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Abstract

We study unreliable serial production lines with known failure probabilities for each operation. Such a production line consists of
a series of stations; existing machines and optional quality control stations (QCS). Our aim is to simultaneously decide where and
if to install the QCSs along the line and to determine the production rate, so as to maximize the steady state expected net profit per
time unit from the system.

We use dynamic programming to solve the cost minimization auxiliary problem where the aim is to minimize the time unit
production cost for a given production rate. Using the above developed O(N2) dynamic programming algorithm as a subroutine,
where N stands for the number of machines in the line, we present an O(N4) algorithm to solve the Profit Maximization QCS
Configuration Problem.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the well-studied problem of incorporating quality control stations (QCSs) (some times
referred to as inspection stations) into unreliable multi stage production systems. The effect of insertion of QCSs on the
final cost and on the quality of the final product is well observed in the literature. Models and optimization algorithms
for various problems related to locating QCS stations along production lines are date back to 1965, see Lindsay and
Bishop [2]. A survey on the problem of optimal location of QCS along multi stage systems appears in Raz [4]. For
more recent studies focused on systems with imperfect inspection facilities, see for example Raz and Kaspi [5], for a
study on systems allowing rework and repair see Yum and McDowell [7]. All the above studies consider optimization
of steady state performance. For the problem under a finite planning horizon setting look at Kogan and Raz [1].

We point out that the above-mentioned studies focus on maximizing the profit per product and overlook the effect
of the QCS configuration on the system throughput and on the holding costs of work in process. In [3] we consider
holding costs and utilize the influence of the QCS configuration on the production line throughput in the branch and
bound strategy developed there, one that maximizes the expected profit per time unit. To the best of our knowledge,
this was the first attempt to maximize the expected profit per time unit rather than per finished product. We continue to
follow this line in the present paper.
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In this paper we look for an optimal QCS configuration in a serial production line, in a steady state, under any
arrival process and with zero holding costs. Two optimization problems are considered: Minimization of the expected
operational cost under a given production rate and maximization of the expected profit per time unit where the QCS
configuration and the production rate are to be decided simultaneously. As opposed to our approximation branch
and bound strategy in [3], where holding costs were taken into account, here we provide an exact polynomial time
algorithm. We first solve the cost minimization problem using an O(N2) time dynamic programming algorithm, where
N stands for the number of machines along the line. Then, the profit maximization problem is solved by an O(N4) time
algorithm that uses the cost minimization algorithm as a subroutine. A key ingredient in our proof of the complexity of
the maximization algorithm is the O(N2) bound on the number of potential maximum eligible production rates, and
an efficient way to obtain these rates.

The rest of the paper is organized as follows. In Section 2 we define the two versions of our QCS problem. Section 3
presents a dynamic programming algorithm to solve the cost minimization problem and Section 4 provides a polynomial
time algorithm for the profit maximization problem. We conclude with a short discussion in Section 5.

2. Preliminaries and notations

Consider a serial production line with N machines and an infinite number of identical products to be produced.
For simplicity of exposition we slightly abuse the notion of a product and, if no confusion may arise, we refer to an
unfinished product as a product. Processing of a product consists of a series of N operations, with the ith operation
processed on the ith machine. The ith operation’s cost is ci and its processing time assumed to be an i.i.d random
variable with expectation xi . Operation i, if performed on a non-defective product, succeeds with a known probability
pi and fails with probability (1 − pi). A defective product processed by any machine remains defective.

QCSs can be installed anywhere along the line and each installed QCS detects all the defective products delivered
from its preceding machine and discards them from the line. Machines and QCSs are referred to as stations. Each
product can be processed by a single station at a time, and each station can process one product at time. An unlimited
buffer is located in front of each station where all products that finished their previous operations are waiting to be
processed. A fictitious buffer in front of the first machine represents the products that entered the production line but
their first operation has not yet been started. The arrival process to the fictitious buffer is assumed to be any stationary
stochastic process, including the deterministic process with constant inter-arrival times. The rate of the arrival process
into the fictitious buffer is referred to as the production rate and is denoted by a. Note, however, that in general, installed
QCSs reduce the output rate to be less than a since part of the products become defective and are thus discarded from
the system.

