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Human psychophysics and monkey physiology studies have shown that attention modulates early vision
– contrast sensitivity and processing. But how can we bridge the effects of attention on perceptual per-
formance to their neural underpinnings? Here we implement a population-coding model that estimates
attentional effects on population contrast response given psychophysical data. Model results show that
whereas endogenous (sustained, voluntary) attention changes population contrast-response via contrast
gain, exogenous (transient, involuntary) attention changes population contrast-response via response
gain.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Covert attention allows us to selectively process information at
a given location in our visual field, in the absence of eye move-
ments (Posner, 1980). Numerous psychophysical and neurophysio-
logical studies indicate that covert attention influences one of the
earliest stages of visual analysis, contrast processing (Carrasco,
2006; Reynolds & Chelazzi, 2004). But how can we relate changes
in neural activity to behavior? The fundamental problem of linking
neural response to behavior has been approached from a number
of angles. One popular approach has been to predict the behavior
of a monkey based on the activity of individual cells, using models
such as choice-probability (e.g. Britten, Shadlen, Newsome, &
Movshon, 1992; Parker & Newsome, 1998; Zohary, Shadlen, &
Newsome, 1994). However, this approach is limited by the hetero-
geneity of single-unit responses: whereas the expected perfor-
mance computed from some neurons match behavior well, other
neurons fail to predict behavior (Britten et al. 1992; Shadlen, Brit-
ten, Newsome, & Movshon, 1996). Indeed, single-unit studies of
covert attention have found similar variability in predicted perfor-
mance (Reynolds, Pasternak, & Desimone, 2000). This approach is
further limited by the fact that attentional gain mechanisms have
been shown to be fairly diverse, differing widely from neuron to
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neuron. Whereas some neurons exhibit response gain modulation
with attention, others show contrast gain, and yet others show a
mixed effect (Williford & Maunsell, 2006).

Population coding could be another way to linking neural re-
sponse with behavior. Due to the inherently noisy nature of indi-
vidual neurons, it is likely that our brain analyzes neural
responses by recruiting activity across large cell populations to
guide perception and behavior, rather than only relying on the
activity of few cells (Abbott & Dayan, 1999; Pouget, Dayan, & Ze-
mel, 2000; Pouget, Dayan, & Zemel, 2003). Assuming that ensem-
bles of neural activity drive behavioral effects, we investigate
how attention might affect the contrast response as coded by a
neural population, that is, the pooled neural response in a given
brain area to a stimulus as contributed by neurons that are opti-
mally and not optimally tuned to the stimulus. Jazayeri and Movs-
hon (2006) proposed a population-coding model of optimal
representation of sensory information in motion-direction discrim-
ination, which estimates the likelihood of a stimulus given the
pooled neuronal response by calculating the weighted sum of indi-
vidual sensory-neurons responses. We extend this model to orien-
tation discrimination, and modulate the model response as
function of stimulus contrast and attentional state to estimate
how attention changes the population contrast response, given
known psychophysical attentional effects with humans.

The present model infers the expected change in contrast re-
sponse for a population of neurons, given human performance in
psychophysical tasks similar to those used in monkey neurophys-
iology (Martinez-Trujillo & Treue, 2002; McAdams & Maunsell,
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1999; Reynolds et al., 2000; Williford & Maunsell, 2006). Two-
alternative forced-choice orientation-discrimination tasks have
been used extensively in human psychophysics to address the ef-
fects of attention on contrast sensitivity (Cameron, Tai & Carrasco,
2002; Carrasco, Penpeci-Talgar, & Eckstein, 2000; Ling & Carrasco,
2006b; Lu & Dosher, 1998; Lu & Dosher, 2000; Lu, Lesmes, &
Dosher, 2002; Pestilli & Carrasco, 2005; Pestilli, Viera, & Carrasco,
2007), as performance in this task is monotonically contingent
on contrast (Nachmias, 1967). Thus, orientation discrimination is
an ideal candidate for direct comparisons of psychophysical and
neurophysiological results. The model derives orientation-discrim-
ination performance (d0) by determining how likely it is that each
possible stimulus alternative was presented, given the population
response. To do so, the likelihood of each stimulus is computed
as the sum of individual neurons’ responses, weighted by the log
of their own tuning function. This weighting biases the input such
that responses are tuned away from the discrimination boundary
(vertical in our case). Theoretically, this is the optimal strategy
for decoding orientation from a population response (Jazayeri &
Movshon, 2006). Empirically, there is behavioral evidence in sup-
port of this notion, showing that we tend to overestimate fine ori-
entation differences, i.e. we misperceive these differences as being
broader than they really are (Jazayeri & Movshon, 2007).

