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Abstract Agricultural residues management is considered to be a vital strategy in order to

accomplish resource conservation and to maintain the quality of the environment. In recent years,

biofibers have attracted increasing interest due to their wide applications in food packaging and in

the biomedical sciences. These eco-friendly polymers reduce rapidly and replace the usage of the

petroleum-based synthetic polymers due to their safety, low production costs, and biodegradability.

This paper reports an efficient method for the production of the cellulose acetate biofiber from flax

fibers and cotton linters. The used process satisfied a yield of 81% and 54% for flax fibers and

cotton linters respectively (based on the weight of the cellulosic residue used). The structure of

the produced bioplastic was confirmed by X-ray diffraction, FT-IR and gel permeation

chromatography. Moreover, this new biopolymer is biodegradable and is not affected by acid or

salt treatment but is alkali labile. A comparison test showed that the produced cellulose acetate

was affected by acids to a lesser extent than polypropylene and polystyrene. Therefore, this new

cellulose acetate bioplastics can be applied in both the food industry and medicine.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biodegradable polymers broaden the range of waste manage-
ment treatment option over traditional plastics and this is
supported by the Life Cycle Assessment. The most favored

end-of-life disposal options for these materials are domestic
and municipal composting instead of landfill which is the worst
disposal option. Therefore, biodegradable polymers can make

significant contributions to material recovery, reduction of
landfill and utilization of renewable resources (Davis and
Song, 2006). Because of the difficulty in recovering the conven-
tional polyethylene mulching film after its use, biodegradable

films have been developed and commercialized. These are films
(usually made of bio-based materials) which, after their use,
can be buried in the soil along with the plant remains in order

to be decomposed by microorganisms (Demetres et al., 2013).
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The U.S.A Department of Agriculture’s Bio-Preferred
Program took the important step in promoting bio-plastics
at the federal procurement level. In 2012, the two most influen-

tial commercial biodegradable (and bio-based) polymers were
Poly-Lactic Acid (PLA) and starch-based polymers, account-
ing respectively for about 47% and 41%, of total biodegrad-

able polymer consumption (Petrova and Garner, 2014).
Another example is microbial Poly-Hydroxy Alkanoates
(PHA) which, for the past many years, have been developed

as biodegradable plastics (Ying et al., 2014). PHA has been
marketed as environmentally friendly bio-plastics with less
CO2 emissions and sustainability as well as independence from
petroleum sources (Chen and Patel, 2012). Also, there were

studies of their industrial applications (Viviana et al., 2014).
In recent years, the development of biodegradable packa-

ging materials from renewable natural resources (e.g. crops)

has received increasing attention, particularly in EU countries
(Davis and Song, 2006) and the use of renewable resources has
been revitalized (Tabone et al., 2010; Cateto et al., 2008;

Kiatsimkul et al., 2008). If properly managed, this would
reduce their environmental impact upon disposal (Davis and
Song, 2006) and, also, it would be technically and economi-

cally practicable (Tanaka et al., 2008).
Biodegradable plastics, based on cellulose acetate (CA),

were studied and the produced plastic decomposed in soil or
water within a few years. However, the material can be

recycled, also, or incinerated without residue (Alexander,
1993). There were studies of the important properties of CA
including mechanical strength, impact resistance, trans-

parency, colorability, fabricating versatility, moldability, and
di-electric strength (Fischer et al., 2008; Jinghua et al., 2009).

Also, CA could be used for the manufacturing of photo-

graphic films, ultra -filtration membranes, fibers and some
plastic tools (Cosimo, 2013). Natural plastic is produced in a
fluid form and, therefore, it is shaped easily and does not

require a large amount of energy. This is to be compared with
the conventional plastic which is stored usually as granules and
needs a massive amount of energy so that it can be shaped by
molding, injection, or extrusion (Xiaoyun and Shuwen, 2013).

Many researchers used acetylation of plant cellulose fiber,
such as cotton by-products; rice, wheat, rye and barley straws;
and cornhusk and poplar wood fiber for the production of CA.

