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Two naturally-occurring isoforms and their expression of a 
glucocorticoid receptor gene from an androgen-dependent mouse tumor 
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We have isolated cDNAs encoding the glucocorticoid receptor from an androgen-dependent mouse tumor, Shionogi Carcinoma 115. The nucleotide 
sequence of the receptor revealed two different forms, designated as SC-GR I and SC-GR II. Both forms have a one-base substitution in the DNA 
binding domain of the wild-type mouse glucocorticoid receptor. Furthermore, SC-GR II has a three-base insertion in the interfinger region of this 
domain. By expressing the receptor cDNAs in cultured cells with MMTV-CAT reporter plasmid, SC-GR II was found to have about half of the 

activity of the wild-type mouse glucocorticoid receptor induced by either physiological or pharmacological doses of dexamethasone. 
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1. INTRODUCTION 2. MATERIALS AND METHODS 

Recently, almost all of the steroid and thyroid hor- 
mone receptor cDNAs have been cloned [1-4]. Because 
they have highly-conserved amino acid sequences in the 
middle part of the coding sequence, the receptors con- 
stitute the co-called 'steroid and thyroid hormone 
receptor superfamily' [1,2]. The DNA binding domain, 
the most highly conserved region, is considered to form 
two zinc-coordinated fingers based on the structural 
motif first described for the Xenopus gene transcription 
factor, TF III A [5,6], and is presumed to have the abili- 
ty to recognize its own hormone responsive elements 
[7]. 

Shionogi Carcinoma (SCl15) is a mouse mammary 
tumor dependent on androgen for its growth [8]. 
However, its growth is contradictorily regulated by 
glucocorticoid [9-12]. In order to define the role of the 
glucocorticoid receptor (GR) in the growth response to 
glucocorticoid, we cloned SC115 GR cDNA and deter- 
mined its nucleotide sequence. 

The present work shows that the SC115 GR sequence 
has two different forms [13]; one with a one-base 
substitution (SC-GR I) and the other with an additional 
three-base insertion (SC-GR II) in the DNA binding do- 
main of the wild-type mouse GR reported previously 
[14]. When expressed in COS-1 cells, SC-GR II showed 
about half of the wild-type mouse GR in a CAT assay 
for GR, responding to either physiological or phar- 
macological doses of dexamethasone. 
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2.1. Preparation of a SCl15 cDNA library 
SCl15 was maintained in mature male DS mice by serial sub- 

cutaneous transplantation for three to four week intervals [15]. 
Polyadenylated RNA was selected from the total RNA of the 

SCl15 tumor by oligo(dT)-cellulose chromatography (Pharmacia). 
Double-stranded cDNA was synthesized with reverse transcriptase 
and DNA polymerase I using oligo(dT)17 as a primer [16]. The cDNA 
was inserted into )xgtl I and packaged in vitro [17]. The cDNA library 
contained about 106 independent recombinants. 

2.2. Isolation of glucocorticoid receptor cDNA 
Screening of the cDNA library was accomplished by plaque 

hybridization using a 143-bp HindllI-Sphl fragment of rat glucocor- 
ticoid receptor cDNA as a probe [18]. The hybridization was carried 
out in a solution containing 50°70 formamide, 5 × Denhardt, 5 × 
SSPE, 0.1°70 SDS, 100/~l/ml denatured salmon sperm DNA and 32p_ 
labeled 143-bp oligonucleotide probe at 42°C for 16 h. After being 
washed in 2 x SSPE and 0.1070 SDS three times for 15 rain at 42 °C to 
remove excess probes, the filters were autoradiographed (Kodak XAR 
film) for 24 h at -70°C with an intensifying screen [171. 

Positive clones were isolated, mapped with restriction enzymes, and 
then subcloned into Phagescript SK (Stratagene). The DNA sequence 
was determined by the dideoxy chain-termination method using the 
MI3 universal primer [19]. 

