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Protein kinases are a large family of approximately 530 highly conserved enzymes that transfer a g-phos-
phate group from ATP to a variety of amino acid residues, such as tyrosine, serine, and threonine, that serves
as a ubiquitous mechanism for cellular signal transduction. The clinical success of a number of kinase-
directed drugs and the frequent observation of disease causing mutations in protein kinases suggest that
a large number of kinases may represent therapeutically relevant targets. To date, the majority of clinical
and preclinical kinase inhibitors are ATP competitive, noncovalent inhibitors that achieve selectivity through
recognition of unique features of particular protein kinases. Recently, there has been renewed interest in the
development of irreversible inhibitors that form covalent bonds with cysteine or other nucleophilic residues
in the ATP-binding pocket. Irreversible kinase inhibitors have a number of potential advantages including
prolonged pharmacodynamics, suitability for rational design, high potency, and ability to validate pharmaco-
logical specificity throughmutation of the reactive cysteine residue. Here, we review recent efforts to develop
cysteine-targeted irreversible protein kinase inhibitors and discuss their modes of recognizing the
ATP-binding pocket and their biological activity profiles. In addition, we provided an informatics assessment
of the potential ‘‘kinase cysteinome’’ and discuss strategies for the efficient development of new covalent
inhibitors.
Kinases are one of the largest gene families whose function is to

catalyze the transfer of the g-phosphate from ATP to a specific

target molecule bearing nucleophilic hydroxyl or amino groups

including lipids, carbohydrates, and proteins. Protein phosphor-

ylation can induce a myriad of consequences including modula-

tion of enzyme activity, conformation, stability, localization, and

association with other proteins or small molecules (Cohen,

2002). The approximately 530 kinases present in the human

genome have been named the ‘‘kinome’’ and include 420

serine/threonine, 94 tyrosine, 25 atypical, and 49 ‘‘pseudo

kinases’’ that putatively lack the ability to catalyze the phospho-

transfer reaction(Manning et al., 2002a, 2002b). Kinases have

been found to function in virtually every biological process and

pathway and perhaps not surprisingly deregulation of kinase

function through environmental and genetic alterations is a hall-

mark of many pathological conditions (Hanahan and Weinberg,

2011). Since the mid-1980s when v-SRC was initially discovered

to be a tyrosine kinase and capable of functioning as an ‘‘onco-

gene,’’ basic research and clinical investigation have implicated

the deregulation of approximately 180 kinases in diverse

pathology associated with metabolism, development, immu-

nology, cancer, and infectious disease (Hunter and Sefton,

1980). The development of kinase inhibitors has attracted an

enormous amount of drug discovery attention, primarily in the

oncology and inflammatory diseases areas. Currently, approxi-
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mately 40 kinases are actively being pursued as therapeutic

targets, and 14 kinase inhibitors have received regulatory

approval (Barf and Kaptein, 2012; Kontzias et al., 2012). Interest-

ingly, by far the most significant success has been achieved in

oncology by targeting mutationally activated ‘‘oncogenic’’ driver

kinases including Bcr-Abl, EGFR, c-Kit, PDGFR, ALK, and b-RAF

in tumors that are ‘‘addicted’’ to the constitutive activation of

these kinases (Haber et al., 2011).

Currently, the vast majority of protein kinase inhibitors (PKIs)

are reversible ATP competitive inhibitors, which achieve target

selectivity by recognizing unique features of particular ATP-

binding pockets. This class of inhibitor typically occupies the

adenine-binding region of the ATP-binding pocket and extends

into surrounding regions not occupied by ATP, and inhibitor

binding often induces dramatic conformational rearrangements

to the pocket. Compounds that bind to the ATP-binding site

with the kinase assuming an active conformation, or a conforma-

tion otherwise conducive to ATP binding, are called ‘‘type I’’

inhibitors while those that induce a ‘‘flip’’ of the DFG motif that

marks the start of the activation loop are called ‘‘type II’’ (Liu

and Gray, 2006). Multiple other examples of ‘‘induced fit’’ have

been observed providing clear evidence for the plasticity of the

ATP-binding pocket (Changeux and Edelstein, 2011). However,

given the high sequence conservation of the ATP-binding site

and the very large number of kinases, achieving a high degree
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Figure 1. Electrophiles Used in Irreversible Kinase Inhibitors
Black balls represent other pharmacophore structures.
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of kinase selectivity has proved extremely challenging. While

there are some examples of exquisitely selective kinase ATP-

competitive inhibitors such as lapatinib, which targets Her2,

and SB239063, which targets p38 kinase, most inhibitors have

a spectrum of targets that widens as inhibitor concentration

increases (Rusnak et al., 2001; Underwood et al., 2000). There

have been tremendous advances in our ability tomeasure kinase

inhibitor selectivity across near-comprehensive panels using

biochemical kinase assays, competition binding assays, and

chemical proteomic approaches (Karaman et al., 2008; Liu

et al., 2012b; Okerberg et al., 2005). These efforts have enabled

both prospective and retrospective matching of compounds

with targets and have greatly furthered our understanding of

the mechanism of action of a number of inhibitors.

The majority of new kinase inhibitors are being developed in

the pharmaceutical sector typically targeting kinases that

have been intensively investigated previously in academia. The

requirement for significant prevalidation of potential kinase

targets prior to the development of inhibitors in the pharmaceu-

tical sector has resulted in a shortage of inhibitors targeting the

kinases whose biological function have received less attention.

Therefore, new approaches are needed for the rapid generation

of inhibitors of poorly understood kinases that can be used as

pharmacological probes of mechanism. Covalent kinase inhibi-

tors provide an ideal platform for this endeavor as we discuss

further below.

Covalent kinase inhibitors have typically been developed by

structure-guided incorporation of an electrophilic moiety into

an inhibitor that already possesses submicromolar binding

affinity to the target of interest (Potashman and Duggan, 2009).

The majority of covalent inhibitors have been designed to target

the highly nucleophilic thiol group of cysteine residues (Leproult

et al., 2011). While a large number of kinases have cysteine resi-

dues in and around the ATP-binding site, there are no cysteine

residues that are conserved among kinases that serve a key

catalytic function to our knowledge. Covalent inhibitors will

initially bind noncovalently, and then, if the trajectory of the reac-

tive moiety is appropriate, covalent bond formation will take

place, permanently disabling enzymatic activity. Kinase function

is only restored following expression of new protein, the kinetics

of which can vary dramatically for different kinases. One major

advantage of covalent kinase inhibitors is that high selectivity

for a given target kinase can be obtained using a combination

of both noncovalent and covalent binding. An irreversible inhib-
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itor that has one dominant binding mode will typically only form

a covalent bond with a kinase that possesses a cysteine at

a particular position in the ATP-binding site. Therefore, noncova-

lent recognition only needs to enable discrimination between

kinases that possess an equivalently placed cysteine residue.