The acetylation process was performed in supercritical carbon
dioxide (Nishino et al., 2011), or in an ionic liquid (Cao et al.,
2007) and also, by phosphotungstic acid (Guozhi et al., 2013)

or by iodine and acetic acid (Cheng et al., 2010).
Because the raw materials have a high impact on the cost of

bio-based plastic production, the use of low cost or negative
value cellulosic raw materials is attractive, therefore, for indus-

trial CA production. Flax is an ancient crop in Egypt and the
amount of flax fibers are roughly seven thousand tons/year
(Agricultural Egyptian Government, 2011); these contain

92% cellulose (Textile Learner, 2012). Cotton linters are
regarded world-wide as a valuable cellulose raw material for
paper manufacture, for the conversion to cellulose derivatives

and for regenerated fibers. Cotton linters are by-products
which are produced during cottonseed processing. In 1970,
the oil mills gained 120 kg of (raw) linters fiber from 1000 kg

of cottonseed (=12%) but, in 2009, it was roughly only 6–
8.5% and cottonseed represented about 63% of the crop of
cottons (Axel, 2009). In Egypt, the estimated amount of the
crop of cottons was 82,829 thousand tons from 1990 to 2008
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(Assiute University thesis, 2012). Also, cotton linters contain
94% cellulose (Textile Learner, 2012).

This work aims to use low cost cellulosic raw materials for

the preparation of CA and, so far, few reports have been pro-
posed on the preparation of CA from flax fiber. Consequently,
in this work, flax fibers and cotton linters were used for the

production of CA. Moreover, this work investigated and
evaluated the obtained CA for crystalline structure, molecular
weight, biodegradability, resistance for acids, alkalis and salts.

2. Experimental

2.1. Materials and chemicals

Flax fibers were obtained from Tanta Flax and Oil Company,

Tanta, Egypt and cotton linters were obtained from El- Nile
Cotton Ginning Company, Minia, Egypt. Fig. 1A and B
show the two raw materials. Glacial acetic acid and acetic
anhydride were purchased from El-Nasr Pharmaceuticals

and Chemicals Company, Cairo, Egypt. Sulfuric acid was used
as a catalyst and for the acid resistance test; polyethylene
glycol 600 was used as a plasticizer; and acetone was used as

a solvent. Sodium hydroxide, lead acetate, ferrous sulfate
and tri- sodium orthophosphate were used for testing acids,
alkalis and salts to the produced CA’s resistance. They were

purchased from Sigma–Aldrich Corporation, USA.

2.2. Procedure

2.2.1. Procedures of manufacturing cellulose acetate

Colors, dusts, and fats were removed from flax fibers and cot-
ton linters by washing with water and bleaching with 120 mL

of household bleaching agent (5% NaOCl & 5%NaOH), thor-
oughly washing and, then, was followed by drying. A sample
of 35 g of each raw material was used. Acetic anhydride

(100 mL), glacial acetic acid (100 mL) and sulfuric acid
(10 mL) were mixed and the mixture was cooled to 7 �C.
Flax fibers or cotton linters were added slowly to the previous

mixture with agitation to bring about the acetylation process;
this step produced the primary CA. Hydration of the primary
CA (viscous fluid) was achieved by diluting with 30 mL of
equal parts of concentrated acetic acid (99.8%) and sulfuric

acid (98%) and, then, the primary CA was allowed to age
for 15 h. The resulting viscous fluid was centrifuged in order
to separate the final product. Plasticizer (polyethylene glycol

600) was added as 25% by volume of the viscous CA with agi-
tation; this formed the final product which was dried in an
oven at 60 �C until a constant weight in order to get the pro-

duct ready for use. Before being shaped, the product was
diluted with acetone to bring it into the form of a viscous fluid
which could be poured in a mold or on a smooth surface for

shaping.