The ith machine is denoted by Mi and its immediate consecutive QCS, if such installed, is denoted QCi . The location
of the last installed QCS before Mi is denoted by Li , with the convention that Li = 0 if no such QCS is installed, and
LN+1 is the location of the last QCS in the line. Any QCS configuration is denoted by a set Y of its installed QCSs. For
convenience, when it is clear from the context, we refer toY as the characteristic vector of this set. That is, Yi =1 if QCi

exists and Yi = 0 otherwise. Note that Li is determined by Y and thus the notation Li(Y ) should be used. However, to
avoid cumbersome notation, we use Li rather than Li(Y ), if the particular configuration Y is clear from the context. We
use Bi(B

′
i ) to denote the ith corresponding buffer in front of Mi (QCi). Note that B1 is the fictitious buffer. The cost of

an inspection done by QCi , if such installed, is c′
i and its length assumed to be an i.i.d random variable with mean x′

i . In
addition, there is a time unit fixed capital cost of f ′

i associated with each installed QCS, regardless of its actual working
rate. Capital costs of machines are considered as sunk costs and thus can be eliminated form the optimization process
hereinafter. Each non-defective (defective) finished product has its own revenue (penalty cost) denoted by rG (rB ).

Let qij denote the probability that a non-defective product leaving machine Mi remains non-defective while leaving
Mj . Clearly,

qij ≡
j∏

k=i+1

pk . (1)

Note that (1) holds also if the failure events are dependent across machines since the p′
i’s are the probabilities that a

product will come out of Mi as non-defective, conditioned on being non-defective when it entered Mi . Note that q0i

stands for the probability that a product was successfully processed along the partial series of machines M1, . . . , Mi .
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Consider a QCS system with a given QCS configuration Y. Clearly, if the steady state arrival rate into Bi is ai , and
there is no installed QCS between the two consecutive machines Mi and Mi+1, then the arrival rate into Bi+1 is

ai+1 = min

{
ai,

1

xi

}
.

Furthermore, if QCi exists, then

ai+1 = qLi,i · min

{
ai,

1

xi

,
1

x′
i

}
.

Recall that qLi,i indicates the probability that a product remains non-defective after completed its ith operation, given
Li , the location of the last installed QCS before Mi . Hence, qLi,i stands for the proportion of products qualified by
QCi .

A production rate a is said to be eligible for a given QCS configurationY, if its implied arrival rate to each station along
the line is at most the station’s potential production (inspection) rate. That is, ai � 1

xi
and Yi ·ai � 1

x′
i

for all i =1, . . . , N .

Observe that it is undesirable to operate a system under any production rate that exceeds the maximum eligible rate.
This is since the throughput of non-defective products associated with the maximum eligible rate dominates any other
such throughput from the system. A QCS configuration Y is said to be eligible for a production rate a, if a is eligible
for Y. Using these notations, if a is eligible for Y, then the throughput rate of the products (non-defective products) is
aq0,LN+1

(aq0,N ).
Given a QCS configuration Y and a production rate a, we denote by C(Y, a) the time unit steady state operational

cost of the system. The convention C(Y, a) = ∞ is used if a is ineligible for Y. For a given production rate a, let Y ∗(a)

denote an optimal configuration that minimizes C(Y, a) and C∗(a) = C(Y ∗(a), a) denotes this minimal cost.
Two problems are considered in this paper, the auxiliary cost minimization problem and the main problem of

profit maximization. The problem of determining an optimal QCS configuration for a given production rate, one
that minimizes the steady state expected production cost per time unit, is referred to as the Cost Minimization QCS
Configuration Problem. The second problem of maximizing the steady state expected net profit from the system per
time unit by simultaneously determining the QCS configuration and the production rate is referred to as the Profit
Maximization QCS Configuration Problem. A solution of the Profit Maximization Problem is given by (Y, a), a pair of
a QCS configuration Y and an eligible production rate a for it. In the following, the tuple (p, x, x′, c, c′, f ′, rB, rG) is
referred to as a QCS system.