Cysteine residues possess an aliphatic thiol (SH), which has

unique reactivity among the naturally occurring amino acids.

For example, the deprotonated thiolate anion is a potent

nucleophile that is exploited as the key catalytic residue in phos-

phatases and cysteine proteases. Cysteines also serve key non-

catalytic functions such as stabilizing protein tertiary structure

through formation of disulphide crosslinks and coordination of

enzyme cofactors such as metals (Jacob et al., 2012). Cysteine

residues can be targeted by numerous posttranslational modifi-

cations including S-nitrosylation, S-prenylation, and oxidation to

sulfenic and sulfonic acids (Chalker et al., 2009). Most covalent

inhibition strategies that have been explored to date target the

highly nucleophilic cysteine thiolate.

A number of electrophilic ‘‘warheads’’ that can react with

nucleophiles such as cysteine, lysine, or tyrosine have been

explored in the design of irreversible kinase inhibitors. The

Michael addition reaction is the most widely utilized reaction to

achieve irreversible binding. Functional groups typically intro-

duced to undergo this addition reaction include acrylamides,

vinyl sulfonates, quinones, alkynyl amides, and propargylic

acid derivatives (Figure 1). A second frequently employed chem-

istry uses nucleophilic displacement or addition to a-halo

ketones, thiocyanates, alkynes, nitriles, epoxides, sulfonyl fluo-

ride, and sometimes thiol itself. Electrophiles, such as cyclic

1,3-diketone, have also been developed that specifically react

with sulfenic acids (Leonard et al., 2011). The ability to target

differentially modified cysteine residues may afford further

means of achieving selectivity.

Historically, there has been considerable reluctance by many

organizations to pursue covalent inhibition strategies due to risks

of haptenization, the most studied examples being haptens

generated by reactive metabolites (Uetrecht, 2008). Unfortu-

nately, preclinical or even clinical tests that are reliable predic-

tors of drug safety do not currently exist. Interestingly, a recent

retrospective analysis suggested that idiosyncratic toxicities

have not been observed for any inhibitors administered at doses

of less than 10mg/kg (Nakayama et al., 2009). This suggests that

well-designed and highly potent covalent inhibitors might have

adequate safety profiles. Irreversible inhibitors are widely used

in clinical practice including some of the most important medi-

cines such as the anti-inflammatory drug aspirin and the broad

class of antibacterial beta-lactam antibiotics such as penicillin.

Other widely usedmetabolic activationmechanism-based cova-

lent drugs include the proton pump inhibitor omeprazole and

antiplatelet drug clopidogrel (Potashman and Duggan, 2009).

Although it may be counterintuitive to create selectivity via

a covalent mechanism, the inhibitor electrophilicity can be fine-

tuned such that the reaction only occurs in the target binding

site. Additionally, covalency can also provide extended pharma-

codynamic duration without the need to maintain high levels

of drug to achieve continuous target engagement (Smith et al.,

2009).

Recently, there has been a resurgence of interest in irrevers-

ible inhibitors, and this topic has been excellently reviewed in
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several publications from a historical perspective (Singh et al.,

2011), from a risk-benefit perspective (Barf and Kaptein, 2012;

Johnson et al., 2010), and in terms of the current irreversible

inhibitors that are in preclinical or clinical development (Garuti

et al., 2011; Singh et al., 2010). Leproult et al. (2011) has also

provided a bioinformatic mapping of the potential cysteine con-

taining kinases that could potentially be covalently targeted

based upon available X-ray crystal structures. In this review,

we summarize recent efforts to develop potent and selective irre-

versible PKIs and describe their modes of recognition of the

ATP-binding site and a description of their biological profiles

from the perspective of a medicinal chemist. We also provide

an analysis of the types of approaches that can be employed

to efficiently generate these inhibitors and present a bio-

informatics analysis of the potentially targetable cysteines in

and around the ATP-binding pocket based on a combination of

Pfizer’s in-house and publicly available crystal structures. This

information is complementary to the previously published arti-

cles, and we encourage the interested reader to see these

references for additional information.

Overview of the Currently Developed Irreversible PKIs
Although most recently reported covalent inhibitors are

synthetic, a number of natural products have evolved that cova-

lently modify cysteine residues in kinase ATP-binding sites (Liu

et al., 2012a). One of the most well-characterized classes of

covalent kinase inhibitors are the resorcylic acid lactones

(RALs) with hypothemycin being the most well-known member

(Sonoda et al., 1999). Hypothemycin was originally isolated

based on its antifungal activity, and subsequent investigations

demonstrated it to be a covalent protein kinase inhibitor. Cova-

lent bond formation is achieved through reaction of its base

cis-enone function with cysteine residues (Figure 2). Santi and

co-workers used sequence alignment to identify a conserved

cysteine residue immediately preceding the conserved ‘‘DFG

motif’’ that marks the start of the kinase activation loop that is

present in a number of kinases inhibited by hypothemycin

including MEK1/2, ERK1/2, PDGFRs, FLT3, and VEGFRs

(Schirmer et al., 2006). A cocrystallized structure of ERK2 with

hypothemycin (PDB: 2E14) demonstrated a covalent bond

between Cys166 of ERK2 and the cis-enone moiety of the inhib-

itor (Figure 3A) (Ohori et al., 2007). The phenolic hydroxyl group

of hypothemycin forms two hydrogen bonds with Met108 in the

kinase hinge segment. Two additional hydrogen bonds are

formed between Lys114 in the solvent exposed area and theme-

thoxy group and between Tyr36 located in the P loop with the

hydroxyl group in the marocyclic ring. Several hypothemycin

analogs, including FR148083, LL-Z1640-2, and LL-782277, are

believed to share the same inhibitory mechanism with TAK1

and MEK kinases (Winssinger and Barluenga, 2007). Starting

from hypothemycin, a focused medicinal chemistry effort to

improve its drug-like properties resulted in a variety of analogs

including the structurally similar drug candidate E6201 (Bar-

luenga et al., 2010; Goto et al., 2009; Jogireddy et al., 2009).

E6201 inhibits MEK1 biochemically with a low nanomolar IC50

and exhibits strong anti-inflammatory and antiproliferation

activities. E6201 is currently in phase I clinical trials for advanced

solid tumors and in a phase II trial for psoriasis (Table 1) (Goto

et al., 2009; Muramoto et al., 2010).
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The development of synthetic irreversible PKIs was initiated at

Parke-Davis and Wyeth (now Pfizer) in the early 1990s with the

goal of targeting EGFR with covalent inhibitors for the treatment

of cancers (Singh et al., 1997; Wissner and Mansour, 2008).

