
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 658 (2008) 164–169

www.elsevier.com/locate/physletb

Magnetic solutions in AdS5 and trace anomalies

Yves Brihaye a,∗, Eugen Radu b

a Physique-Mathématique, Universite de Mons-Hainaut, Mons, Belgium
b Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth, Ireland

Received 19 July 2007; received in revised form 11 September 2007; accepted 13 September 2007

Available online 17 November 2007

Editor: A. Ringwald

Abstract

We discuss black hole and black string solutions in d = 5 Einstein–Yang–Mills theory with negative cosmological constant, proposing a
method to compute their mass and action. The magnetic gauge field of these configurations does not vanish at infinity. We argue that this implies
a nonvanishing trace for the stress tensor of the dual d = 4 theory.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

As originally found in d = 4 spacetime dimensions [1,2], a variety of well-known features of asymptotically flat self-gravitating
non-Abelian solutions are not shared by their anti-de Sitter (AdS) counterparts. In the presence of a negative cosmological constant
Λ < 0, the Einstein–Yang–Mills (EYM) theory possesses a continuum spectrum of regular and black hole non-Abelian solutions
in terms of the adjustable parameters that specifies the initial conditions at the origin or at the event horizon, rather then discrete
points. The gauge field of generic solutions does not vanish asymptotically, resulting in a nonzero magnetic flux at infinity.

For positive values of the cosmological constant, the solutions found in [3] are linearly unstable as shown in [4,5]. In contrast
with the Λ � 0 case, some of the AdS configurations are stable against linear perturbations [6]. As found in [7,8] these features are
shared by higher-dimensional spherically symmetric AdS non-Abelian solutions.

Since gauged supergravity theories generically contain non-Abelian matter fields in the bulk, these configurations are relevant in
an AdS/CFT context, offering the possibility of studying some aspects of the nonperturbative structure of a CFT in a background
gauge field [9]. On the CFT side, the boundary non-Abelian fields correspond to external source currents coupled to various
operators.

However, in contrast with the four-dimensional case, a generic property of d > 4 non-Abelian solutions is that their mass and
action, as defined in the usual way, diverge [7,8], which may raise questions about their physical relevance. For example, in the best
understood d = 5 case [7], although the spacetime still approaches asymptotically the maximally symmetric background, the total
action presents a logarithmically divergent part. The coefficient of the divergent term is proportional to the square of the induced
non-Abelian field on the boundary at infinity.1

Here we argue that the logarithmic divergence of the non-Abelian AdS5 configurations does not signal a problem with these
solutions, but rather provides a consistency check of the AdS/CFT conjecture. The coefficient of the divergent term in the action
is related in this case to the trace anomaly of the dual CFT defined in a background non-Abelian magnetic field. In this context,
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1 The existence of a logarithmic divergence in the action is a known property of some classes of AdS5 solutions with a special boundary geometry [10]. The
coefficients of the divergent terms there are related to the conformal Weyl anomaly in the dual theory [11,12]. However, this is not the case of the non-Abelian AdS5
configurations in [7], which have the same boundary metric as the Schwarzschild–AdS (SAdS) solution and thus no Weyl anomaly in the dual CFT.
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we propose to compute the mass and action of these solutions by using a counterterm prescription. This enables us to discuss the
thermodynamical properties of two classes of AdS5 non-Abelian black objects.

2. Non-Abelian black hole solutions

The action of the d = 5 gauged supergravities usually contain the YM term LYM = −1/(2e2)Tr{FμνF
μν} as a basic building

block (with Fμν the field strength and e the gauge coupling constant). In what follows we consider a truncation of such models
corresponding to a pure EYM theory with a Lagrangian density2 L = 1/(16πG)(R − 2Λ)+ LYM, with Λ = −6/�2. The first class
of solutions we consider corresponds to spherically symmetric or topological black holes with a metric ansatz

(1)ds2 = dr2

N(r)
+ r2 dΩ2

3,k − N(r)σ 2(r) dt2,

where dΩ2
3,k = dψ2 + f 2

k (ψ)(dθ2 + sin2 θ dϕ2) denotes the line element of a three-dimensional space Σ with constant curvature.
The discrete parameter k takes the values 1,0 and −1 and implies the form of the function fk(ψ): when k = 1, f1(ψ) = sinψ and
the hypersurface Σ represents a 3-sphere; for k = −1, it is a 3-dimensional negative constant curvature space and f−1(ψ) = sinhψ .
The case k = 0 is with f0(ψ) = ψ and Σ a flat surface.

Restricting to an SU(2) gauge field, the YM ansatz compatible with the symmetries of the line-element (1) reads [13,14] (with
τa the Pauli spin matrices)

(2)A = 1

2

{
τ3

(
ω(r) dψ + cos θ dϕ

) − dfk(ψ)

dψ
(τ2 dθ + τ1 sin θ dϕ) + ω(r)fk(ψ)(τ1 dθ − τ2 sin θ dϕ)

}
,

the radial function ω(r) is to be determined, together with the metric functions N(r), σ(r), by solving the field equations. The
resulting set of three ordinary differential equations is solved with suitable boundary conditions. Supposing the existence of an
event horizon for some rh > 0, one imposes N(rh) = 0, σ(rh) = σh > 0, w(rh) = wh. By going to the Euclidean section (or by
computing the surface gravity) one finds the black holes Hawking temperature TH = 1/β = σhN