3. The cost minimization problem

In this section we present our quadratic dynamic programming algorithm for solving the Cost Minimization QCS
Configuration Problem that returns an optimal QCS configuration for a given production rate.

Algorithm 3.1. (Cost Minimization Algorithm).
Input: A QCS system (p, x, x′, c, c′, f ′, rB, a).1

Output: Y ∗(a), C∗(a).
We use Li as state variable and Yi as a decision binary variable that indicates whether or not to install QCi . The

recursion formula qij = qi,j−1pj is used to calculate the qij ’s. The function hi(Li; Yi) returns the cost incurred by the
tail of the line for a given (Li, Yi). It is recursively constructed as follows:

hi(Li; Yi) =
{

aq0,Li
(ci + c′

iYi) + f ′
i Yi + h∗

i+1(Li+1(Li, Yi)) aq0,Li
∈

[
0, min

(
1
xi

,
1−Yi

xi
+ 1

x′
i

)]
∞ otherwise.

, (2)

Note that the upper bound on the flow rate in each step is set to 1
xi

= min( 1
xi

,
1−Yi

xi
+ 1

x′
i

) for Yi = 0, and to min( 1
xi

, 1
x′
i

)

for Yi = 1. We use the following transition function:

Li+1(Li, Yi) =
{

Li, Yi = 0,

i, Yi = 1.
(3)

1 Note that rG, the revenue per product, is irrelevant for this problem.



M. Penn, T. Raviv / Discrete Applied Mathematics 156 (2008) 412–419 415

The initial condition for hN is

hN(LN ; YN) = aq0,LN
[(1 − YN) · rB · (1 − qLN ,N) + (cN + c′

N · YN)] + YNf ′
N (4)

if aq0,LN
∈ [0, min( 1

xN
,

1−YN

xN
+ 1

x′
N

)], and hN(LN ; YN) = ∞ otherwise.

The function h∗
i is constructed by

h∗
i (Li) = min

Yi

hi(Li; Yi), (5)

and the value of h∗
1(0) is returned as C∗(a). If h∗

1(0)=∞, then there is no eligible configuration for the given production
rate a. In such a case, Y ∗(a) = ∅ and C∗(a) = ∞. Otherwise, the optimal QCS configuration is determined in the
forward iterations by

Y ∗
i (Li) ∈ argminYi

hi(Li; Yi). (6)

Proposition 3.2. Algorithm 3.1 is correct and its time and space complexity are O(N2).

Proof. The correctness of Algorithm 3.1 follows directly from Bellman’s principle of conditional optimization, see for
example [6]. Calculating q using the recursion formula qij = qi,j−1pj , for all i > j , takes O(N2) operations and the
space required to store q is O(N2). In addition, at any backward iteration i, the function hi(Li; Yi) is calculated in a
constant number of operations for the two possible values of Yi ({0, 1}) and for i possible values of Li ({0, . . . , i − 1}).
Thus, there are N(N +1) such calculations in total. The forward iterations to determine the optimal configuration, take
O(N). Hence, the overall time complexity of the algorithm is O(N2). The results of each stage i are stored in i reals
[h∗

i (Li)] and i boolean variables [Y ∗
i (Li)] and thus the total space complexity is O(N2) as well. �

4. The Profit Maximization Problem

Here we present an O(N4) time algorithm for solving the Profit Maximization QCS Configuration Problem that uses
Algorithm 3.1 as a subroutine. The key observation for proving the complexity of the Profit Maximization Algorithm
is Proposition 4.3 below that enables us to bound nicely the number of times Algorithm 3.1 is executed in one run of
the Profit Maximization Algorithm.