2.3. Construction of pSV2S-GR H and its expression 
pSV2S-GR II was constructed by replacing Apal and Pstl 

fragments in pSV2Wrec [14], the full functional plasmid of wild-type 
mGR, with the cDNA of SC-GR II. 5 #g of pSV2Wrec or pSV2S-GR 
II and 20/zg of pMSG-CAT (Pharmacia), a reporter plasmid contain- 
ing the chloramphenicol acetyl-transferase (CAT) gene and the 
dexamethasone-inducible MMTV promoter, were co-transfected into 
COS-1 cells (provided by the Japanese Cancer Research Resources 
Bank) by the calcium phosphate co-precipitation technique (Mam- 
malian Transfection Kit, Stratagene) [20]. The DNA-calcium- 
phosphate mixtures were co-transfected into 5 × 105 cells/100 mm 
dish COS-1 cells prepared more than 24 h earlier and incubated over- 
night in 10 ml Dulbecco modified Eagle medium (DMEM) with 10070 
bovine serum albumin at 35°C under a 4o70 CO2 condition. The cells 
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were split into several dishes containing 2 × 103 cells, and 10 -4 M or 
10 - 6 M dexamethasone (Sigma) in ethanol was dropped into the plate 
after an additional 24 h-incubation in 5 ml of  DMEM with 10070 
charcoal-treated serum (final 10-6 M or 10- s M). The same volume 
of  ethanol without dexamethasone was added to the control. The cells 
were harvested after 24 h-incubation and used for measuring CAT ac- 
tivity. The CAT assay was performed following the Novel Diffusion- 
Based CAT assay protocol of  Dupont-New England Nuclear 
Research Products [21]. Samples were counted in an A L O K A  3100 li- 
quid scintillation counter for 2 min at room temperature after 0, 2 and 
4 h incubation.  

3. RESULTS 

3.1. Cloning and sequencing of SCl15 GR cDNA 
By screening 106 plaques of the SC 115 cDNA library, 

we could obtain 33 positive clones. We identified 17 
overlapping glucocorticoid receptor cDNA clones by 
restriction mapping (Fig. 1A). 

The sequence analysis revealed a 2349 bp open 
reading frame of SCl15 GR cDNA. The nucleotide se- 
quence of SCl15 GR cDNA was exactly the same as 
that reported for mouse lymphoma cells [14], except for 
a one-base substitution at 1310 and a three-base inser- 
tion between 1372 and 1373 (Fig. 1B). Both changes are 
in the coding region of the Cys-rich DNA binding do- 
main of the glucocorticoid receptor. 

The one-base substitution at 1310 from T to G ac- 

Table I 

Compar i son  of  dexamethasone-induced CAT activity between 
pSV2Wrec and pSV2 S-GR II 

CAT activity (fmol/cell - min) 

Receptor Plasmid 10-6 M 10-8 M 
dexamethasone dexamethasone 

pSV2Wrec 2.69 _ + 0.651 2.56 _ + 0 . 8 0 |  / 
54%* 48%* 

pSV2S-GR II 1.46 + 0.13 1.24 + 0.15 

Mean _+ SE of  5 independent determinations.  *Significantly different 
f rom pSV2Wrec at P < 0.05 070 =percentages  of  the mean of 
pSV2Wrec. 

companying amino acid substitution from Val to Gly 
was observed in all clones. The three-base insertion, 
GTA, between 1372 and 1373 was observed in two 
clones out of 17 independent clones. The insertion of 
the three-base resulted in the addition of Arg between 
Gly-458 and Glu-459 without a shift in the transcription 
frame (Fig. 1B). We designated the GR with the one- 
base substitution as 'SC-GR I', and the GR with the 
three-base addition as 'SC-GR II'. 

3.2. Expression of SCll5 GR cDNA 
A diffusion-based CAT assay demonstrated that 

SC115 GR cDNA encoded a functional glucocorticoid 
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Fig. 1. Cloning o f  SC115 OR cDNA comparison with mouse  OR cDNA. (A) Seventeen overlapping clones o f  SC115 OR cDNA; ( • ) shows DNA 
binding domain o f  mGR;  ( • ) shows the position of  the 3-base insertion. (B) Compar ison  of  the nucleotide and amino acid sequence of  SC115 
GR with mGR (DNA binding domain).  Only those residues that differ from mouse  GR are shown and numbered from the first base of  the initiation 

codon. Underlined is the nucleotide sequence of  the 3-base insertion. 
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receptor. As a control, pSV2CAT [22] was used for 
monitoring the transfection efficiency. The results of  
the CAT assay are shown as the means obtained in 5 in- 
dependent transfections (Table I). According to a t-test, 
the CAT activity of  pSV2S-GR II was significantly 
lower than that of  pSV2Wrec. The CAT activity of  
pSV2S-GR II was about half of that of  pSV2Wrec when 
induced by either 10-6 M (pharmacological doses) or 
10-8 M (physiological doses) of dexamethasone. 