PD168393 was one of the first reported synthetic irreversible

PKIs with a reported IC50 of 2 nM against EGFR and an IC50 of

114 nM against Her2 (Fry et al., 1998). PD168393 is a 4-amino-

quinazoline with an acrylamide electrophile installed at the

6-position designed to target Cys797 located a few residues

C-terminal to the kinase hinge binding region of EGFR.

PD168393 inhibits the proliferation of EGFR and Her2-depen-

dent cell lines A431 and SKBR3 with 95 and 15 nM EC50s,

respectively, while not inhibiting the proliferation of the non-

EGFR and Her-dependent cell line SW620 at concentrations of

up to 4 mM (Tsou et al., 2005). Further development of this scaf-

fold resulted in a number of compounds that advanced to clinical

trials including CI-1033 (clinical development terminated) and

PF-00299804 (phase III trial) (Engelman et al., 2007; Smaill

et al., 2000). Replacement of one of the quinazoline nitrogens

with a nitrile resulted in another set of compounds that advanced

to clinical trials: EKB569 (phase II trial completed), HKI-272

(phase III trial), and BIBW-2992 (phase III trial) (Li et al., 2008;

Yoshimura et al., 2006). All of these compounds target Cys797,

a residue conserved among EGFR, Her2, and Her4, which can

be visualized in the HKI-272-EGFR costructure (PDB: 2JIV).

The costructure suggests that a key hydrogen bond exists

between the quinoline nitrogen and Met793 in the kinase hinge

segment and between Asp855 in the highly conservedDFGmotif

and the pyridine side chain of the inhibitor. A covalent bond is

evident between the N,N-dimethyl-butenoic amide and Cys797

(Figure 2B). HKI-272 exhibits IC50s of 59 and 92 nM for inhibition

of Her2 and EGFR kinase activity, respectively. HKI-272 inhibits

the proliferation of A431 and SKBR3 cells with EC50s of 86 and

118 nM, respectively, while demonstrating selectivity over the

non-EGFR-addicted cell line SW620 (730 nM). Kinome-wide

selectivity profiling using KinomeScan methodology demon-

strated HKI-272 to be a very selective inhibitor: in addition to

EGFR and Her2, it only exhibited potent binding to MAP4K3/5

and MST3/4 (Kd < 10 nM) (Davis et al., 2011). These additional

targets do not appear to have been validated in cellular assays

to date.

Kinase sequence alignment indicates that there are eight non-

EGFR family kinases that also possess a cysteine at the same

position as Cys797 of EGFR. These eight kinases include all

five members of the Tec family of kinases (BMX, BTK, ITK,

TEC, and TXK), one Src family member (BLK), MKKa7, and

JAK3. Not surprisingly, some compounds crossreact with

kinases in this group. PD168393, for example, exhibits a

1.1 mM IC50 against BMX and inhibits BMX-dependent cell

growth in the Ba/F3 cell system with an EC50 of 0.3 mM (Hur

et al., 2008). As discussed further below, more recent efforts

have been expended to develop covalent inhibitors of the Tec

family kinase BTK (Figure 3C).

Despite lung cancer patients that express mutant EGFR (exon

19 deletion or L858R) displaying dramatic responses to first-

generation ATP-competitive inhibitors initially, all patients

relapse after 12–18months (Rosell et al., 2009). In approximately

50%of cases, resistance is the result of mutation of the so-called

gatekeeper residue from a threonine to a methionine (T790M).
ll rights reserved



Figure 2. Representative Chemical Structures of Reported Irreversible Protein Kinase Inhibitors
Compounds were listed as reported names; those that do not have generic names are named in the order they are mentioned in the text.
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This mutation is believed to induce resistance by decreasing the

Km for ATP thereby increasing the concentration of inhibitor

needed to efficiently inhibit signaling (Yun et al., 2007). While

the first-generation covalent inhibitors including CI-1033 and

HKI-272 can inhibit activated alleles of EGFR harboring

T790M, they do so at a concentration 10–100 times higher

than required to inhibit the nongatekeeper mutants. To over-

come this limitation, a second-generation of covalent inhibitor

from the aminopyrimidine class, exemplified by WZ-4002, was

discovered that potently inhibits activated alleles of EGFR

harboring T790M (Zhou et al., 2009). This inhibitor also targets

Cys797 but approaches the thiol group from a different trajectory

relative to the first-generation quinazoline acrylamide inhibitors.
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Interestingly, an interaction between the chlorine on the pyrimi-

dine of the inhibitors with the methionine gatekeeper, an inter-

action that has been termed a ‘‘halogen bond,’’ results in the

inhibitors possessing selectivity for T790M versus wild-type

EGFR (Figure 3D) (Hernandes et al., 2010). WZ4002 overall

possesses quite good kinase selectivity but does show activity

on some Tec family kinases as expected based on the cysteine

position.

The same 4-aminoquinazoline scaffold present in the first

generation EGFR inhibitors was used by scientists at Wyeth to

develop a covalent inhibitor of the vascular endothelial growth

factor receptor (VEGFR) (compound 1) using a structure-based

design approach (Figure 2) (Wissner et al., 2005). Compound 1
y 20, February 21, 2013 ª2013 Elsevier Ltd All rights reserved 149



Figure 3. Representative Binding Modes of Irreversible Protein Kinase Inhibitors
(A) ERK (PDB: 2E14), (B) EGFR (PDB: 2JIV), (C) BMX (modeling-based PDB: 3SXS), (D) EGFR(PDB: 3IKA), (E) VEGFR (modeling-based PDB: 1VR2), (F) RSK2
(modeling-based PDB: 2QR7), (G) BTK (modeling-based PDB: 3GEN), (H) KIT (modeling-based PDB:1T46), (I) JNK (PDB: 3V6S), (J) FGFR (PDB: 2FGI), (K) NEK2
(modeling-based PDB: 2JAV), (L) GSK3-b (modeling-based PDB: 1I09).
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uses an electrophilic 1,4-benzoquinone to target Cys1045

located immediately before the ‘‘DFG’’ motif in VEGFR. Molec-

ular modeling suggests the quinazoline N1 makes the expected

hydrogen bond to the hinge region with additional hydrogen

bonds formed between the inhibitor and Asp1046 and Lys868

(Figure 3E). This irreversible inhibitor exhibited a 50 nM IC50 for

VEGFR. Further elaboration of this compound allowed the

construction of a dual covalent inhibitor of VEGFR and EGFR

(Compound 2) (Wissner et al., 2007). An acrylamide was installed

to target Cys797 in EGFR and the quinone was maintained to

target Cys1045 in VEGFR (Figure 2). The resulting compound

inhibits the kinase activity of EGFR and VEGFR with IC50s of 18

and 102 nM, respectively.