Observe that if (Y, a) is a solution of the Profit Maximization QCS Configuration Problem, then the expected profit
from the system per time unit is given by

P(Y, a) = a

{
q0,N rG − (1 − YN) · (1 − qN,LN

)rB −
N∑

i=1

[q0,Li
(ci + c′

iYi)]
}

−
N∑

i=1

Yif
′
i (7)

if a is an eligible production rate for the configuration Y. Otherwise, P(Y, a) is undefined (sometimes we use the
notation P(Y, a) = −∞ to indicate this). It is apparent from the above exposition of P(Y, a), in (7), that for a given
QCS configuration Y, P(Y, a) is a linear function of a within its domain. Its slope is given by

q0,N rG − (1 − Yi) · (1 − q0,LN
)rB −

N∑
i=1

[q0,Li
(ci + c′

iYi)]

and its offset is

−
N∑

i=1

Yif
′
i .

Consider now the function

P ∗(a) ≡ max
Y

P (Y, a) = a · q0,N · rG − C∗(a). (8)

Using P ∗(a), our Profit Maximization QCS Configuration Problem can be stated as maxa P ∗(a).
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Table 1
Data for Example 4.1

Station # p x x′ c c′ f ′

1 0.8 10 9 4 1 0.1
2 0.8 13 12 6 1 0.3
3 0.8 14 14 6 1 0.4
4 0.85 16 17 8 1 0.8

rG = 80, rB = 10.
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Fig. 1. The functions P(Y, a) are plotted for all 16 possible configurations of the QCS problem presented in Example 4.1. The function P ∗(a) is
plotted in thick dashed line. The vectors above some of the P(Y, a) functions are their corresponding QCS configurations.

Note that P ∗(a) describes the maximum attainable profit from a QCS system for a given production rate a. This
function is a piecewise linear (not necessarily continuous) function. This is since it is obtained as a maximization over
the set of the linear functions P(Y, a) for all 2N possible QCS configurations. Example 4.1 with its Fig. 1 to follow,
illustrate the structure of P ∗(a).

Example 4.1. Consider the following QCS system that consists of four machines, four optional QCS and the data
presented in Table 1. Fig. 1 illustrates the 16 possible P(Y, a) functions, one for each QCS configuration, and the
obtained P ∗(a) function.

Observation 4.2. Let (Y ∗, a∗) be an optimal solution of the Profit Maximization QCS Configuration Problem that
induces a positive profit. Then, this solution satisfies,

1. P(Y ∗, a) is an increasing function of a in the relevant domain. That is,

q0,N rG − (1 − Y ∗
N(a)) · (1 − q0,LN

)rB −
N∑

i=1

[q0,Li
(ci + c′

iY
∗
i (a))] > 0.

2. Let U(Y ) denote the maximum eligible production rate allowed by the QCS configuration Y, then a∗ = U(Y ∗).
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Observe that if none of the (Y, a)’s can achieve positive profit, then P(Y ∗, a) is a non-increasing function of a and
hence, the optimal solution is not to produce at all (that is a∗ = 0). For a given system, let U=⋃

Y∈{0,1}N {U(Y )} be the
set of all maximum eligible production rates for all possible QCS configurations. Then, Observation 4.2 implies that
optimizing P ∗(a) over U is sufficient for solving the Profit Maximization QCS Configuration Problem. Furthermore,
although the number of possible QCS configurations is 2N , Proposition 4.3 below shows that |U| is O(N2). This crucial
observation is the key for proving the polynomiality of our Profit Maximization Algorithm.

Proposition 4.3. For any given QCS system, the number of maximum eligible production rates for all possible con-

figurations is at most
(

N+2
2

)
. That is, |U|�

(
N+2

2

)
.

Proof. First note that if a = U(Y ), then there must be at least one station (either a machine or a QCS) that under
(Y, a) works in its full capacity. We call such station a bottleneck. Given a QCS system and a QCS configuration Y, the
bottleneck station with the smallest index is said to be the first bottleneck of the production line under (Y, U(Y )), and
is denoted by S(Y ). We use the notation S for S(Y ) if the configuration Y is clear from the context.