2.2.2. Characterization of the produced cellulose acetate

2.2.2.1. X-ray diffraction (XRD). This test was performed to
obtain information about the crystallinity of the produced
CA by using an X-ray diffractometer to collect (at room

temperature) XRD patterns of the prepared cellulose acetate
sample. By using a Philips powder diffractometer with Cu Ka
radiation (k= 0.154 nm), X-ray diffraction (XRD) patterns

of the samples were recorded in the range 2h = 4–80�. The
e plastic from agricultural wastes. Arabian Journal of Chemistry (2015), http://
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Figure 1 The photos of flax fibers (A) and cotton linters (B) before processing.
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instrument was operated at 40 kV and 40 mA. The spectra were
recorded with a 2h step of 0.02� at a scanning rate of 2� h/min.

2.2.2.2. Fourier Transform Infrared (FTIR). FTIR was used to
confirm the structure of cellulose acetate. By using a Nicolet
IS-10 FTIR instrument with KBr discs, FTIR spectroscopy
measurements were made. The peaks, as given in the chart,

indicated that the functional groups were present in the CA
sample.

2.2.2.3. Gel Permeation Chromatograph (GPC). The informa-
tion about the molecular weight of CA was obtained by using
Waters 515/2410 Gel Permeation Chromatograph (GPC,

Waters, America) and a Styragel column calibrated with poly-
styrene standards and series 2410 refractive index detector. In
the mobile phase, tetrahydrofuran was used at a flow rate

equal to 1 mL min�1 and at a temperature of 40 �C.

2.2.3. Biodegradation tests

2.2.3.1. Biodegradation by composting. Samples (5 g) of the
produced CA were vacuum dried for 24 h at 45 �C, weighed
precisely and, next, buried into the municipal solid waste mix-

ture. Then, they were examined for possible biodegradation.
The mixture consisted of leaves, paper waste, cow manure,
food waste, composting seeds, urea, wood waste and water

(Müller, 2005). The mixture was kept in an oven at 55 �C, at
which the maximum growth of thermophilic microorganisms
occurred. The samples were weighed every three days in order
to determine the percentage of weight loss.

2.2.3.2. Bench-scale simulated composting. In this test (ASTM
D5988, 2012), the compost consisted of inoculums (cow man-

ure and garden soil). The test was run on three samples and
each sample (5 g) was contained in a separate reaction vessel;
however, the compost was common batch compost. For

characterization, the samples were removed (in triplicate) from
the compost at three day intervals in order to determine weight
loss. The average weight loss of the three samples was deter-

mined and recorded. Also, the temperature of the compost
was measured daily and recorded.

2.2.4. Chemical tests

2.2.4.1. Effect of acids. Samples (5 g) of the produced CA were
weighed precisely and, then, put into sulfuric acid with concen-

trations of 10%, 20% and 30%. The samples were dried and
weighed periodically for 4 days in order to determine the
Please cite this article in press as: Mostafa, N.A. et al., Production of biodegradable
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percentage of weight loss after each time period. With the
objective of making a comparison between the produced CA
and two of the other known types of plastics, samples of poly-

styrene, and polypropylene were exposed to the same test but
only for 30% concentration of sulfuric acid.

2.2.4.2. Effect of alkalis. Samples (5 g) of the produced CA

were weighed precisely and, then, put into alkali solution
(sodium hydroxide) with different concentrations (10%,
20%, 30% and 40%). The percentage weight loss was calcu-

lated daily for a period of ten days. With the objective of mak-
ing a comparison, samples of polystyrene and polypropylene
were exposed to the same test by using NaOH (40%

concentration).

2.2.4.3. Effect of salts. The CA, produced from either cotton

linters or flax fibers, was mixed with solid salt and left for
5 days, with periodic weighing every day, with the objective
of determining its resistance to the action of salts. The salts,
which were used, were ferrous sulfate, sodium chloride, tri-

sodium orthophosphate and lead acetate. Samples of CA
weighing 5 g were used and every day the CA was removed
from the salt, thoroughly washed, dried and weighed.
3. Results and discussion

3.1. Preparation of cellulose acetate

The experimental results showed that the yield of cellulose

acetate was 81% and 54% from flax fibers and cotton linters
respectively (based on the weight of the cellulosic residue
used).