4. DISCUSSION 

We demonstrated the presence of  two forms of  
glucocorticoid receptor in the mouse tumor,  SC115 GR. 
The amino acid at 437 in GR so far examined is com- 
monly Gly [14,18,23]. Only in the mouse GR, is Val ex- 
ceptionally substituted for Gly-437. SC-GR I has 
alsmost the same activity as wild-type mGR [14]. As for 
SC-GR II, according to the genomic organization of the 
human estrogen [24] and chicken progesterone receptor 
gene [25], the inserted region is matched to the splicing 
junction between the second and third exons. Since 
these splicing junctions should be also conserved in GR, 
three bases of donor sites on the primary transcript may 
be retained after splicing. 

Proliferation of  SC115 is known to be stimulated by 
androgen [8]. Moreover, it has been reported that the 
growth of  SCl15 cells is also stimulated by phar- 
macological, but not physiological doses of  glucocor- 
ticoid both in vivo and in cell culture. Dexamethasone 
at 10-8 M inhibits the proliferation of  these cells by 
30% but stimulates them by 235% at 10 -6 M in the 
temporary absence of  testosterone [9]. This interesting 
proliferation property was investigated in detail in a cell 
line derived from SCl15 in a serum-free medium by 
Hiraoka et al. [11]. They showed that the stimulation 
induced by a high dose of  testosterone was inhibited by 
the addition of  dexamethasone but it was enhanced by 
dexamethasone if induced by a low dose of  testoster- 
one. The dual effect of  dexamethasone on this tumor 
may be related to SC-GR and their regulation pro- 
cesses. However, our CAT assay results demonstrated 
that pSV2S-GR II, the expression plasmid of  SC-GR II, 
had about half of  the activity of  pSV2Wrec, wild-type 
mouse GR, in both higher (10 - 6 M) and lower (10 - 8 M) 
doses of  dexamethasone. Our CAT assay data could 
not explain the contradictory effects of  dexamethasone 
on the growth of  SCl15. 

Research during the past few years has revealed that 
certain members of  the steroid and thyroid hormone 
receptor superfamily and its mutant forms may be 
related to malignant transformation and certain malig- 
nant states of  various tumors [26]. As for the mouse 
glucocorticoid receptors, certain mouse lymphoma cells 
resistant to dexamethasone are known to contain mu- 
tant glucocorticoid receptors due to a single amino acid 
substitution [14]. Another report has shown that the 

human estrogen receptor cDNA clone from MCF-7 
cells has a Gly to Val mutation in the hormone binding 
domain and a decreased affinity for estradiol [24]. On 
the other hand, alternative splicing of  thyroid hormone 
receptor genes is a ubiquitous mechanism for 
generating products with different functions derived 
from a single gene [27]. The existence of  two forms of  
GR, even if in a minor population of  SC115 cells and by 
miss-splicing, may suggest the different roles of  the 
glucocorticoid receptors. Recent studies on human GR- 
mediated repression using a cAMP-inducible chorionic 
gonadotropin a-subunit promoter,  which is negatively 
regulated by glucocorticoid, revealed that the repres- 
sion manner requires DNA and ligand binding domains 
[28,29]. In particular, substitution of  a single amino 
acid of  the DNA binding domain showed that 18 out of  
19 mutants have parallel effects on activation and 
repression, but one mutant,  a substitution of  the linker 
region between the two Zn-fingers, had a repressor 
function but no activator function. In SC-GR II, the 
linker region of  the DNA binding domain has an addi- 
tional basic amino acid (Arg) which may change the 
ability to distinguish GRE from other hormone respon- 
sive elements [30,31]. Further study is required to deter- 
mine whether SC-GR II has the ability to recognize 
other GRE related to negative transcriptional regula- 
tion by glucocorticoid actions. 
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