The overall population response to the stimulus is scaled as
function of contrast, with the contrast response characterized by
a compressive nonlinearity, as shown in single-cell responses
(Albrecht & Hamilton, 1982; Albrecht, Thorell, & Hamilton, 1981;
Naka & Rushton, 1966). To model the effect of attention, the pop-
ulation contrast response is modulated by two possible gain mech-
anisms, contrast- and response-gain, found in single-unit studies
(Fig. 1a and c); Martinez-Trujillo & Treue, 2002; Reynolds & Chel-
azzi, 2004; Reynolds et al., 2000; Williford & Maunsell, 2006).
Whereas contrast gain predicts the maximal attentional modula-
tion at the dynamic range of the contrast-response function
(Fig. 1b), response gain predicts that attentional modulation in-
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Fig. 1. Gain mechanisms of attention in single-cell responses to contrast. The black
and red curves represent the contrast-response functions of a hypothetical neuron
when attention is directed away from and towards a stimulus, respectively. (a)
Contrast gain, attention shifts the neuron’s contrast-response function toward lower
contrast. (b) The effect is greater near the middle of the contrast-response function
than at low and high contrasts. (c) Response gain, attention multiplies neuron
response by a constant factor; (d) the attentional effect increases with contrast.
creases monotonically as a function of contrast (Fig. 1d). Incorpo-
rating this compressive nonlinearity allows us to visualize and
make quantitative predictions regarding how the population con-
trast-response function (pCRF) is altered by attention.

Behaviorally, using a cue to direct observers’ covert spatial
attention enhances performance and contrast sensitivity at the at-
tended location and impairs it at unattended locations (Ling &
Carrasco, 2006b; Lu & Dosher, 2000; Pestilli & Carrasco, 2005;
Pestilli, Viera & Carrasco; 2007). The magnitude of the attentional
modulation depends on the type of attention deployed, and the
stimulus contrast. Whereas endogenous (voluntary, sustained)
attention alters performance only for stimuli at intermediate
contrast levels, reminiscent of a contrast gain mechanism (Ling &
Carrasco, 2006a), the effects of exogenous (involuntary, transient)
attention primarily increase with contrast, reminiscent of a
response gain mechanism (Ling & Carrasco, 2006a; Pestilli &
Carrasco, 2005; Pestilli et al., 2007).

2. Model

The model comprises an encoding and a decoding stage; Fig. 2
represents the model structure in a schematic form.

2.1. Encoding stage

The model consists of a population of N self-similar neurons
uniformly tuned for orientation. Here, we assume a population of
300 detectors. Each neuron’s tuning function is approximated by
a circular normal, described by the von Mises function, fi(h):

fiðhÞ ¼ ek½2 cosðh�hiÞ�1�; ð1Þ

where j is the concentration parameter (bandwidth), h is the stim-
ulus orientation (the studies we fit to used 4� and 2.5�), and hi is the
preferred orientation of the ith neuron.

We assume that when a stimulus is presented, the probability
that each neuron fires a certain number of spikes in an interval
of t seconds is well described by a Poisson process:

pðnijhÞ ¼
ðRtfiðhÞÞn

ni!
e�Rtf ðhÞ; ð2Þ

where ni is the spike count for the ith neuron, t is the stimulus dura-
tion (in seconds), and R is the contrast-dependent response (in im-
pulses per second). Note that although it is established that the
Poisson-like characteristics of spike variability break down with
brief stimulation durations (Müller, Metha, Krauskopf, & Lennie,
2001), for computational simplicity, we assumed that the responses
to short stimuli are Poisson distributed, and that deviations in the
statistical nature of the modeled neural noise would only lead to
slight quantitative differences, rather than qualitative ones.

