The complexity of the T-coloring problem for graphs with small degree

Krzysztof Giaro, Robert Janczewski*,1, Michał Małafiejski
Foundations of Informatics Department, Faculty of Electronics, Telecommunications and Informatics, Technical University of Gdañsk, ul. Narutowicza 11/12, Gdańsk, Poland

Received 18 September 2000; received in revised form 10 July 2002; accepted 29 July 2002

Abstract

In the paper we consider a generalized vertex coloring model, namely T-coloring. For a given finite set T of nonnegative integers including 0 , a proper vertex coloring is called a T-coloring if the distance of the colors of adjacent vertices is not an element of T. This problem is a generalization of the classic vertex coloring and appeared as a model of the frequency assignment problem. We present new results concerning the complexity of T-coloring with the smallest span on graphs with small degree Δ. We distinguish between the cases that appear to be polynomial or NP-complete. More specifically, we show that our problem is polynomial on graphs with $\Delta \leqslant 2$ and in the case of k-regular graphs it becomes NP-hard even for every fixed T and every $k>3$. Also, the case of graphs with $\Delta=3$ is under consideration. Our results are based on the complexity properties of the homomorphism of graphs.

© 2003 Published by Elsevier B.V.
Keywords: Vertex coloring; T-coloring; T-span; Homomorphism; NP-completeness

1. Introduction

We consider the T-coloring problem, as a generalized classical vertex coloring problem, which is one of the variants of the channel assignment problem in broadcast networks [8,16]. In this problem one wishes to assign to each transmitter $x_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$, located in a region, a frequency $f\left(x_{i}\right)$ avoiding interference between transmitters, i.e.

[^0]two interfering transmitters (because of proximity, meteorological or other reasons) must be assigned frequencies so that the distance between them does not belong to the forbidden set T of nonnegative integers including 0 . The most common objective is to minimize the span of a frequency band. For more about applications of this problem the reader is referred to [2,3,14,15].

Let $G=(V, E)$ be a simple loopless graph with vertex set $V=V(G)$ and edge set $E=E(G)$. By $\Delta(G)$ we mean the maximum degree $\rho(v)$ over all vertices v of graph G, by $\chi(G)$ and $\omega(G)$ we denote the chromatic number and the clique number of graph G, respectively. Let $G(W)$ denote the subgraph of graph G induced by $W \subset V$.

Definition 1. Let T be a finite set of nonnegative integers satisfying $0 \in T$. By a T-coloring of graph G we mean a vertex coloring $c: V \rightarrow \mathbb{N}$ satisfying $|c(v)-c(w)| \notin$ T, whenever $\{v, w\} \in E$. The T-span is defined as $\operatorname{sp}_{T}(G)=\min _{c} \operatorname{sp}_{T}(G, c)$, where $\operatorname{sp}_{T}(G, c)=\max c(V)-\min c(V)$ and c is a proper vertex T-coloring of graph G. A T-coloring c is said to be optimal if $\operatorname{sp}_{T}(G, c)=\operatorname{sp}_{T}(G)$.

Following [13] we introduce the notion of T-graphs.
Definition 2. For a given set T, we define an infinite T-graph G_{T}, with vertex set $V\left(G_{T}\right)=\mathbb{N} \cup\{0\}$ and edge set $E\left(G_{T}\right)=\{\{x, y\}:|x-y| \notin T\}$. By G_{T}^{d+1} we mean the subgraph of G_{T} induced by $\{0, \ldots, d\}$.

Given a graph G, set T and positive integer k, the problem of verifying the inequality $\operatorname{sp}_{T}(G) \leqslant k$ we call the T-Span Problem. This differs from the T-Coloring Problem, which requires an optimal T-coloring as its output. The notion of a T-coloring was introduced in [8]. The problem has been studied extensively (see [3,4,12,13-18]). The majority of results concern lower and upper bounds on $\mathrm{sp}_{T}(G)$, see $[3,11,17]$. The first complexity result comes independently from [6,12], where the authors showed NP-completeness in the strong sense of the T-Span Problem on complete graphs (so even a pseudopolynomial algorithm for the T-Span Problem cannot exist unless $\mathrm{P}=\mathrm{NP}$). We call the above problems Fixed T-Span Problem and Fixed T-Coloring Problem if set T is fixed. Furthermore, in [7] the authors have developed a linear algorithm for solving the Fixed T-Coloring Problem on complete graphs (but exponential with respect to $\max T$). So far, the problem on graphs with "small" degree has been still open. Therefore, in Sections 2 and 3 we deal with some new properties of homomorphisms and in Section 5 we show NP-completeness of the Fixed T-Span Problem on subcubic graphs (i.e. with $\Delta \leqslant 3$), and r-regular graphs (i.e. with all vertices of degree r) with $r \geqslant 3$. In Section 4 we show a polynomial time algorithm for the T-Coloring Problem on graphs with $\Delta \leqslant 2$.