Another successful example of structure-guided covalent

inhibitor design is the development of FMK, a fluoromethyl

ketone derivatized inhibitor of RSK1, 2, 4 (Figure 2) (Cohen

et al., 2005). FMK achieves selectivity for the RSKs by combining

two selectivity filters: the presence of a small gatekeeper amino

acid (residue T493) in Rsk and covalent bond formation with

Cys463 located in the P loop, which resides on the ‘‘roof’’ of

the ATP-binding site. There are only 11 kinases (RSK1,2,3,

MSK1,2, PLK1,2,3,4, NEK2, andMEKK1) that possess a cysteine
150 Chemistry & Biology 20, February 21, 2013 ª2013 Elsevier Ltd A
at the same position as Cys463 in Rsk, and all of these kinases

have a larger gatekeeper amino acid. FMK inhibits Rsk kinase

activity with an IC50 of 15 nM. Molecular modeling indicates

that the pyrollopyrimidine core forms two hydrogen bonds in

the hinge binding area with Met496 and Glu494 (Figure 3F). In

addition, a hydrogen bond is predicted to exist between the

exocyclic amino group and gatekeeper residue Thr494. The

hydroxyl group in the butenol side chain forms a hydrogen

bond with Asn544 that helps to fix the binding conformation. A

biotin-labeled FMK probe was capable of efficiently purifying

only RSK1 and RSK2 from HEK293 cell at a concentration of

1 mM. The discovery and characterization of FMK provides

a compelling example of the strength of structure-guided design

of highly selective covalent kinase inhibitors.

Another group of kinases that have been successfully targeted

by covalent inhibitors are the TEC family kinase and include TEC,

ITK, TXK, BMX, and BTK. These kinases possess a cysteine in an

identical location to Cys797 of EGFR. Researchers at Pharmacy-

clics developed a pyrazolopyrimidine compound, PCI-32765,

that is a highly potent inhibitor of BTK (Honigberg et al., 2010).

Molecular modeling predicts that the aminopyrazolopyrimidine

forms three hydrogen bonds in the hinge area with Met477,
ll rights reserved



Table 1. Summary of Clinically Developed Irreversible Kinase Inhibitors

Drug Name Primary Target Activity IC50(nM) Warhead Active Site Clinical Stage Developer

HKI-272 EGFR/Her2 59/92 Acrylamide C797 Phase III Pfizer, licensed to Puma

BIBW-2992 EGFR/Her2 14 Acrylamide C797 Phase III Boehringer Ingelheim

PF-00299804 Pan-EGFR 15 Acrylamide C797 Phase III Pfizer

CO1686 EGFR/T790M 0.5 Acrylamide C797 Phase II Avila/Clovis

E6201 MEK1 5.2 Enone C297 Phase II EiSai

PCI-32765 BTK 0.46 Acrylamide C481 Phase III Pharmacyclics

AVL-292 BTK 0.5 Acrylamide C481 Phase I Avila/Celgene
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Glu475, and Thr474 (Figure 3G). The bisphenol ether is

directed to the inner hydrophobic pocket, analogous to the

binding mode of FMK. A water-bridged trihydrogen bond

between Cys481, Asn484, and PCI-32761 also helps to fix the

binding conformation. The acrylamide electrophile forms a

covalent bond with Cys481. PCI-32765 inhibits BTK activity

with an IC50 of 0.5 nM and is also inhibitory toward several other

protein kinases, including BLK, BMX, EGFR, Her2, ITK, JAK3,

and TEC, that contain an analogous cysteine, but PCI-32765

does not show activity against most other protein kinases.

PCI-32765 is currently in phase II clinical trials for various

B-cell-related lymphomas such as DLBCL, MCL, and INHL. A

compound (AVL-292, structure not disclosed) developed by

Avila therapeutics (now Celgene) is believed to share the cova-

lent mechanism as PCI-32765 and is currently in phase I clinical

trials for NHL and CLL.

Researchers from Pfizer recently reported the development of

the first covalent inhibitors of ITK derived from a privileged ATP-

site-directed pyrazolopyrimidine (compound 3) (Zapf et al.,

2012). Starting from an acrylamide-containing screening ‘‘hit,’’

structure-based design was used to guide the development of

a potent inhibitor that was active at nanomolar concentration in

whole blood and that effectively silenced T cell receptor

signaling for 24 hr.

A dual c-KIT/PDGFR inhibitor (compound 4) (Figure 2) was

rationally designed based on the systematic analysis of available

X-ray structures of protein c-KIT, PDGFR, and Abl kinases (Lep-

roult et al., 2011). Starting from the well-known type II kinase

inhibitor imatinib, the methyl piperazine ring in the tail was re-

placed with a chloroacetamide, which resulted in a compound

possessing an IC50 of 788 nM for c-KIT and an IC50 of 1 mM for

PDGFRa, but that lost potency against Abl (IC50 > 20 mM).

Both c-KIT and PDGFRa possess a cysteine residue in the

imatinib tail binding area. Molecular docking to PDGFR demon-

strated that this new inhibitor adopted the same type II binding

mode as observed for imatinib bound to ABL (Cowan-Jacob

et al., 2007), One hydrogen bondwas formed in the hinge binding

area between the pyridine and Cys673 (Figure 3H). Several addi-

tional amino acids including Thr670, Lys623, Glu640, Asp810,

and Ile789 also formed hydrogen bonds with the inhibitor. The

dockingmodel places Cys788within 3 Å distance of the chloroa-

cetamide; mass spectrometry has verified that Cys788 can

indeed form a covalent bond with the newly designed inhibitor.

Kinome-wide selectivity profiling showed that this compound

only potently inhibited seven others including JNK1-3, DDR1,

BRAF(V600E), and CSF1R. This irreversible PKI adopts a type

II binding conformation.
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The imatinib scaffold has also been elaborated to create the

selective pan-JNK inhibitor, JNK-IN-8 (Zhang et al., 2012).