The relation between contrast and neural response (R) is well
described by a compressive nonlinearity, the Naka–Rushton func-
tion (Albrecht & Hamilton, 1982; Albrecht et al., 1981; Naka &
Rushton, 1966):

R ¼ M þ a1RmaxCb

Cb þ a2Cb
50

; ð3Þ

where M is the baseline population response, C is the contrast of the
stimulus, Rmax is the maximum firing rate of the population, b is the
slope of the contrast-response function, and C50 is the half-point be-
tween baseline and asymptote (threshold). Of key importance are
the parameters a1 and a2, which are the attentional parameters
for response- and contrast-gain mechanisms respectively. a1 repre-
sents the response gain modulation, increasing the response multi-
plicatively such that higher contrast levels lead to greater
attention modulation. a2 represents the contrast gain modulation,
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Fig. 2. Population-coding model for orientation discrimination with contrast-dependent responses. The model is composed of an encoding front stage and a decoding back
stage. It predicts the likelihood that a stimulus gives rise to the neural population response by computing the weighted sum of individual neurons’ responses. The encoding
stage is a bank of orientation-tuned neurons, modeled as circular normal (a, Eq. (2)). To generate a population response (black line), the response of each neuron (black dots),
given by the individual tuning curves (gray lines) is scaled by the population’s sensitivity to contrast, as described by a Naka–Rushton function (b, Eq. (4)). The decoding stage
computes the likelihood of each stimulus alternative and uses their log likelihood ratio to choose the most likely one. Each neuron’s contribution to the decision is determined
by the product of its firing rate (resulting from its orientation-tuning and contrast-response properties) and the log of its tuning curve (Eq. (5)). Neurons’ responses are signal-
correlated, such that response correlation varies as a function of tuning similarity (c, Eq. (3)). Sensitivity (d0) is computed by estimating the most likely stimulus alternative.
The model reaches a decision by computing the mean likelihood ratio of the two possible alternatives (+4� and �4�) and the variance around this mean (d, Eq. (7)–(10)).
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re-centering the contrast-response function by changing the con-
trast level at which 50% of the maximum response is reached.

The model assumes that neurons’ responses are signal-corre-
lated, such that response correlation varies as a function of tuning
similarity (Averbeck, Latham, & Pouget, 2006). Thus, responses of
similarly-tuned neurons are facilitated, while the responses of neu-
rons tuned differently are suppressed. This pair-wise correlation in
response is represented as:

qij ¼ qmaxed½2cosðhi�hjÞ�1�; ð4Þ

where qmax is the maximum correlation, d is the concentration
parameter, and hi and hj are the preferred orientations of the ith
and jth neuron.

2.2. Decoding stage

Given that we now have an estimate of the response and vari-
ance across detectors, we can derive the likelihood function used
to decode the most likely stimulus presented, given the observed
population response. We assume that for fine discriminations,
observers are not actually basing their decoding primarily on the
response of the detector tuned for the stimulus, but rather adopt
the optimal strategy (Jazayeri & Movshon, 2006), which is to rely
on the response of more broadly tuned detectors. This idea that
observers bias their response towards flanker detectors for fine dis-
crimination is buttressed by a recently demonstrated illusion
showing that observers tend to exaggerate the direction of fine glo-
bal-orientation motion (Jazayeri & Movshon, 2007). Thus, we rep-
resent this pooling as the product of each neuron’s tuning function,
weighted by its natural log, which in this case is the optimal
weighting function. This weighed pooling is represented as:

LogLðhÞ ¼ k
XN

i¼1

ni cos½2ðh� hiÞ�; ð5Þ

We assume that observers make a comparison of the probabil-
ity that the response could have arisen from the two stimulus
alternatives, which we can represent as a likelihood ratio. The like-
lihood ratio for the case of two stimulus alternatives, h1 and h2

(symmetrical around the vertical), can be derived as the difference
between each stimulus’ respective log likelihood:

LogLR ¼ 2j sinð2DhÞ
XN

i¼1

ni sin½2ðhi � hmÞ�; ð6Þ

where Dh is the difference in orientation between the two stimulus
alternatives and hm is their mean orientation, or discrimination
boundary (0� for a ±4� orientation-discrimination task).