2. Simple properties of graph homomorphisms

The idea of graph homomorphism is a generalization of vertex coloring. Moreover, it generalizes the T-coloring problem as well.

Definition 3. For two simple graphs G and H a graph homomorphism is a function $h: V(G) \rightarrow V(H)$ such that $\{h(v), h(w)\} \in E(H)$, whenever, $\{v, w\} \in E(G)$ for all $v, w \in V(G)$.

We write $G \rightarrow H$ if there exists a homomorphism from G to H. Furthermore, if the homomorphism is onto, then it is called an epimorphism. In addition, if there exists h^{-1} and it is a homomorphism from H to G, then we call it an isomorphism and graphs G and H are said to be isomorphic, in symbols $G \simeq H$. We write $H \tilde{\subset} G$ if H is isomorphic to any subgraph of G.

There is a straightforward equivalence between the properties of T-span and the existence of homomorphism from G to G_{T}^{d+1} (see [13]).

Proposition 4. Given a graph G, any set T and a nonnegative integer d we have $\mathrm{sp}_{T}(G) \leqslant d$ if and only if $G \rightarrow G_{T}^{d+1}$.

Let us note that if $T=\{0\}$, then the T-coloring problem reduces to the well-known vertex coloring problem, and moreover $G_{T}^{d+1} \simeq K_{d+1}$. Thus we get

Corollary 5. Given a graph G and a positive integer d we have $\chi(G) \leqslant d$ if and only if $G \rightarrow K_{d}$.

The composition of graph homomorphisms is still a graph homomorphism. Moreover, an image of a complete graph under a homomorphism is a complete graph with the same number of vertices so

Corollary 6. If $K_{n} \rightarrow G$ then $K_{n} \tilde{\subset} G$.
And
Proposition 7. If $h: V(G) \rightarrow V(H)$ is a homomorphism then $\psi(G) \leqslant \psi(H(h(V(G))))$, where ψ is any of the functions from the list $\left\{\chi, \omega, \mathrm{sp}_{T}\right\}$.

From the above is easy to see that if $G \rightarrow H$ and H is bipartite, then graph G is bipartite. Concluding this section note an important upper bound proved in [17].

Theorem 8 (Tesman [17]). For any given graph G and set T the following inequality holds

$$
\operatorname{sp}_{T}(G) \leqslant|T| \cdot(\chi(G)-1) .
$$

Let us also recall that
Theorem 9 (Brooks). If G is a connected graph that is neither a complete graph nor an odd cycle, then $\chi(G) \leqslant \Delta(G)$.

Fig. 1. Graph A_{v}^{k} replacing the vertex v.

3. Homomorphisms into odd cycles

The problem of graph homomorphism is considered in [1,5]. Let H be a fixed graph, the decision problem of the existence of a homomorphism from G to H will be denoted Ном (H), where G is any graph from the specified family. The most important result comes from [9].

Theorem 10 (Hell and Nesetril [9]). The problem $\operatorname{Hom}(H)$ on arbitrary graphs is polynomial, whenever H is bipartite, otherwise it is NP-complete.

In this section we prove that the problem $\operatorname{Hom}\left(C_{2 k+1}\right)$ on subcubic graphs is NPcomplete for every positive integer $k \geqslant 2$, in contrast to the problem Ном $\left(C_{3}\right)$, which is polynomial. Moreover, we prove analogous result for 3-regular graphs and NPcompleteness of the problem Ном $\left(C_{2 k+1}\right)$ on r-regular graphs, for every $r \geqslant 4$ and $k \geqslant 1$.