In this study, the production yield of CA from cotton lin-
ters (54%) was higher than that prepared by iodine-catalyzes
acetylation reaction. This gave a production yield of 34% from
cottonseed hull and 37% from cotton burr (Cheng et al., 2010).

This might have been due to the difference in methods used for
the acetylation process and, also, the types of cellulosic resi-
dues. Also, the production yield of CA from flax fibers was

higher than that from cotton linters and this might have been
due to flax fiber being 50–120 cm long (Agricultural Egyptian
Government, 2011) compared with cotton linter which was

2–6 mm long (Axel, 2009). Also, Fig. 1A and B (material
and methods section) proved, also, that there was no signifi-
cant difference in the cellulose content of the two residues.

Also, this was likely due to the different physical structure of
plastic from agricultural wastes. Arabian Journal of Chemistry (2015), http://
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the cellulose matrix in these materials. The CA, produced from
the two residues, was viscous fluid with nearly the same color.
Therefore, the acetylation process, used in this work, produced

nearly the same CA from the two different types of residues
but they differed in the percentage of production yield.

3.2. Characterization of the produced cellulose acetate

3.2.1. X- ray diffraction

Fig. 2A and B represent the typical XRD patterns for CA
produced from flax fibers and cotton linters respectively. It
can be seen that identical characteristics peaks around 14.6�,
16.49�, 22.68� and 34.5� appear in the two samples but with
a small difference in the intensity; this increases in the case
of cotton linters. The peak around 22.68� in the curves is
ascribed to the typical crystal lattice of cellulose Ib (Li and

Renneckar, 2011; Nishino et al., 2011; Siqueira et al., 2010),
indicating that all samples exhibit the diffuse characteristics
pattern of an amorphous phase. The diffraction peak at

22.68� of (002) reflection is sharper and narrower in the pro-
duced CA; this indicates the removal of lignin and hemi-
cellulose and results in an increase in the degree of

crystallinity and a higher tensile strength (Montane et al.,
1998). A shoulder peak at 16.49� of (101) reflection and a
weak peak at 34.5� of (040) reflection appear in the spectrum
of the produced CA; these are assigned to the cellulose phase.

The weak diffraction peak appears around 14.6� in the diffrac-
tion pattern of CA in the two samples; these could be indexed
with the crystalline peaks of CTAII modification (Sun and

Sun, 2002).

3.2.2. FTIR spectra

Fig. 3A and B present the FTIR spectra of CA produced

from flax fibers and cotton linters respectively. It can be seen
that identical characteristics peaks appear in the two samples;
these indicate that the CA, produced either from flax fibers or

cotton linters, has the same function groups. The dominant
absorption peaks around 3403 and 2916 cm�1 are attributed
to the stretching vibrations of AOH group and the CAH bond

in ACH2 respectively (Guozhi et al., 2013). Whilst a shoulder
peak at 1646 cm�1 is attributed to the b- glycosidic bond in
glycogen. The peaks in the two CA samples can be observed
at 1646, 1456 and 1223 cm�1; these are ascribed to C‚O

and CA H bond in AO(C‚O)ACH3 group, and COA
stretching of acetyl group respectively (Cao et al., 2007;
Huang et al., 2011). The observations of these peaks provide

evidence of acetylation.
Figure 2 XRD result of the produced CA f

Please cite this article in press as: Mostafa, N.A. et al., Production of biodegradabl
dx.doi.org/10.1016/j.arabjc.2015.04.008
3.2.3. GPC test

Tests were run on the Gel Permeation Chromatograph (GPC)

for the objective of investigating the molecular weight dis-
tribution. Fig. 4A and B show the individual GPC sample
results for a run of 50 min and injection volume of 200 lL.
The molecular weight distribution curve shows that the pro-
duced CA was sufficiently homogenous and the average
molecular weight (MP) was 1607 & 1674 Daltons for flax fibers

and cotton linters respectively. Therefore, the CA, produced
either from flax fibers or from cotton linters, has nearly the
same polymeric structures.