The first and second moment of the log likelihood ratio define
the mean, lLR, and variance, r2

LR of the log likelihood ratio:

lLR ¼ 2jR sinð2DhÞt
XN

i¼1

fiðh1Þ sin½2ðhi � hmÞ�; ð7Þ

r2
LR ¼ ½2j sinð2DhÞ�2Rt

XN

i¼1

XN

j¼1

qij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðh1Þfjðh1Þ

q
sin½2ðhi � hmÞ�

sin½2ðhj � hmÞ�: ð8Þ
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Based on the derived mean (lLR) and variance ðr2
LRÞ of the log

likelihood ratio, we can predict performance in an orientation-dis-
crimination task. Accuracy in the task is defined as:

Pcorrect ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
LR

q Z 1

0
e
�ðx�lLR Þ

2

2r2
LR

dx
ð9Þ
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Fig. 3. Endogenous attention psychometric functions, data and model predictions from
Black lines and squares represent the neutral-attention condition, red lines and triangles
the mixed model (contrast gain plus response gain), long-dash lines show the best fit f
model. (b) Estimated contrast-response functions. (c) Difference in response between neu
is contrast gain; attention shifts the pCRF horizontally towards lower contrast (b) and t

Table 1
Model parameters

j: concentration parameter of the tuning function (p/4.5) N: number of neurons in
R: contrast response (defined by equation [3]) f(hi): ith neuron’s tuning
hi: preferred orientation of ith neuron 4� or 2.5� hm: mean difference in or

stimulus alternatives (0)
t: stimulus duration (0.1 and 0.03 s for each respective

study)
qij: correlation in respons
neuron (qmax: 0.2; d: 0.1)

Dh: half difference in orientation between the two stimulus
alternatives (4� or 2.5�)

The first two columns show the values of the parameters used to construct the neural pop
The fixed parameter values are based on previous neurophysiological findings.
Finally, accuracy (Pcorrect) is transformed to d0 by the following
equation:

d0 ¼
ffiffiffi
2
p

ZscoreðPcorrectÞ: ð10Þ

The d0 value predicted by the model is then compared to observ-
ers’ performance in two-alternative forced-choice orientation-dis-
crimination task, as function of contrast (Nachmias, 1967).
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3. Experimental methods

We fit the model to data from two psychophysical studies, Ling
and Carrasco (2006a) and Pestilli et al. (2007), both measuring the
influence on attention on contrast psychometric functions.

Ling and Carrasco (2006a) assessed the effect of both endoge-
nous and exogenous attention on contrast sensitivity. Observers
were asked to report the orientation (right or left) of a Gabor that ap-
peared alone at one of eight possible isoeccentric locations. In a gi-
ven trial, target Gabors were preceded by one of three types of
precues: an endogenous cue, an exogenous cue, and a neutral cue.
The endogenous cue was a line at fixation that pointed towards
the upcoming target location, directing observers to willfully deploy
their endogenous attention to that location. The exogenous cue was
a transient dot that flashed adjacent to the upcoming target loca-
tion, reflexively grabbing exogenous attention to that location.
The neutral cue was a dot that appeared at fixation, providing no
information as to the location of the upcoming target, serving as a
baseline condition. The three cues conveyed the same information
with regard to the temporal onset of the target. Psychometric func-
tions were measured via the method of constant stimuli, with the
Gabor contrasts ranging from 0.09 to 0.62 in 14 log steps.

Pestilli et al. (2007) assessed the effect of exogenous atten-
tion at both the attended and the unattended locations on con-
trast sensitivity. To do so, we presented two Gabors
simultaneously, one at each side of the fixation point. In each
trial, one of the Gabors was preceded by one of two types of
precues: exogenous cue and neutral cue (both as described
above). Following stimulus presentation, observers were asked
to report the orientation (right or left) of the Gabor indicated
by a subsequent response cue. The cue was considered Valid
when the location of the precue and the response cue matched
(50% of the time), and Invalid when they did not match (50% of
the time). Thus, the cue was uninformative and observers were
explicitly told so. Psychometric functions were measured via the
method of constant stimuli, with the Gabor contrasts ranging
from 0.01 to 0.8 in eight steps.
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Fig. 4. Quality of fit for each gain model. Each graph reports r2 values for each
model – contrast gain, response gain and the mixed model – observer and
attentional condition). r2 values are higher for contrast gain than for response gain
with endogenous attention (top panel) and higher for response gain than for
contrast gain with exogenous attention (middle and two bottom panels). The mixed
model has one more parameters and overall show higher r2 values; we performed a
nested hypothesis test to show when the increase in r2 due to the additional
parameter is significant (see text and Table 2).
4. Results

The model comprises a set of parameters that define a popula-
tion of neurons. For the present results we used parameters based
on those found in V1 (Albrecht & Hamilton, 1982; Kohn & Smith,
2005). Table 1 shows the actual parameter values used to fit the
data. Models were fit to the accuracy data using non-linear regres-
sion, and then transformed to d0. Note that although the value of
the parameters changes the population of interest and the raw
quantitative output of the model, their choice would not have
any qualitative influence on potential differential attentional ef-
fects on the pCRF.