For each pair 0� i < j �n + 1, the set of configurations Yij includes all the configurations Y with S being one of
Mi+1, . . . , Mj , QCj , Lj = i and Yj = 1 for j < N + 1.

Clearly, the set of all 2N possible QCS configurations can be partitioned according to these
(

N+2
2

)
subsets. Now, our

proof follows from the fact that for any pair (i, j), all its associated U(Y )’s are of equal value for all QCS configurations
Y ∈ Yij . The above fact is argued as follows. First note that the pair (i, j ) uniquely determines S if Yij �= ∅. This is
since S is a slowest station with the smallest index among Mi+1, . . . , Mj , QCj . Once S is identified, the maximum
eligible production rate is uniquely determined. Let x̄ denote the expected processing time of S. Then, (x̄ · qij )

−1 is the
maximum eligible production rate for each configuration Y ∈ Yij . To see this, observe that the arrival rate to each of
the stations Mi+1, . . . , Mj , QCj is aq0,i which is equal to 1

x̄
, the production rate of S. We conclude that each subset

Yij contributes at most one member to U and so |U|�
(

N+2
2

)
. �

The basic idea behind the above proof is illustrated by Example 4.1 and Fig. 1. Consider for example the three
QCS configurations (1,1,0,0), (1,1,1,0), and (1,1,1,1). Observe that their corresponding three P(Y, a) profit functions
terminate at the same value of a, as demonstrated by the vertical dashed lines in Fig. 1, and their corresponding first
bottleneck station is M2. These configurations form the setY1,2. Similarly,Y0,2={(0, 1, 0, 1), (0, 1, 1, 1), (0, 1, 1, 0)}.
Here the first bottleneck station is QC2 and no QCS precedes it. Recall that the number of possible configurations
grows exponentially with the number of stations and thus, clearly, it is impractical to maximize P ∗(a) directly over all
possible P(Y, a)’s. We are now ready to describe our main algorithm.

Algorithm 4.4. (Profit Maximization Algorithm).
Input: A QCS system (p, x, x′, c, c′, f ′, rB, rG).

Output: (Y ∗, a∗) a pair of a QCS configuration and an eligible production rate that maximizes P(Y, a).
Let Y ∗ = ∅ and a∗ = 0;
For each pair of integers (i, j) with 0� i < j �N + 1
Let x̄ be the expected processing time of the first slowest station among
Mi+1, . . . , Mj , QCj

(Or Mi+1, . . . , MN for the case j = N + 1);
Calculate the corresponding maximum production rate a = 1

x̄·q0,i
;

Call Algorithm 3.1 to obtain Y ∗(a) and C∗(a);
Calculate P ∗(a) as in (8);
IfP ∗(a) > P (Y ∗, a∗) Then
Let a∗ = a and Y ∗ = Y ∗(a);
Return (Y ∗, a∗);

Theorem 4.5. Algorithm 4.4 is correct with time complexity of O(N4) and space complexity of O(N2).
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Proof. For each configuration set Yij we calculate the maximum eligible production rate a and then call Algorithm 3.1
to obtain Y ∗(a) and P ∗(a). We observe that P ∗(a) is at least as good as the value of the best solution attained by
any configuration in Yij . The correctness of the algorithm follows from the above coupled with the fact that {Y} is a
partition of all possible QCS configurations.

Now, by Proposition 4.3, Algorithm 4.4 calls Algorithm 3.1 at most O(N2) times. Recall that by Proposition 3.2,
the complexity of Algorithm 3.1 is O(N2) and hence we obtain the overall time complexity of O(N4). The space
complexity of Algorithm 3.1 is O(N2) and since the same memory can be reused at each call of this algorithm, the
space complexity of Algorithm 4.4 is O(N2) as well. �

A closer look at some of the properties of the QCS systems enables us to further reduce the processing time of
Algorithm 4.4. However, as for now, those reductions do not improve the computational complexity of the algorithm.
We demonstrate such a possible improvement by the following simple observations presented in Proposition 4.6 below.
These observations enable us to exclude from further computation some of the (i, j) pairs, pairs that correspond to
empty subsets Yij , and hence to reduce the actual running time of Algorithm 4.4.