JNK-IN-8 was discovered to inhibit JNK kinase by broad-based

kinase selectivity profiling of a library of acrylamide kinase inhib-

itors based on the structure of imatinib using the KinomeScan

approach. This discovery was perhaps not entirely unexpected

as imatinib itself possesses a Kd of 5.0 and 3.1 mM for JNK1

and JNK3, respectively. JNK-IN-8 possesses distinct regio-

chemistry of the 1,4-dianiline and 1,3-aminobenzoic acid sub-

structures relative to imatinib and uses anN,N-dimethyl butenoic

acetamide warhead to covalently target Cys154. JNK-IN-8

potently inhibits JNK1, 2, and 3 enzymatic activity with IC50s of

4.7, 18.7, and 1.0 nM, respectively, and inhibits a c-Jun, a direct

phosphorylation substrate of JNK, with an EC50 of 486 nM in

HeLa cells. Broad-based profiling using the chemical proteo-

mics approach termed ‘‘Kinativ’’ (Patricelli et al., 2007) demon-

strated exclusive inhibition of JNK among the approximately

150 kinases detected using the approach. In contrast to imatinib

and the covalent c-KIT/PDGFR inhibitor described above, JNK-

IN-8 adopts an L-shaped type I binding conformation to access

Cys 154 located toward the lip of the ATP-binding site (Figure 3I,

PDB: 3V6S). This finding demonstrates how a kinase inhibitor

class can adopt two completely distinct binding conformations

when binding to different kinases.

A pan-FGFR1, 2, 3, and 4 covalent inhibitor FIIN-1 was devel-

oped starting from the well-established noncovalent inhibitor

PD173074 using a structure-guided approach (Bansal et al.,

2003; Zhou et al., 2010). FIIN-1 is a potent FGFR family covalent

inhibitor that inhibits kinase activity with IC50s of 9.2, 6.2, 11.9,

and 189 nM for FGFR1, 2, 3, and 4 respectively. Kinome-wide

selectivity profiling demonstrated that FIIN-1 is quite selective

and may also bind to FLT1/4 and VEGFR but no other protein

kinases. Molecular modeling suggests that a pair of hydrogen

bonds is present between the amino-pyrimidine core structure

and Ala564 located in the kinase hinge region (Figure 3J). Several

other hydrogen bonds are predicted including a water-mediated

trihydrogen bond involving Lys514, Asp641, and the carbonyl in

the pyrimidine core structure and a hydrogen bond between

Asp641 and the methoxy oxygen in the 2,6-dichloro-3,5-dime-

thoxy aniline side chain. The covalent binding takes place

between Cys486 in the P loop and the acrylamide warhead.

A structure-guided approach was also used to develop an irre-

versible NEK2 PKI named JH295 (Henise and Taunton, 2011).

Starting from a relatively nonselective oxindole-derived inhibitor

SU11652, a propargyl acid warhead was installed to target

Cys22 located in the P loop. JH295 is a potent NEK2 inhibitor

with a biochemical IC50 of 770 nM. Molecular modeling suggests
y 20, February 21, 2013 ª2013 Elsevier Ltd All rights reserved 151



Table 2. Kinases Targeted by Covalent Inhibitors Organized by Kinase Family

AGC CAMK CKI CMGC STE TK TKL Other

RSK None reported None reported GSK-3b, JNK, ERK2 MEK1 EGFR, BTK, VEGFR, FGFR, BMX, KIT, ITK TAK1 IKKb, NEK2
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that three hydrogen bonds are formed between the kinase

‘‘hinge’’ residues Glu87 and Cys89 and the oxindole core

(Figure 3K). A water-bridged hydrogen bond involving Lys37

and propargyl amide carbonyl helps to fix the binding conforma-

tion, putting the electrophilic acetylene in close proximity to

Cys22 in the glycine-rich loop (P loop).

A thienylhalomethylketone-based selective irreversible

GSK3-b inhibitor was discovered using high-throughput screen-

ing (Perez et al., 2009). After optimization of the lead compound,

a new GSK3b inhibitor (compound 5) was developed with an

IC50 of 0.5 mM, which exhibited selectivity over other protein

kinases up to a concentration of 10 mM was developed. Molec-

ular modeling suggests that Cys199 in the DFG motif may react

with the chloroacetate to form a covalent bond (Figure 3L).

Several natural products such as celastrol (Lee et al., 2006),

17-acetoxyjolkinolide B (Yan et al., 2008), PGA1 (Rossi et al.,

2000), Parthenolide (Kwok et al., 2001), and Manumycin A (Ber-

nier et al., 2006) have been reported to irreversibly bind IKKb

kinases. Irreversible binding has been indicated using mutagen-

esis or biochemical experiments (Liu et al., 2012a); however,

crystallographic information is not yet available.

Recently, the Taunton laboratory has explored making

‘‘reversible’’ covalent inhibitors of RSK2 (Serafimova et al.,

2012). Here, a 2-cyanoacrylate, which allows reversible addition

of a cysteine thiol to an activated a, b-unsaturated ester, was

introduced onto FMK (Cohen et al., 2005), a scaffold that binds

to the ATP-binding site of RSK2. Competition assays and crys-

tallographic analyses were consistent with covalent bond

formation. Further investigation is required to determine whether

‘‘reversible’’ covalence will help mitigate pharmacology that

derives from covalent modification of unintended targets.

Chemoinformatics Analysis of the Cysteinome
Many protein kinases possess cysteine residues in and around

the ATP-binding site. However, to date only six distinct cysteine

sites have been unequivocally demonstrated to be targeted by

a covalent inhibitor: the cysteine at the lip of the ATP-binding

site targeted by the covalent EGFR, BMX, and BTK inhibitors;

the cysteine in the P loop region targeted by FGFR; the cysteine

in the roof region of the pocket targeting by NEK2 and RSK inhib-

itors; the cysteine immediately preceding the DFGmotif targeted

by VEGFR, ERK2, and GSK3b inhibitors; the cysteine in the

solvent area targeted by JNKs inhibitors; and the cysteine

located in the catalytic loop targeted by inhibitors of c-KIT and

PDGFR. In total, potent and selective inhibitors exist for fewer

than 20 kinases with no examples for two classes of kinases

(Table 2; Figure 4B).

This analysis suggests that currently available irreversible

inhibitors only target a very small fraction of the kinases that

possess potentially reactive cysteine residues. Previously, we

reported that a comprehensive analysis of the literature revealed

accessible cysteines in the ATP-binding pocket of more than 200

protein kinases sites (Zhang et al., 2009). Recently, Leproult et al.

(2011) mined available X-ray crystal structures in the public
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domain and informatics analyses on different conformations of

the protein kinases revealed there are 27 kinases retaining an

active conformation and bearing 211 cysteine residues that

can be accessible in theory; ten protein kinases retaining the

DFG-out conformation and bearing 127 cysteines; and six

protein kinases retaining the c-helix-out conformation and

bearing 66 cysteines. These studies have provided a good start-

ing point for developing cysteine targeted irreversible kinase

inhibitors. Nonetheless, due to the database limitations, a full

spectrum of the targetable cysteine has yet to be fully mapped.