The model was fit with only three free parameters for the neutral
condition (Rmax, b, C50) and one (a1 or a2) or two (a1 and a2) free
parameters for the attentional conditions (attended-endogenous or
attended-exogenous and unattended-exogenous). Data from the
neutral-attention condition was fit first by fixing all the parameters
of the model except the three that define the contrast-response func-
tion (Eq. (3); Rmax, C50, b). For the neutral condition data sets, both
attentional parameters a1 (response gain) and a2 (contrast gain) were
fixed at 1, designating no attentional gain modulation. After estimat-
ing the three pCRF parameters for the neutral condition data, we trea-
ted these estimates as fixed parameters when fitting the attentional
data, now only allowing the attentional gain parameters to vary: a1

(response gain), a2 (contrast gain) or both of them (mixed model).
We fit the model with data from two studies that have investi-

gated effects of endogenous and exogenous attention at both at-
tended and unattended locations. Data from Ling and Carrasco
(2006a, 2006b) were used to estimate the change in neural con-
trast response underlying the behavioral improvement brought
about by endogenous and exogenous attention. Data with exoge-
nous attention from Pestilli et al. (2007) were used to estimate
changes in contrast response that underlie the enhancement in
sensitivity at attended locations, and the impairment at unat-
tended locations.



Table 2
Probability values for the F-test

A) Pestilli, Viera & Carrasco (2007)
S1 S2 S3

Valid Invalid Valid Invalid Valid Invalid
RG vs. Mixed 1 0.4 0.1 0.1 0 0.4
CG v.s Mixed 0 0 0 0 0 0.18

B) Ling & Carrasco (2006)
S1 S2 S3 S4
Endo Exo Endo Exo Endo Exo Endo Exo

RG vs. Mixed 0 1 0 0.13 0 0.13 0 1
CG v.s Mixed 0.5 0 1 0 0.21 0 0.17 0

One parameter model wins over mixed model
Mixed model wins over one parameter model

(A) Pestilli, Viera, and Carrasco (2007) the results for exogenous attention in this
study are well explained by a response gain model (green-shaded areas; contrast
gain wins over the mixed, two-parameters, model). Except for the valid-cue con-
dition in observer S3, where the mixed model (two-parameters model) is needed.
(B) Ling and Carrasco (2006a) the results for endogenous attention (Endo) in every
observer are well described by a contrast gain model (green-shaded are cell; con-
trast gain wins over the mixed, two-parameters, model), but not by a response gain
model (orange-shaded cells; the mixed, two-parameters model, wins over response
gain). The results for exogenous attention (Exo) in every observer are well described
by a response gain model (green-shaded cells; response gain wins over the mixed,
two-parameters, model), but not by a contrast gain model (orange-shaded cells; the
mixed, two-parameters model, wins over contrast gain).
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4.1. Endogenous attention: Ling and Carrasco (2006a)

Fig. 3a shows the model fits to the endogenous attention exper-
iment in Ling and Carrasco (2006a). For each observer, an increase
in pure contrast gain (a2) led to superior fits over a pure response
gain model (a1). Fig. 4 shows the r2 values for each model (contrast
gain, response gain and the mixed model), observer and attentional
condition.

To determine which model best accounted for the data, an F-
test was performed comparing the r2 obtained by the model with
two parameters (mixed model: a1 and a2) to the one obtained with
only one of the two parameters a1 or a2).F was computed as:

Fðdf1;df2Þ ¼
ðr2

full � r2
ai
Þ

df1

,
ð1� r2

fullÞ
df2

; ð11Þ

where df1 ¼ kfull � kai
and df2 = cnum � kfull � 1. kfull is the number of

parameters of the full model (i.e., 2; a1 and a2), kai
is the number of

parameters of the attentional model (i.e., 1; a1 or a2) and cnum is the
number of contrasts (i.e., 8 for Pestilli et al., 2007, 14 for Ling and
Carrasco (2006a, 2006b)).