We start with a general construction. Let G be an arbitrary graph and k be any positive integer greater than 1 . We replace each vertex $v \in V(G)$ of degree $\rho(v)$ with the graph A_{v}^{k} shown in Fig. 1 (the dotted vertical lines in Fig. 1 mean path P_{k}). We replace also every edge $\{v, w\} \in E(G)$ with the edge $\left\{v_{i}, w_{j}\right\}$ such that no two inserted edges are incident. Let G_{k}^{\prime} be the graph constructed from G as above. It is easy to see that G_{k}^{\prime} is always a subcubic graph.

Theorem 11. The problem $\operatorname{Hom}\left(C_{2 k+1}\right), k \geqslant 2$ is $N P$-complete on subcubic graphs.
Proof. By Theorem 10 it suffices to show $G \rightarrow C_{2 k+1}$ iff $G_{k}^{\prime} \rightarrow C_{2 k+1}$. First, observe that $A_{v}^{k} \rightarrow C_{2 k+1}$ and moreover for every homomorphism $h_{v}: V\left(A_{v}^{k}\right) \rightarrow V\left(C_{2 k+1}\right)$ we have $\left|h_{v}\left(\left\{v_{1}, \ldots, v_{\rho(v)}\right\}\right)\right|=1$. Otherwise, we have $h_{v}\left(v_{i}\right) \neq h_{v}\left(v_{i+1}\right)$ for some $i \in\{1, \ldots, \rho(v)-1\}$, hence $h_{v}\left(v_{i}\right)=h_{v}(x)$, where $\left\{v_{i}, s\right\},\left\{v_{i+1}, s\right\},\{s, x\} \in E\left(A_{v}^{k}\right)$ and $x \notin\left\{v_{1}, \ldots, v_{\rho(v)}\right\}$. Thus $C_{2 l-1}$ is subgraph of $C_{2 k+1}\left(h\left(V\left(A_{v}^{k}\right)\right)\right)$ for some $l<k$, which is impossible. So, constructing a homomorphism $g: V(G) \rightarrow V\left(C_{2 k+1}\right)$ from a homomorphism $g^{\prime}: V\left(G_{k}^{\prime}\right) \rightarrow V\left(C_{2 k+1}\right)$ is straightforward.

Conversely, let $g: V(G) \rightarrow V\left(C_{2 k+1}\right)$ be a homomorphism, then we let $g^{\prime}\left(v_{i}\right)=g(v)$ and for $w \in V\left(A_{v}^{k}\right) \backslash\left\{v_{1}, \ldots, v_{\rho(v)}\right\} g^{\prime}(w)=\tau_{v} \circ h_{v}(w)$, where $h_{v}: V\left(A_{v}^{k}\right) \rightarrow V\left(C_{2 k+1}\right)$ is a

Fig. 2. A graph G^{\prime}.
homomorphism and τ_{v} is any automorphism of $C_{2 k+1}$ such that $\tau_{v}\left(h_{v}\left(v_{i}\right)\right)=g(v)$. One can check that $g^{\prime}: V\left(G_{k}^{\prime}\right) \rightarrow V\left(C_{2 k+1}\right)$ is a homomorphism.

Theorem 12. The problem $\operatorname{Hom}\left(C_{2 k+1}\right), k \geqslant 2$ is NP-complete on 3 -regular graphs.
Proof. It suffices to show the equivalence $G \rightarrow C_{2 k+1}$ iff $G^{\prime} \rightarrow C_{2 k+1}$ for any subcubic connected graph G, where $k \geqslant 2$ and G^{\prime} is a cubic graph defined as follows. Let α_{i} be an isomorphism from graph G to its i th isomorphic copy G_{i}, for $i=1,2,3$, which are vertex disjoint. Let $V_{j} \subset V(G)$ be the set of vertices of degree j. We define $V\left(G^{\prime}\right)=\bigcup_{i=1}^{3} V\left(G_{i}\right) \cup \bigcup_{v \in V_{1}}\left\{x_{v}^{1}, x_{v}^{2}\right\} \cup \bigcup_{u \in V_{2}}\left\{y_{u}\right\}$ and $E\left(G^{\prime}\right)=\bigcup_{i=1}^{3} E\left(G_{i}\right) \cup$ $\bigcup_{v \in V_{1}} \bigcup_{i=1}^{3}\left\{\left\{x_{v}^{1}, \alpha_{i}(v)\right\},\left\{x_{v}^{2}, \alpha_{i}(v)\right\}\right\} \cup \bigcup_{u \in V_{2}} \bigcup_{i=1}^{3}\left\{\left\{y_{u}, \alpha_{i}(u)\right\}\right\}$ (see Fig. 2). Assuming that x_{v}^{j} and y_{u} are different vertices for $j=1,2$ and $v, u \in V(G)$, it is obvious that G^{\prime} is a cubic graph.