In order to gain a complete picture of the accessible cysteines

in the kinome and generate a ‘‘kinase cysteinome’’ to facilitate

the systematic exploration for irreversible inhibitors, we per-

formed an informatics study based on the kinome’s primary

sequence alignment with PFAAT, a Java-based multiple

sequence alignment editor and viewer designed for protein

family analysis (Caffrey et al., 2007). Based on the Pfizer in-house

X-ray structure database and RCSB public database, 442

protein kinases were superimposed using CLUSTAW (Thomp-

son et al., 1994) and their ATP-binding sites were evaluated

(atypical and inactive kinases were excluded). Using this

program, 18 spatial cysteine positions were identified (Figure 4)

in 200 unique kinases corresponding to 252 positions in total

(Table 3). This estimation is only approximate as some cysteine

thiols may be inaccessible due to their trajectory or posttransla-

tional modification (nitrosylation, disulphide etc). In addition, it

may also be there are kinases that possess cysteines that are

distant from the ATP site in sequence space but that are in fact

proximal to the ATP site due to the overall conformation of the

kinase.

The 200 kinases identified bearing approachable cysteines are

well distributed among the kinase subfamilies (Table 3; Figure 5).

There are 27 kinases in the TK family, 8 kinases in the TKL family,

34 kinases in the STE family, 16 kinases in the CMGC family, 23

kinases in the CAMK family, 33 kinases in the AGC family, and 48

kinases in the CK1 and other families that possess an ATP site

cysteine. While this primary sequence analysis is complemen-

tary to Leproult’s X-ray-based analysis, experimental validation

will be required to unequivocally establish which kinases can

be targeted by an irreversible PKI.

Strategies to Develop Irreversible Kinase Inhibitors
There are two major approaches for developing novel covalent

inhibitors. The first is to use existing noncovalent inhibitors in

conjunction with structure-guided design. The second is to

create libraries of potentially covalent kinase inhibitors in

conjunction with broad-based kinase profiling to identify new

covalent inhibitors. While we discuss both methods separately,

in practice, both are complementary and are typically used in

an interwoven fashion.

Structure-Guided Design of Covalent Inhibitors

The early reported ‘‘human-inspired’’ covalent inhibitors were

constructed by modifying a known noncovalent inhibitor with

a reactive electrophile at a position predicted to be in proximity
ll rights reserved



Figure 4. Representative Positions of
Accessible Cysteines in the Active Site
1YVJ, kinase domain used for depiction (cyan,
staurosporine). The various colored circles indi-
cate relative positions of Cys residues depicted on
top of 1YVJ. Red, hinge region; yellow, gatekeeper
and neighboring residues; blue, glycine loop
closer to the ATP site; mauve, flexible region of
glycine loop; green, activation loop (DFG area);
orange, roof region.
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to a reactive cysteine residue. Examples include the first-

generation covalent EGFR inhibitor derived from PD168393,

the FGFR inhibitor FIIN-1, the VEGFR inhibitor (compound 1),

the NEK2 inhibitor JH295, the RSK inhibitor FMK, and the KIT/

PDGFR inhibitor (compound 4). With the massive expansion in

the number of kinase-ligand complex structures available in

the public domain, there is a wealth of starting points for this

approach. The major challenge with this approach is finding

templates that bind noncovalently in the micromolar range and

that exhibit selectivity among all the kinases with an equivalently

positioned cysteine. Successful covalent bond formation can

then allow selectivity to be achieved relative to all kinases that

do not possess an appropriately positioned cysteine residue. A

further challenge is to obtain a scaffold that presents a suitable

‘‘platform’’ for installation of an electrophilic moiety at the correct

trajectory relative to the nucleophilic cysteine. The less flexibility

there is between the ATP site recognition element and the elec-

trophile, the higher the chances that only a single cysteine

residue will be targeted. In this scenario, the ideal compound is

one whose initial binding mode to the kinase positions the elec-

trophile in a geometry that will allow for rapid bond formation.

The development of FIIN-1 provides a good example of this

structure-guided design approach (Zhou et al., 2010). After a

survey of the known ATP-competitive FGFR inhibitors including

Chir258, Su5402, SU6668, NP603, and PD173074, PD173074

was chosen based upon its potency, selectivity, and availability

of cocrystal structure with FGFR. Inspection of the structure

reveals that Cys486 in the P loop (this residue needed to be

modeled in because it was mutated in the X-ray structure)

of FGFR1 is an approachable nucleophile that is located approx-

imately 10 Å away from the pyridine nitrogen of PD173074.

A modeling study suggested that attaching a phenyl group

bearing a meta-acrylamide to the 1-nitrogen of the pyrimido
Chemistry & Biology 20, February 21, 2013
[4,5]pyridimine might be a reasonable

approach. Compound 6 exhibited good

selectivity when screened against 402

kinases using the KinomeScan approach,

but its cellular activity against FGFR-

dependent cell lines was moderate at

1.5 mM. The loss of 300-fold in cellular

activity relative to PD173074 suggested

that no covalent bond formation was

taking place. Further elaboration involved

elongation of the phenyl warhead by one

more carbon to afford compound 7,

which improved the EC50 to 400 nM.

Further elaboration of the structure by

incorporation of the previously used 2,6-
dichloro-3,5-dimethoxyphenyl group to the core scaffold af-

forded FIIN-1, which exhibited an EC50 of 14 nM for inhibiting

FGFR-dependent cell growth. Although FIIN-1 is a covalent

inhibitor, its cellular EC50 is very similar to a corresponding non-

covalent analog (FRIN), which possesses a propyl amide in place

of the acrylamide (Figure 6). This suggests that the scaffold has

sufficiently potent noncovalent binding to achieve the degree of

target engagement necessary to initiate apoptosis in the tel-

FGFR2 transformed Ba/F3 cells used in the study. The major

disadvantage of this structure-guided approach is that it often

fails, which unfortunately goes unreported in the literature.

Selectivity Profiling Data Orientated Design

of Irreversible Inhibitors

A large number of kinase inhibitors are developed based upon

serendipitous observations of cross reactivity observed for es-

tablished kinase inhibitors. Examination of large-scale kinase

profiling data sets has revealed that each compound class has

a particular constellation of kinases that it can efficiently target.