With endogenous attention, the contrast gain model did the
best job of accounting for the data. For all observers, the contrast
gain model provided a better fit than the response gain model
(Fig. 3a; Table 2), and a nested hypothesis test (F-test; (Lu &
Dosher, 1998) revealed that the mixed model was not statistically
superior to the contrast gain model (p-values reported in Table 2).

Fig. 3b shows the estimated pCRF underlying the behavioral
performance in the endogenous attention experiment (Ling and
Carrasco, 2006a). All observers exhibit a leftward shift in the esti-
mated pCRF with endogenous attention, indicative of contrast gain
modulation. Fig. 3c depicts the attentional modulation as the dif-
ference between the neutral and the attended pCRF’s. As predicted
for contrast gain, the maximal attentional modulation is clearly
within the dynamic range of the pCRF.

4.2. Exogenous attention: Ling and Carrasco (2006a) and Pestilli et al.
(2007)

With exogenous attention, the response gain model did the best
job of accounting for the data for both Ling and Carrasco (2006a)
and Pestilli et al. (2007). For all observers, the response gain model
provided a better fit than the contrast gain model (Fig. 4 shows the
r2 values for each model – contrast gain, response gain and the
mixed model – observer and attentional condition), and a nested
hypothesis test revealed that the mixed model was not statistically
superior to the response gain model (Figs. 5 and 6; p-values re-
ported in Table 2). When exogenous attention was drawn towards
a stimulus, model results from both studies suggest that the behav-
ioral findings were brought about by an increase in the response
gain of the underlying pCRF. When exogenous attention was drawn
away from a stimulus (Pestilli et al., 2007), consistent with a re-
sponse gain mechanism, the response gain of the underlying pCRF
was attenuated.

4.3. Average results

Fig. 7 shows the average results. Endogenous attention affects
the pCRF strictly via contrast gain, increasing contrast response so-
lely within the dynamic range of the contrast-response function
(top row). Exogenous attention affects the pCRF strictly via re-
sponse gain, increasing contrast response progressively across
the whole contrast-response function at attended locations (middle
and bottom rows) and decreasing it at unattended locations (bottom
row).

To determine which parameters of the pCRF were affected on
average by attention we used a bootstrap analysis (Efron & Tibsh-
irani, 1993). For each study, data were combined across observer,
attentional condition and contrast level. The analysis shows the
variability of the estimated model parameters given the variability
in the data. We estimated the variability of the psychometric data
at each contrast level in each attentional condition by sampling
with replacement 10,000 times from the combined data set, and
fitted the model to each one of these 10,000 samples (by fixing
all the model parameters but allowing both Rmax and C50 to vary).
We then defined the 95% confidence intervals (C.I.) on the boot-
strapped data and estimated parameter distributions. Fig. 7a,
shows the estimated variability around each individual data point
(vertical error bars, 95% C.I.), and column Fig. 7b shows the esti-
mated variability of the model parameters fitted to the boot-
strapped data. The shaded areas for each individual pCRF
envelope the 95% C.I. of the obtained parameters distributions
(for Rmax and C50). Results for endogenous attention show that
whereas the 95% C.I. for the Rmax parameter overlap (shaded areas
around each function’s asymptote) the 95% C.I. for the C50 do not
overlap (shaded areas around the drop-down vertical lines mark-
ing the average C50value). Results for exogenous attention show
that the 95% C.I. for the C50 parameter overlap, but that the 95%
C.I. for the Rmax do not overlap. These results indicate that whereas
endogenous attention changes contrast gain without affecting
asymptotic response, exogenous attention changes response gain
without affecting the threshold.
5. Discussion

We implemented a population-coding model based on Poisson
dynamics, which predicts changes in the contrast-response proper-
ties of a neural population given psychophysical performance. We
assumed the tuning bandwidth and the correlation parameter val-
ues reported for V1 data (Albrecht & Hamilton, 1982; Kohn &
Smith, 2005; see Table 1). With these few biologically-plausible
assumptions, the model properly describes human psychophysical
performance and estimates changes in contrast response in a neu-
ral population with only two free parameters: threshold and
asymptote of the contrast-response function. Whereas endogenous
attention shifts the pCRF towards lower contrast via contrast gain
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(Fig. 3, top row and Fig. 4), exogenous attention increases popula-
tion response multiplicatively with stimulus contrast at attended
locations and decreases it at unattended locations via response
gain (Fig. 3, middle and bottom rows and Figs. 5 and 6).