Now, suppose $g: V(G) \rightarrow V\left(C_{2 k+1}\right)$ is a homomorphism. Let $g^{\prime}: V\left(G^{\prime}\right) \rightarrow V\left(C_{2 k+1}\right)$ be defined $g^{\prime}(w)=g(v)$ for $w \in\left\{\alpha_{1}(v), \alpha_{2}(v), \alpha_{3}(v)\right\}$ and $v \in V(G), g^{\prime}\left(x_{v}^{i}\right)=g(z)$ for $\{z, v\} \in E(G), g^{\prime}\left(y_{v}\right)=g(z)$ for any z adjacent to v. Thus g^{\prime} is a well-defined homomorphism. Conversely, if g^{\prime} is a homomorphism from G^{\prime} to $C_{2 k+1}$ then $g=g^{\prime} \circ \alpha_{1}$ is a homomorphism from G to $C_{2 k+1}$.

Theorem 13. The problem $\operatorname{Hoм}\left(C_{2 k+1}\right)$ is $N P$-complete on r-regular graphs for every fixed integer $k \geqslant 1$ and $r \geqslant 4$.

Proof. By induction on $r \geqslant 4$, consider $r+1$ isomorphic copies of any r regular graph. Using the analogous method as that in Theorem 12 we can show that the problem Ном $\left(C_{2 k+1}\right)$ is NP-complete for any $k \geqslant 2$ and for all $r \geqslant 4$. In [10] the author proved NP-completeness of edge 3 -chromaticity of 3 -regular graphs. Since line
graphs of 3-regular graphs are 4-regular, the problem of 3-chromaticity of 4-regular graphs is NP-complete. The construction from Theorem 12 is carried over to the case $\operatorname{Hom}\left(C_{3}\right)$ on r-regular graphs with $r \geqslant 4$.

4. Polynomial algorithm for cycles

We show a polynomial-time algorithm for graphs with $\Delta \leqslant 2$.
Theorem 14. The T-Coloring Problem on graphs with degree not exceeding 2 can be solved in time $\mathrm{O}\left(n|T|^{2} \log |T|\right)$.

Proof. Bipartite graphs can be optimally colored with 1 and $\min \mathbb{N} \backslash T+1$, thus all we need is considering odd cycles. Let T be any set and a be an arbitrary integer. We ask if $\mathrm{sp}_{T}\left(C_{2 k+1}\right) \leqslant a-1$. By Theorem 8 we have $\operatorname{sp}_{T}\left(C_{2 k+1}\right) \leqslant 2|T|$. Thus using the standard bisection method we need only check $1+\log _{2}|T|$ inequalities to find $\mathrm{sp}_{T}\left(C_{2 k+1}\right)$.

In the following, we sketch the idea of the algorithm. Let $\operatorname{TAB}\left(v_{i}\right)[1 \ldots a]$ be a table of logical values associated with vertex v_{i} and defined as follows: $\operatorname{TAB}\left(v_{i}\right)[j]=$ TRUE if and only if there exists a T-coloring of path v_{1}, \ldots, v_{i} using colors not greater than a such that v_{1} is colored with 1 and v_{i} is colored with j. $\operatorname{So}, \operatorname{TAB}\left(v_{1}\right)$ has value TRUE only on its first position and $\operatorname{TAB}\left(v_{i+1}\right)[y]=$ TRUE if and only if there exists $z \in\{1, \ldots, a\}$ such that $|z-y| \notin T$ and $\operatorname{TAB}\left(v_{i}\right)[z]=$ TRUE. We see that there exists a T-coloring iff $\operatorname{TAB}\left(v_{2 k+1}\right)[j]=$ TRUE for some $j-1 \notin T$, so constructing the T-coloring is straightforward. It is obvious that the complexity of the above algorithm is $\mathrm{O}\left(k|T|^{2} \log |T|\right)$.