3.3. Results of biodegradation tests

Fig. 5A and B show the results of biodegradation from com-
posting and bench-scale simulated composting tests for flax

fibers and cotton linters respectively. It is clear from the figure
that, in the case of biodegradation tests from composting, CA
lost 6% & 4% of its weight after the first three days and, then,

the percentage of weight loss continued to increase over time
until it reached 44% & 35% after 14 days for CA produced
from flax fibers and cotton linters respectively.

Also, the results of the bench-scale simulated composting
tests show that the CA lost 5% & 2% of its weight after the
first three days. The results show, also, that the percentage
of weight loss continued to increase over time until it reached

41% & 32.5% after 14 days. During the biodegradation pro-
cess, there was, as depicted in the figure, a variation in the tem-
perature of the compost. Therefore, it is clear from these

results that the CA, produced from either flax fibers or cotton
linters, is biodegradable by the thermophilic microorganisms.
In addition, this is confirmed by the increase in temperature

of the compost during the incubation period of the ther-
mophilic microorganisms. Also, CA, produced from flax fibers
has a slight increase in the rate of biodegradation and , thus,

an increased percentage of biodegradation (�9% weight loss)
when compared with that produced from cotton linters. This
may be due to the minor variations in the chemical structure
of the CA produced from the two residues.

3.4. Chemical tests

3.4.1. Effect of acid on cellulose acetate

Fig. 6A and B show the results from the effects of different
concentrations of sulfuric acid at on CA produced from flax

fibers and cotton linters respectively.
rom flax fibers (A) and cotton linters (B).
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Figure 3 IR spectra of CA from flax fibers (A) and cotton linters (B).
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The weight loss of CA, produced from flax fibers, had been
increased by increasing the concentration of sulfuric acid from
10% to 20% and, then, the weight loss of CA became reduced

at 30% sulfuric acid concentration (Fig. 6A). These results
can be explained by the fact that, by increasing acid concentra-
tion from 10% to 20%, the acid content increased and, hence,

the weight loss increased. However, at 30% acid concentra-
tion, there was a reduction in the water content which pro-
moted the ponding rupture by acid.

On the other hand, the percentage weight loss of CA, pro-
duced from cotton linters, had been reduced by increasing the
sulfuric acid concentration from 10% to 30% (Fig. 6B). Also,

sulfuric acid (30%) gave a lower weight loss (1.84%) of CA
produced from cotton linters than that (2.92%) from flax
fibers. These results could be due probably to the high stability
of chemical crystalline structure and ponding of CA from cot-

ton linters.
In general, CA produce from both residues had a very good

acid resistance; this was slightly higher than the environmental

resistance factor of the commercial CA for strong acid (=3)
which meant good resistance (Granta Design Limited, 2014).

The results in Fig. 7A and B illustrate the effect of 30%

sulfuric acid on the produced CA compared to polystyrene
and polypropylene. As shown from the figure, CA is affected
by acid to a much lesser extent, i.e., 2.92% & 1.84% loss in
weight for CA (produced from flax fibers and cotton linters

respectively) in 30% sulfuric acid (after 4 days) compared to
29.4%, 34.3% for polystyrene and polypropylene respectively
Please cite this article in press as: Mostafa, N.A. et al., Production of biodegradable
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under the same conditions. This means that the prepared CA
is more durable than polystyrene and polypropylene.

3.4.2. Effect of alkalis on cellulose acetate

As illustrated in Fig. 8A and B, the weight loss of CA, pro-
duced either from flax fibers or cotton linters, increased as

the concentration of NaOH increased and, also, it was
increased over time. A maximum weight loss of 60.4% &
59.2% was noticed for CA from flax fibers and cotton linters
after 10 days treatment with 40% sodium hydroxide solution

(compared to 50.1% at 10% concentration NaOH for each
residue).