For endogenous attention, psychophysical studies have shown
effects consistent with contrast gain (Ling & Carrasco, 2006a), re-
sponse gain (Morrone, Denti, & Spinelli, 2002; Morrone, Denti, &
Spinelli, 2004) or a hybrid model in which attention first undergoes
contrast gain, and at a later stage, response gain (Huang & Dobkins,
2005). What could explain these discrepant results? There are sev-
eral differences in the way attention was manipulated in these
studies. Studies supporting a response gain mechanism (Morrone
et al., 2002; Morrone et al., 2004) used a concurrent task paradigm
in which observers either performed a demanding rapid serial vi-
sual presentation (RSVP) task at fixation along with a peripheral
task, or they viewed the RSVP passively, allowing more attention
to be allocated to the peripheral task. Huang and Dobkins (2005)
attribute the difference between their results and those of Morrone
et al. to experimental parameters. They claim that the contrasts
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tial cueing. Both the endogenous spatial-cueing manipulation and
the orientation-discrimination task used by Ling and Carrasco
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an orientation change (target) among a series of vertically oriented
distracters (McAdams & Maunsell, 1999; Reynolds et al., 2000;
Williford & Maunsell, 2006) or a change in global motion direction
(Treue and Martinez-Trujillo (1999)).

For exogenous attention, there is scarce psychophysical data,
and no neurophysiological data regarding gain mechanisms. Ling
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the data better than response gain or contrast gain alone. The anal-
ysis reported here supports response gain. The discrepancy is due
to the fact that they fitted contrast-response functions to accuracy
data. Hence, the expansion of the contrast-response function at
high contrast was limited and compressed, and a change in thresh-
old parameter was required to account for the data. In contrast, our
model was fit to d0, which has no theoretical upper bound.

Investigating the interaction between the effects of exogenous
attention and contrast adaptation, Pestilli et al. (2007) measured
changes in sensitivity and in performance for orientation discrim-
ination at attended and unattended locations across the psycho-
metric function. They reported that the effect of attention
increased with stimulus contrast and also that contrast threshold
decreased. However, in that study threshold was defined as the
stimulus contrast necessary to attain 70% accuracy, and such mea-
sure does not imply a change in the C50 parameter of the contrast-
response function, as modeled in the present study.

How might attention affect the gain of population contrast re-
sponse? One proposed mechanism is firing synchrony (Fries, Rey-
nolds, Rorie, & Desimone, 2001). Indeed, attention-enhanced
synchronization could result in a response gain modulation on
the population contrast response (Kim, Grabowecky, Paller, Krish-
nakumar, & Suzuki, 2007). Although our model cannot test neural
synchronization, both behavioral results and model fits show con-
trast gain to be mediating the effects of endogenous attention. Fur-
ther investigation is necessary to clarify why different stimulus
and task parameters affect the way endogenous attention change
neural gain at the population level and the contrast response
behaviorally. Another possibility put forth is that attention multi-
plicatively scales the inputs to the normalization circuit (Reynolds
& Chelazzi, 2004). This can in turn result in either a multiplicative
scaling of firing rate (McAdams & Maunsell, 1999; Treue & Marti-
nez-Trujillo, 1999) or a change in contrast gain (Reynolds et al.,
2000), depending on task and sensory conditions.

Why would different types of attention lead to different gain
signatures? Furthermore, why would different tasks and stimuli
lead to different gain signatures? Understanding the mechanism
that underlies neuronal gain changes may offer some insight.
Chance, Abbott, & Reyes, 2002 showed that response gain modula-
tion is driven by changes in the firing rate of balanced background
synaptic input, where decreasing the amount of background input
leads to increases in response gain, and vice versa. Importantly,
they posit that this background noise modulation can originate
from local or distal sources, and that the influence of background
inputs from local cortical connections can have a stronger influ-
ence than more distal cortical inputs. Based on this framework,
they speculate that the contrast gain-like signature some have ob-
served with endogenous attention (e.g., Reynolds et al., 2000) may
arise because the locus of attentional modulation, where the back-
ground input is being attenuated, is distant from the recording site.
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A high-contrast stimulus evokes high amounts of local background
input, which wash out the influence of the distal attention-modu-
lated background input. Perhaps by assessing the gain signature,
one can gauge the proximity between a cortical site being probed,
and the true locus of the attentional modulation; the more local
the attentional modulation is relative to the site of interest, the
more the modulation signature should resemble response gain.
This framework may shed light on a number of issues.