5. Main results

Based on Theorem 11 we can prove the main result of this paper. Before doing this, we introduce the following notion.

Definition 15. For a given set T, by d_{T} we mean the number such that $G_{T}^{d_{T}}$ is bipartite and $G_{T}^{d_{T}+1}$ is not bipartite.

Lemma 16. For any set T the following inequality holds:

$$
d_{T} \leqslant \operatorname{sp}_{T}\left(K_{3}\right)
$$

and, moreover, d_{T} can be determined in polynomial time.
Proof. Let us notice that $\chi\left(G_{T}^{d_{T}+1}\right)=\chi\left(G_{T}^{d_{T}}\right)+1=3$. Thus from Corollary 5 it follows $G_{T}^{d_{T}+1} \rightarrow K_{3}$, hence by Proposition $7 \mathrm{sp}_{T}\left(G_{T}^{d_{T}+1}\right) \leqslant \mathrm{sp}_{T}\left(K_{3}\right)$. By Proposition $4 \operatorname{sp}_{T}\left(G_{T}^{d_{T}+1}\right) \leqslant d_{T}$. Assuming $\operatorname{sp}_{T}\left(G_{T}^{d_{T}+1}\right) \leqslant d_{T}-1$ we get at once $G_{T}^{d_{T}+1} \rightarrow G_{T}^{d_{T}}$ but this contradicts the definition of d_{T}. So, we get $d_{T}=\operatorname{sp}_{T}\left(G_{T}^{d_{T}+1}\right) \leqslant \operatorname{sp}_{T}\left(K_{3}\right)$. By

Fig. 3. A graph $G_{T}^{d_{T}+1}$ (left) and a cycle $C_{2 k+1}$ (right).

Theorem $8 \operatorname{sp}_{T}\left(K_{3}\right) \leqslant 2|T|$, hence using the bisection method we can determine the greatest d_{T} such that $G_{T}^{d_{T}}$ is bipartite. This can be done in time $\mathrm{O}\left(|T|^{2} \log |T|\right)$.

Lemma 17. Given any set T, we have $d_{T}=\operatorname{sp}_{T}\left(K_{3}\right)$ if and only if $K_{3} \tilde{\subset} G_{T}^{d_{T}+1}$.
Proof. By Corollary $6 K_{3} \tilde{\subset} G_{T}^{d_{T}+1}$ is equivalent to $K_{3} \rightarrow G_{T}^{d_{T}+1}$. Assume $K_{3} \tilde{\subset} G_{T}^{d_{T}+1}$, then by Proposition $4 \operatorname{sp}_{T}\left(K_{3}\right) \leqslant d_{T}$, hence from Lemma 16 it follows that $d_{T}=$ $\operatorname{sp}_{T}\left(K_{3}\right)$. The converse implication is straightforward by Proposition 4.

Let us denote by C_{T} the shortest odd-length cycle in graph $G_{T}^{d_{T}+1}$.
Lemma 18. There exists a homomorphism $h: V\left(G_{T}^{d_{T}+1}\right) \rightarrow V\left(C_{T}\right)$.
Proof. We only have to construct a homomorphism on the vertices of the connected component of $G_{T}^{d_{T}+1}$ containing vertex d_{T}, because the other components are bipartite. So let V_{1} and V_{2} be a bipartition of a bipartite graph obtained from this component by removing d_{T} and let $W_{i}^{j}, i=1,2$ and $j \geqslant 1$, be the vertex subset of V_{i} of distance j from vertex d_{T} in the graph $G_{T}^{d_{T}+1}$. Finally, let $W_{1}^{0}=W_{2}^{0}=\left\{d_{T}\right\}$. Let $C_{2 k+1}=$ $\left(\left\{d, a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right\},\left\{\left\{d, a_{1}\right\},\left\{d, b_{1}\right\},\left\{a_{1}, b_{2}\right\},\left\{b_{1}, a_{2}\right\}, \ldots,\left\{a_{k-1}, b_{k}\right\},\left\{b_{k-1}, a_{k}\right\}\right.\right.$, $\left.\left\{a_{k}, b_{k}\right\}\right\}$) be any cycle isomorphic to C_{T}. Let us define $h\left(d_{T}\right)=d, h\left(W_{1}^{j}\right)=\left\{a_{j}\right\}$ and $h\left(W_{2}^{j}\right)=\left\{b_{j}\right\}$ for $j=1, \ldots, k$ and $h\left(W_{i}^{j}\right)=h\left(W_{i}^{k}\right)$ for $j>k, i=1,2$ (see Fig. 3).