The effect of time was less pronounced for more concen-

trated solutions since its maximum value had been reached
from the beginning of the test (41.5% & 40% loss in weight
after one hour for 40% NaOH, compared to 19.8% &

18.4% at the same timing for 10% NaOH) for CA produced
from flax fibers and cotton linters respectively. It is clear from
the results that the resistance of CA, produced either from flax

fibers and cotton linters to alkalies, is nearly the same; how-
ever, CA produced from both residues had a poor alkalis resis-
tance when compared to commercial CA which have a good
resistance factor (=3) for strong alkalis (Granta Design

Limited, 2014). However, the poor alkali resistance was due
to the presence of hydrolysable ester bonds in the structure
of acetate.

Fig. 9A and B show the results of the comparison test. It
is clear from the results that the resistance of CA, produced
plastic from agricultural wastes. Arabian Journal of Chemistry (2015), http://
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Figure 4 GPC sample results of CA from flax fibers (A) and cotton linters (B).

Figure 5 Compost’ temperature profile and percentage weight loss due to biodegradation (by composting and bench-scale) of CA

produced from flax fibers (A) and cotton linters (B).

Figure 6 Effect of different concentrations of sulfuric acid on weight loss of CA produced from flax fibers (A) and cotton linters (B).
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Figure 7 Effect of 30% concentration sulfuric acid on weight loss of CA produced from flax fibers (A) and cotton linters (B) compared

to polystyrene and polypropylene.

Figure 9 Effect of 40% concentration NaOH on weight loss of CA produced from flax fibers (A) and cotton linters (B) compared to

polystyrene and polypropylene.

Figure 8 Effect of different concentrations of NaOH on weight loss of CA produced from flax fibers (A) and cotton linters (B).
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either from flax fibers and cotton linters to alkalies, is very
close to the values of polypropylene but is higher than

polystyrene.

3.4.3. Effect of salts on cellulose acetate

The test showed that the solid ferrous sulfate, sodium chloride,

tri-sodium orthophosphate and lead acetate had no effect on
the produced CA where it did not show any weight loss when
mixed with these salts for 5 days. These results were consistent

with the environmental resistance factor of the commercial CA
for sea water (=5); this meant an excellent resistance factor
(Granta Design Limited, 2014). Also, the produced CA could
Please cite this article in press as: Mostafa, N.A. et al., Production of biodegradable
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be an alternative to using polyethylene; this is used commonly
for manufacturing containers for salts.

4. Conclusions

The environmentally benign natural cellulose-based CA either

from flax fibers or cotton linters was prepared successfully by
using sulfuric acid–catalyzed acetylation process and
characterized by using various instrumental techniques and

environmental properties tests. It was found that CA produced
as viscous acetone–soluble fluid and the production yield of
CA from flax fibers (81%) was higher than that from cotton
plastic from agricultural wastes. Arabian Journal of Chemistry (2015), http://
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linters (54%). In addition, it was better than that from cotton
linters in terms of biodegradation properties (41–44% weight
loss after 14 days) but they had nearly the same chemical resis-

tance. Also, the produced CA proved to be comparable with
polyethylene and polypropylene with respect to its resistance
to 30% sulfuric acid and 40% NaOH. Flax fiber is recom-

mended for the commercial production of CA because of its
higher production yield and it is available in large quantities
compared with cotton linters; these are used as an ingredient

of cattle feed. This acceptable overall performance, shown by
this CA, has put it forward as a suitable material for packages,
salt containers, fiber and plastic tools manufacture. This CA
has the potential to replace or minimize the use of non-

biodegradable and petroleum-based materials.

5. Recommendations

Other types of agricultural wastes could be studied for their
accessibility to produce CA and a pilot plant could be carried
out for CA manufacture from agricultural residues. Also, the

effect of different types of plasticizer on the physical and
environmental properties of the produced CA could be
studied.
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