First, in relation to the present study, we assume that our orien-
tation-discrimination task was carried out in an early cortical vi-
sual area, V1. For endogenous attention we observed contrast
gain modulation, whereas for exogenous attention we observed re-
sponse gain modulation. The former could be due to attentional
modulation from a more distal source, as endogenous attention
is more ‘top-down’ in nature than exogenous attention, and re-
quires feedback from higher-level cortical areas. Correspondingly,
one could conclude that the source of attentional modulation that
leads to a response gain-like signature with exogenous attention is
the result of local modulation. This would be in line with the no-
tion that exogenous attention is more bottom-up in nature, and
that the source of exogenous attention’s modulation is closer to
V1. Indeed, there is evidence that increases in the gain of the local
feedforward cholinergic system produce a response gain-like
change in the response of downstream visual neurons (Disney,
Aoki, & Hawken, 2007). In addition, the contrast response of tha-
lamic inputs to visual cortex is modulated by the alertness state
of an animal in a way that is consistent with response gain (Cano,
Bezdudnaya, Swadlow, & Alonso, 2006). In a way, it could be
hypothesized that exogenous attention has an effect relatively
more independent from the task and stimulus nature than endog-
enous attention, which can improve performance by adapting to
the task at hand (Yeshurun, Montagna, & Carrasco, 2008).

Second, this framework could shed light on the mixed-bag of
previous findings for gain mechanisms of individual neurons and
attention, and offers a potential explanation for why different task
types and different stimuli would lead to different attentional gain
signatures. Some have reported that the attention effect is mani-
fested by contrast gain (Martinez-Trujillo & Treue, 2002; Reynolds
et al., 2000), others have reported that the effect is mediated by re-
sponse gain (McAdams & Maunsell, 1999), and yet others have re-
ported that some cells are modulated by contrast gain, some by
response gain, and some by increased baseline firing (Williford &
Maunsell, 2006).

Williford and Maunsell (2006) found that a response gain model
provided a marginally better fit to their data than did a contrast
gain model, but both models provided excellent fits to the data
in terms of the percent of variance explained. By examining the
key subset of neurons that had both an attention modulation and
a saturating contrast-response functions in the unattended condi-
tion (their Fig. 6G, also H and I) they found a diminished effect of
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attention from �80% increase in firing rate at low contrast to �20%
at high contrast (see their Fig. 6G). This is consistent with the con-
clusion reached in the present study regarding endogenous atten-
tion, the gain factor diminishes at high contrast.

The tasks and stimuli used in the experiments varied from
study-to-study, and as a consequence the cortical subpopulation
s recruited to suit the particular tasks or stimuli probably differ.
Perhaps these disparate results could also be explained within
the local/distal connection framework. It is conceivable that this
difference could lead to changes in the cortical distance between
the original source of attentional modulation, and the area being
recruited for the task or stimuli. For instance, it could be possible
that the cells that showed response gain modulation were from
V4 layers that had fewer synaptic steps from the source of atten-
tional modulation, thus allowing the background input from the
attentional source to influence the response of that cell even at
high contrasts. Correspondingly, perhaps cells exhibiting contrast
gain-like modulation resided in V4 layers that had more synaptic
steps from the source of attentional modulation. Further
experiments and modeling could elucidate whether this local/dis-
tal framework for gain modulation applies to attentional
modulation.

6. Conclusion

Whereas individual neurons are variable, the population re-
sponse needs to be univocal to reliably guide behavior. Multi-unit
recording and neuroimaging techniques (e.g., EEG, fMRI and optical
imaging) have potential to measure larger-scale responses, but
capturing the vast scale of population responses remains a meth-
odological challenge, and how attention affects neural populations
remains empirically untested. Psychophysical data (Ling & Carras-
co, 2006a; Pestilli et al., 2007) and the estimated parameters of the
population-coding model presented here support the idea that
attention acts on population contrast-response via different mech-
anisms: contrast gain for endogenous attention and response gain
for exogenous attention.
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