The construction of h is correct because any vertex from $W_{i}^{j}, j>0$, can have neighbours only in the sets $W_{3-i}^{j \pm 1}$ and W_{3-i}^{j}, and the latter case is impossible for $j<k$.

Lemma 19. For any graph G the following equivalence holds: $G \rightarrow G_{T}^{d_{T}+1}$ if and only if $G \rightarrow C_{T}$.

Proof. Let $G \rightarrow G_{T}^{d_{T}+1}$, hence from Lemma 18 it follows $G \rightarrow C_{T}$. Conversely, assume that $G \rightarrow C_{T}$. By definition $C_{T} \tilde{\subset} G_{T}^{d_{T}+1}$, thus we get $G \rightarrow G_{T}^{d_{T}+1}$.

Theorem 20. The T-Span Problem can be solved in polynomial time on subcubic graphs for all sets T satisfying $K_{3} \tilde{\subset} G_{T}^{d_{T}+1}$. The Fixed T-Span Problem is $N P$-complete on cubic graphs for all sets T not satisfying $K_{3} \tilde{\subset} G_{T}^{d_{T}+1}$.

Proof. Let T be a fixed set and k be any positive integer. By Theorem 8 the case $G=K_{4}$ is polynomial and can be solved in $\mathrm{O}\left(|T|^{3}\right)$ time (by Proposition 4 it reduces to the problem of finding the smallest d such that $K_{4} \tilde{\subset} G_{T}^{d}$; by Theorem $8 K_{4} \tilde{\subset} G_{T}^{3|T|+1}$ and the fact that 0 is a vertex of a maximal clique of G_{T}^{d}, it reduces to searching all the triples of vertices of $G_{T}^{3|T|+1}$). For any subcubic graph $G \neq K_{4}$ we ask if $\operatorname{sp}_{T}(G) \leqslant k$.

Suppose that $K_{3} \tilde{\subset} G_{T}^{d_{T}+1}$. Brooks' theorem implies $G \rightarrow K_{3}$, thus by Lemma 17 and Proposition $7 \mathrm{sp}_{T}(G) \leqslant d_{T}$. According to Proposition 4 we have $\mathrm{sp}_{T}(G)<d_{T}$ iff G is bipartite, hence to solve T-Span Problem for graph G we only need to check if G is bipartite $(\mathrm{O}(n+m)$ time $)$ and if it is so then $\mathrm{sp}_{T}(G)$ equals the smallest positive integer not belonging to T (which we can find in $\mathrm{O}(|T|)$ time). Otherwise, $\mathrm{sp}_{T}(G)=d_{T}$, computable in time $\mathrm{O}\left(|T|^{2} \log |T|\right)$.

Now assume that K_{3} is not isomorphic to any subgraph of $G_{T}^{d_{T}+1}$ and let $k=d_{T}$. From Proposition 4 we have $\mathrm{sp}_{T}(G) \leqslant k$ iff $G \rightarrow G_{T}^{d_{T}+1}$. By Lemma 19 we get $\mathrm{sp}_{T}(G) \leqslant k$ iff $G \rightarrow C_{T}$ and, moreover, C_{T} is an odd cycle of length greater than 4. By Theorem 12 the problem Ном $\left(C_{T}\right)$ on cubic graphs is NP-complete and so is the Fixed T-Span Problem.

Corollary 21. The T-Span Problem is $N P$-complete in the strong sense on 3-regular graphs.

Proof. By Theorem 20 and Lemma 17 it suffices to verify that for $T=\{0,2,3\}$ we have $d_{T}=4<\operatorname{sp}_{T}\left(K_{3}\right)=5$.