These constellations can range in size from very small such as

lapatinib-related compounds, which primarily only target the

EGFR family, to exceedingly large such as staurosporine-related

compounds. By combining information regarding the constella-

tion of targets that can be addressed noncovalently with the

subset of these targets that may possess an appropriately posi-

tioned cysteine, one can generate new potential covalent inhib-

itors. The development of JNK-IN-8 provides an instructive

example (Zhang et al., 2012). Examination of broad-based

profiling of imatinib reveals that the compounds can bind to

Abl, c-Kit, PDGFR, DDR1, and DDR2 with relatively high affinity

and to JNK1,2,3 and Raf with moderate affinity. Both c-Kit and

PDGFR possess a cysteine that looks like it could be accessed

by replacing the piperazine ring of imatinib, which was realized

by the development of compound 4 (Leproult et al., 2011).
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Table 3. Detailed Classification of Cysteinome

Position Subposition Kinases

Gatekeeper

region

GK MOK

GK+1 SgK494

GK-1 MAP2K4 MKK3 MAP2K6 RNaseL KHS1 KHS2 GCK HPK1 MEK2 MEK1 MAP2K5

DFG region DFG+1 MAP3K8 MOS MAP3K4 PINK1

DFG+2 PKCz PKCi AKT1 AKT2 AKT3 PKCg SGK1F SGK2 ROCK1 ROCK2 WART1 NDR1 NDR2 WART2

PAK4 PAK5 PAK6 PAK2 PAK3 PAK1 PRK1 PRK2 PKN2 PKCt PKCl PKCe PKCd PKCb PKCa

DMPK MRCK1 MRCKb DMPK2 P70S6K SGK3 MOK SgK496 P70S6Kb IRE2 IRE1 MELK PINK1

DFG-1 PBK TGFbR2 CDKL3 CDKL2 PRP4 MNK2 MNK1 ERK7 CDKL5 TAK1 ERK2 ERK1 NLK NIK

MAPKAPK5 PKD2 PKD3 PKD1GSK3bGSK3a FusedMAP2K4MKK3MAP2K6MEK2MEK1MAP2K5

ZAK RSK1_Domain2 RSK3_Domain2 RSK4_Domain2 RSK2_Domain2 AAK1 BIKE FLT1 FLT4 KDR

PDGFRb PDGFRa CDKL1 CDKL4 GAK SPEG Obscn MAP2K7 Kit FLT3 RSK1 RSK2 RSK3 RSK4

Glycine-rich

loop region

Glycine loop WNK4 WNK1 WNK2 WNK3 HER3

Glycine loop 1 ZAK

Glycine loop 2 SgK496 MEKK1 PLK2 PLK3 PLK1 RSK1_Domain2 RSK3_Domain2 RSK4_Domain2

RSK2_Domain2 NEK2 MSK2_Domain2 MSK1_Domain2

Glycine loop 3 SgK493

Glycine loop 5 FGFR1 FGFR2 FGFR3 FGFR4

Hinge binding

region

Hinge1 FGFR4 TTK MAPKAPK2 MAPKAPK3 P70S6Kb

Hinge2 IKKa IKKb LKB1 NEK4 Obscn_Domain2 ROR2 Wee1 Wee1B AAK1 BIKE SLK Lmr3 Lmr1 Lmr2 NEK9

BRAF RAF1 ARAF HRI FLT1 FLT4 KDR PDGFRb Kit PDGFRa CSFR FLT3 IRE2 IRE1 CLIK1L CLIK1

MYT1 CDKL1 CDKL4 PKR GCN2 PEK GAK SPEG_Domain2 LZK DLK ZC4 ZC1 ZC2 ZC3 MYO3A

MYO3B CHK1 TAO2 TAO1 TAO3 SPEG NEK11 MAP3K4 STK33 Obscn CDK5 CDK9 CDK10 TLK1

TLK2 PLK4 TBK1 IKKi ULK3 MELK PKG1 PKG2 FAK NEK5 NEK3 NEK1 ULK1 ULK2 MST1 MST2

LOK HUNK RNaseL KHS1 KHS2 GCK HPK1 PLK2 PLK3 PLK1 NEK2

Hinge3 Ron FGR SgK494 Kit CSFR FLT3

Hinge4 SgK110 BubR1 LKB1 TBK1

Hinge5 PINK1 EphB3

Hinge6 MAP2K7 TEC TXK ITK BTK BMX BLK HER2 EGFR HER4 JAK3

Hinge7 JNK1 JNK2 JNK3

Roof region Roof sheet HER3

Boldface indicates that kinases have been irreversibly targeted by small molecule inhibitors.
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However broad-based profiling of these types of inhibitors

revealed that they are in fact also inhibitors of JNK1,2,3. Exam-

ination of the JNK X-ray structures revealed that Cys116 in

JNK1/2 and Cys154 in JNK3 could be targeted if imatinib used

a binding conformation crystallographically observed for Syk

(PDB: 1XBB). Further structure-activity-guided optimization of

the linker arm between the pyridylpyrimidine ATP-pharmaco-

phore of the compound and the acrylamide resulted in the iden-

tification of JNK-IN-8 (Figure 7).

Our endeavors to identify an irreversible JNK inhibitor started

from the rational design of a type II irreversible inhibitor of KIT

and PDGFR. Kinome-wide selectivity profiling serendipitously

demonstrated that JNKs are one of the most potently inhibited

enzymes by this class of molecule. A key consideration with

this broad-based screening approach is the choice of kinase

profiling technology. Currently, there are several different tech-

nologies available: competitive binding based KinomeScan

developed by DiscoverX (previously Ambit Biosciences) that

can provide more than 450 kinases and related mutants assay

(Fabian et al., 2005; Karaman et al., 2008); activity-based FRET

facilitated SelectScreen technology developed by LifeScience

(previously Invitrogen) that can test more than 220 different
154 Chemistry & Biology 20, February 21, 2013 ª2013 Elsevier Ltd A
kinases and mutants (Lebakken et al., 2009); proteomic-

technology-based Kinativ developed by ActivX that can provide

data on up to up to 400 different kinases in a single cell type

depending on the kinase expression (Patricelli et al., 2007); and

the traditional radiometric activity-based assays provided from

multiple commercial and noncommercial sources (Table 4).

The Kinativ approach is a chemical proteomics-based tech-

nology that uses a biotin-tagged acyl phosphate ATP/ADP probe

that can acylate the conserved catalytic lysines and other lysines

located in proximity of the ATP-binding cleft (Patricelli et al.,

2011) By performing competition assays in cells or lysates with

the inhibitor of interest, it is possible to monitor which kinases

are protected from labeling. Because this is one of the only

kinase profiling technologies that can be done following treat-

ment of live cells where the inhibitor is exposed to kinases under

more ‘‘native’’ conditions, it is ideally suited to the profiling of

covalent inhibitors.

