 + e-wpl + p~lpl + e-~~2e~~2 = 0. 

For the special case w0 = (I, w); that is, the function 

h,(h, we) = 1 + e+ + e+ + e-VA, 

we have H,(p, 0, ws) = 0 is equivalent to 

e-pl(l + e-~e4) = _ 1 _ e-~Oezeeo 

Geometrically, this says these two curves in the complex plane must intersect 

*lm x 
I 

---- 

I 
i8 

‘(I +e-f e 

CD 
i6 

e-P e ‘1 

9 
- - - -- - ---*ReX 

I 

These curves intersect if and only if p E [ps , u] where ps is as above and u 
satisfies 

Thus, &(,a) = [P3, u] g [-.56, .30]. 
In the case where the three delays Y = (ri , r2, y3) vary independently, we 

saw above that Z(Y) = [ps , pO], that is, p(r) = pa, U(Y) = p,, . For Y = ye = 
(1, 2, rr) one sees that [p(rJ, u(r&] N [-.56, .60]. When the delays were not 
allowed to vary independently and were of the form (pl , 2w, , wa), we also saw 
that the smallest interval [pr(w), ul(w)] 1 z,(w) was approximately [-.56, .30] at 
w0 = (1, r); that is, the three delays were (1,2, n). This interval is properly 
contained in the interval [-.56, 601 which corresponds to varying the delays 
independently. 

409/73/W 
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