It is worth observing that if for some set T we put $k=d_{T}$, then by Lemma 19 for any graph G the question if $\operatorname{sp}_{T}(G) \leqslant k$ is equivalent to $G \rightarrow C_{T}$. So, if for every $k \geqslant 1$ the problem Ном $\left(C_{2 k+1}\right)$ is NP-complete on a class \mathscr{G}, then the Fixed T-Span Problem on the class \mathscr{G} is NP-complete as well. Thus from Theorem 13 we have the following:

Theorem 22. For every set T and integer $r \geqslant 4$ the Fixed T-Span Problem is $N P$ complete on r-regular graphs.

Corollary 23. The T-Span Problem is $N P$-complete in the strong sense on r-regular graphs for any $r \geqslant 3$.

Table 1 Now we sum up all the above results in the following table. Recall that the numbers appearing in the third column are polynomially computable functions of T.

Table 1
The complexity of the T-SPAN PROBLEM and T-COLORING PROBLEM on graphs with bounded degree

Graph	Problem	Property of T	Complexity	Reference
$\Delta \leqslant 2$	T-COLORING PROBLEM	any	$\mathrm{O}\left(n\|T\|^{2} \log \|T\|\right)$	Theorem 14
$\Delta \leqslant 3$	T-COLORING PROBLEM	$\omega\left(G_{T}^{d_{T}+1}\right) \geqslant 3$	$\mathrm{O}\left(n^{2}+\|T\|^{3}\right)$	Theorem 20
3-regular	FIXED T-SPAN PROBLEM	$\omega\left(G_{T}^{d_{T}+1}\right) \leqslant 2$	NPC	Theorem 20
r-regular,	FIXED T-SpAN PROBLEM	any	NPC	Theorem 22
$r \geqslant 4$				

Acknowledgements

The authors are grateful to the two anonymous referees and prof. Kubale for valuable comments.

References

[1] M.O. Albertson, Generalized Colorings, Academic Press, New York, 1987, pp. 35-49.
[2] M. Bellare, O. Goldreich, M. Sudan, Free bits, PCP and non-approximability towards tight results, Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, Los Alamos, 1995, pp. 422-431.
[3] M.B. Cozzens, F.S. Roberts, T-colorings of graphs and the channel assignment problem, Congr. Numer. 35 (1982) 191-208.
[4] M.B. Cozzens, F.S. Roberts, Greedy algorithms for T-colorings of complete graphs and the meaningfulness of conclusions about them, J. Combin. Inform. System Sci. 16 (1991) 286-299.
[5] A.M.H. Gerards, Homomorphisms of graphs into odd cycles, J. Graph Theory 12 (1988) 73-83.
[6] A. Gräf, Distance graphs and the T-coloring problem, Discrete Math. 196 (1999) 153-166.
[7] J.R. Griggs, D.D.-F. Liu, The channel assignment problem for mutually adjacent sites, J. Combin. Theory Ser. A 68 (1994) 169-183.
[8] W.K. Hale, Frequency assignment: theory and applications, Proceedings IEEE 68 (1980) 1497-1514.
[9] P. Hell, J. Nesetril, On the complexity of H-coloring, J. Combin. Theory Ser. B 48 (1990) 92-110.
[10] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718-720.
[11] R. Janczewski, A note on divisibility and T-span of graphs, Discrete Math. 234 (2001) 171-179.
[12] K. Jansen, A rainbow about T-colorings for complete graphs, Discrete Math. 154 (1996) 129-139.
[13] D.D.-F. Liu, T-colorings of graphs, Discrete Math. 101 (1992) 202-212.
[14] D.D.-F. Liu, T-graphs and the channel assignment problem, Discrete Math. 161 (1996) 197-205.
[15] A. Raychaudhuri, Further results on T-colorings and frequency assignment problem, Discrete Math. 7 (1994) 605-613.
[16] F.S. Roberts, T-coloring of graphs: recent results and open problems, Discrete Math. 93 (1991) 229-245.
[17] B. Tesman, T-colorings, list T-colorings and set T-colorings of graphs, Ph.D. Thesis, Department of Math. Rutgers University, New Brunswick, NJ, 1989.
[18] B. Tesman, Applications of forbidden difference graphs to T-colorings, Congressus Numerautium 74 (1990), 15-24.

[^0]: * Corresponding author.

 E-mail addresses: giaro@eti.pg.gda.pl (K. Giaro), skalar@eti.pg.gda.pl (R. Janczewski), mima@eti.pg.gda.pl (M. Małafiejski).
 ${ }^{1}$ Supported by FNP.