Conclusions
Potent and selective kinase inhibitors are highly desirable

reagents for use as probes to pharmacologically interrogate

kinase biology or for use as potential therapeutics. Despite the
ll rights reserved



Figure 5. Distribution of the Cysteinome in the Kinome Tree
Red dots represent kinases that have been proved to be targeted irreversibly by small molecule inhibitors.
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Figure 6. Schematic Representation of
Reversible PKI Scaffold Base Approach to
Develop Irreversible Inhibitors
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great utility of irreversible kinase inhibitors to fulfill both of these

goals, there currently exist only a small number of well-charac-

terized covalent inhibitors. However, recently there has been

a resurgence of interest in covalent inhibitors driven by a number

of factors. First is the realization that suitably designed, potent,

and selective inhibitors can achieve clinical efficacy and safety.

Second is the clear potential to use structure-based design

and broad-based selectivity profiling to rapidly generate and

characterize lead compounds against a large number of addi-

tional kinase targets (Serafimova et al., 2012).

Informatic and structural analysis of the cysteinome has iden-

tified approximately 200 distinct kinases with cysteines in close

proximity to the ATP-binding cleft. Furthermore, it is likely that

additional kinases will possess cysteines that are spatially

proximal to the ATP cleft despite being distant in the primary

sequence. Despite this abundance of targets, approximately

only 20 kinases have been reported to be targeted by an irre-

versible inhibitor. There is thus tremendous opportunity for

development of new inhibitors. From a research perspective,

the inhibitors will be valuable tools to help understand the biolog-

ical function of the roughly one-third of the kinome whose func-

tion is poorly understood or for which inhibitors with useful levels

of selectivity do not exist. Cysteine-directed covalent inhibitors
156 Chemistry & Biology 20, February 21, 2013 ª2013 Elsevier Ltd All rights reserved
have some key advantages relative to

noncovalent inhibitors when they are to

be used as pharmacological tools for

investigating the biological function of

kinases. Most irreversible inhibitors will

require covalent bond formation with

a particular cysteine residue. Therefore,

it is possible to create a mutant form of

the kinases that is resistant to the effects

of the inhibitor by mutating the reactive
cysteine to a serine or an alanine. This inhibitor-resistant mutant

form of the kinase can then be reintroduced to the biological

system of interest by transient or stable expression and the

degree to which it can ‘‘rescue’’ the biological effects elicited

by the covalent inhibitor can be used to establish the functional

selectivity of the compound. This is an extremely powerful

control experiment because the ubiquity of ATP-binding sites

in biological systems always provides for the potential of unan-

ticipated off-target effects for kinase inhibitors. In addition, it is

possible to make noncovalent versions of the inhibitors that

can be used to establish the requirement for covalent bond for-

mation to achieve potent inhibition. From a therapeutic perspec-

tive, estimates suggest 180 kinases may represent attractive

targets for the development of new therapeutics. However, to

date there exist only 11 kinases that are targeted by FDA-

approved kinase inhibitors, which suggests that there exists

considerable opportunity for new covalent inhibitor drugs. The

advantage of covalent inhibitors from a therapeutic standpoint

is the potential to achieve durable target suppression without

the necessity of maintaining high continuous drug exposure.

There are a number of key research directions that would

extend the potential of covalent inhibitors both as pharmacolog-

ical ‘‘tools’’ and as potential therapeutics. The greatest challenge
Figure 7. Schematic Representation of
Flowchart for Profiling Data-Based
Approach



Table 4. Commercially Available Kinase Inhibitor Selectivity Profiling Services

Companies Website Technology Kinase Detected

ActivX Biosciences http://www.activx.com Kinativ 400

Bellbrook Labs http://www.bellbrooklabs.com Transcreener

Carna Biosciences http://www.carnabio.com QuickScout 305

DiscoverRx http://www.discoverx.com KinomeScan 451

Invitrogen http://www.invitrogen.com SelectScreen 224

MDS Pharma Services http://www.mdsps.com IMAP 155

Millipore http://www.millipore.com KinEASY FP

MRC Protein Phosphorylation Unit http://www.kinase-screen.mrc.ac.uk (33P-ATP) filter-binding assay 137

ProQinase http://www.proqinase.com ADP Glo 239

Reaction Biology Corporation http://www.reactionbiology.com HotSpot 440
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is to devise new strategies to improve inhibitor selectivity. The

most obvious way to achieve this is to improve inhibitor potency

through optimization of reversible binding (Ki) and efficiency of

covalent bond formation (kinact). Unlike noncovalent inhibitors,

which can be optimized by monitoring Ki or IC50 values, such

measurements are not accurate means for establishing potency

for covalent inhibitors as they depend upon the incubation time

between the protein and inhibitor. Therefore, considerable

caution should be exercised when comparing the IC50s of

different irreversible inhibitors, and a more appropriate method

to assess inhibition is the ‘‘specificity constant’’ kinact/Ki– the

larger this value, the more efficient the molecule is at inhibiting

the protein, as it takes into account both the initial equilibrium

of the noncovalent complex and the rate of inactivation through

the formation of a covalent bond (Schirmer et al., 2006). Unfortu-

nately, there is a paucity of such information in the scientific liter-

ature for irreversible inhibitors.

For example, these values can be used to delineate structure-

activity (and selectivity) relationships across a range of covalent

inhibitors. Prospectively then, optimization of both binding

affinity and the resulting rate of reaction with the target residue

in the kinase will ultimately lead to the development of highly effi-

cient, and selective, inhibitors. When the covalent inhibitors are

used in cellular assays or in vivo, further considerations become

important. First, the cellular environment possesses a large

number of potentially reactive cysteine residues and modifica-

tion of the desired target always occurs competitively with these

additional off-targets. A second consideration is that a covalent

inhibitor only inactivates the enzyme-target until protein syn-

thesis generates newprotein. Proteins are synthesized at a range

of rates, and therefore it is important to determine the time it

takes to recover protein function after exposure to the covalent

inhibitor (Johnson et al., 2010; Singh et al., 2011).

A second technological breakthough would be to develop new

classes of ‘‘electrophilic warheads’’ that are specifically ‘‘tuned’’

to a thiol based on its pKa. For example, it maybe possible to

develop ‘‘mechanism-based’’ covalent inhibitors where the elec-

trophile is only unleashed upon binding the kinase target. This

could be achieved by designing an electrophile whose reactivity

is enhanced due to a protein-induced conformational change to

the inhibitor. Another significant challenge is to devise methods

to better annotate the subset of the proteome that is reactive to

a given covalent inhibitor class (i.e., the ‘‘protein reactome’’) and
Chemistry & Biolog
to establish targets associated with toxicology in various organs.

We anticipate that a large number of new covalent kinase inhib-

itors will be developed in the near future that will provide the

means to obtain new therapeutic insights.
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