Proposition 4.6. Consider a pair (i, j) and let x̄ denote the expected processing time of S̄, the slowest station among
Mi+1, . . . , Mj , QCj . If one the following conditions holds, then S̄ is not the first bottleneck along the production line,
and thus Yij = ∅.

1. x̄� xk

qki
for some k� i,[3pt]

2. x̄� x′
i

pi
, and[3pt]

3. x̄ > qikxk for some k > j .

Proof. Assume by contradiction that a configuration Y ∈ Yij for which the first condition holds exists. That is, the
first bottleneck is located between QCi and QCj (including QCj but not including QCi) and for some k� i we have
that

1

x̄
� qki

xk

.

Note that, for configuration Y, the maximum eligible flow rate via the stations Mi+1, . . . , Mj , QCj is U(Y ) ·q0i . Thus,

U(Y ) · q0i = 1

x̄

and so

U(Y ) · q0i �
qki

xk

. (9)

Dividing both sides of (9) by qki and using the definition of q as in (1) we get

U(Y ) · q0k � 1

xk

.

However, this implies that using the maximum eligible flow rate for configuration Y causes the flow rate via Mk to be
at least its capacity 1

xk
; contradicting the fact that the first bottleneck of the line is located between QCi and QCj . This

completes the correctness of the first condition.
Similarly, assume by contradiction that a configuration Y ∈ Yij for which the second condition holds exists.

That is,

1

x̄
� pi

x′
i

.

As before we have 1
x̄

= U(Y )q0i and so

U(Y )q0i �
pi

x′
i

.



M. Penn, T. Raviv / Discrete Applied Mathematics 156 (2008) 412–419 419

By the definition of q we have that q0i �pi and so U(Y )� 1
x′
i

which is again a contradiction to the fact that the first

bottleneck is located after QCi .
The proof of the third case is very similar to the first one and thus omitted. It should be noted that the strict inequality

in the third case follows from the fact that Mk may work in its full capacity and still not be the first bottleneck. �

5. Discussion

We present in this paper a method to optimize, in a steady state, an unreliable serial production line by considering the
possibility of installing QCSs along the line. Our results hold for any arrival process and under the assumption that no
holding costs incurred by work in process. If holding costs are relatively high, we suggest the use of the approximation
branch and bound method presented in [3].

We first present a simple O(N2) dynamic programming algorithm that minimizes the expected cost per time unit
under a specified production rate. We then show how to use this algorithm in order to obtain simultaneously a pair of
an optimal QCS configuration and its appropriate production rate, so as to maximize the expected profit per time unit.
The basic idea behind our O(N4) maximization algorithm is the observation that the size of the set of possible values
for optimal production rates is relatively small and an efficient method to identify this set.

Our solutions imply full utilization of the bottleneck stations. Thus, implementing our solutions “as is” results in an
unstable system since the arrival rates to the bottleneck stations equal their production rates. Nevertheless, using the
following minor modifications one can “stabilize” the obtained solution. In the cost minimization problem one should
solve the problem for a slightly higher production rate than the one required. For the profit maximization problem, the
actual production rate to be used for the optimal QCS configuration obtained should be slightly lower than the one
obtained by the algorithm.

For further research we point out the following various possible extensions and generalizations of the problems
presented in this paper. To extend our model to allow unreliable QCSs, rework, scrap values, etc. Further on, we
suggest introducing QCS to more general production models such as job shop, multistage shops, assembly lines, etc.
Another possible direction is to remove our independence assumption, that of the failure events. This calls for more
sophisticated quality control methods such as sample inspection. It will also be interesting to explore an adaptive QCS
policy where the actual inspection done by an installed QCS should be decided on-line by considering the current state
of the system.
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