′(rh)/4π . (One should note that
these non-Abelian magnetic solutions extremize also the Euclidean action, the Wick rotation t → it having no effect at the level of
the equations of motion.) For k = ±1, the EYM equations have a nontrivial exact solution [7]

(3)N(r) = k + r2

�2
− M + 8πG(k2/e2) log r

r2
, σ (r) = 1, ω(r) = 0,

which retains the basic features of the general configurations. Solutions with a nonvanishing w(r) are constructed numerically, the
k = 1 case being considered in [7] (in the numerics we set 4πG/e2 = 1). As r → ∞, the spacetime is locally isometric to AdS
spacetime, and we find the following asymptotic expression of the solutions (with M , w0, w2 arbitrary parameters3)

N(r) = k + r2

�2
− M

r2
− 8πG

e2

(w2
0 − k)2

r2
log

(
r

�

)
+ · · · , σ (r) = 1 − 16πG

3e2
�4w2

0
(w2

0 − k)2

r6
log2

(
r

�

)
+ · · · ,

(4)w(r) = w0 + w2

r2
− �2

r2
w0

(
w2

0 − k
)

log

(
r

�

)
+ · · · .

For all considered values of (Λ, rh), we find black hole solutions with regular horizon for only one interval 0 � wh < wc
h. The

spherically symmetric black holes with w �= 0 have a nontrivial globally regular limit rh → 0. In contrast, the topological black
holes possess minimal event horizon radius, for any w0. An extremal black hole is found for the w(r) = 0 solution (3) with
r2
h = �2(−k + |k|√32πG/(e2�2) + 1 )/4, the parameter M being also fixed by the value of the cosmological constant.

The action and mass of the AdS5 non-Abelian configurations is computed by using a boundary counterterm prescription. As
found in [15], the following counterterms are sufficient to cancel divergences in five dimensions, for SAdS black hole solution:

(5)Ict = − 1

8πG

∫
∂Mr

d4x
√−h

[3

�
+ �

4
R

]
,

with R the Ricci scalar for the boundary metric h. However, in the presence of matter fields, additional counterterms may be needed
to regulate the action [16]. This is the case for the non-Abelian solutions discussed in this Letter, whose total action (where we have

included also the Gibbons–Hawking boundary term [17]) diverges logarithmically, I = Vk(
3β

16πG
(M + k2�2

4 ) − 1
4G

r3
h) + 3βVk

2e2 (w2
0 −

k)2 log( r
�
) (with Vk the area of the surface Σ ). This divergence is cancelled by a supplementary counterterm of the form (with a, b

2 Usually, one has also to consider a non-Abelian Chern–Simon term. However, for purely magnetic solutions discussed here, this term vanishes identically.
3 By using similar techniques to those employed in the globally regular case [7], one can prove the absence of non-Abelian black hole solutions with w2

0 = k.



166 Y. Brihaye, E. Radu / Physics Letters B 658 (2008) 164–169
Fig. 1. The mass-parameter M is plotted as a function of temperature for k = 1,−1 black hole solutions and several values of the magnetic potential at infinity.

boundary indices):

(6)IYM
ct = − log

(
r

�

) ∫
∂Mr

d4x
√−h

�

2e2
tr
{
FabF

ab
}
.

Using these counterterms, one can construct a divergence-free boundary stress tensor Tab ,

(7)Tab = 1

8πG

(
Kab − Khab − 3

�
hab + �

2
Eab

)
− 2�

e2
log

(
r

�

)
tr

{
FacFbdhcd − 1

4
habFcdF cd

}
,

where Eab and K are the Einstein tensor and the trace of the extrinsic curvature Kab for the induced metric of the boundary,
respectively. In this approach, the mass M of the solutions is the conserved charge associated with the Killing vector ∂/∂t [15]:

(8)M= 3VkM

16πG
+ M(k)

c , with M(k)
c = 3k2Vk�

2

64πG
.

We have found that M coincides with the mass computed from the first law of thermodynamics, up to the constant term M
(k)
c which

is usually interpreted as the mass of the pure global AdS5.
Based on these results, one can discuss the thermodynamics of the non-Abelian black hole solutions in a canonical ensemble,

holding the temperature TH and the magnetic potential at the boundary at infinity (i.e. the “magnetic charge”) fixed. Upon applica-
tion of the Gibbs–Duhem relation S = βM− I , one finds that the entropy S of these solutions is one quarter of the event horizon
area. The response function whose sign determines the thermodynamic stability is the heat capacity C = (∂M/∂TH )w0 . In Fig. 1
we plot the M(TH ) curves for several values of w0 for spherically symmetric and hyperbolic black holes with � = 1 (the results for
k = 0 are rather similar to the k = −1 case). For spherically symmetric black holes with w0 �= 0, the usual SAdS behaviour (corre-
sponding to the w0 = 1 curve in Fig. 1(a)) is reproduced: the curves first decrease toward a minimum, corresponding to the branch
of small unstable black holes, then increase along the branch of large stable black holes. The w(r) = 0 solutions are rather special,
since C > 0 in this case for any rh. As seen in Fig. 1(b), the heat capacity is always positive for AdS5 non-Abelian topological
black holes. As a result, the k = 0,−1 black hole solutions are always thermodynamically locally stable.

From the AdS/CFT correspondence, we expect the non-Abelian hairy black holes to be described by some thermal states in a
dual theory formulated in a metric background given by γab dxa dxb = −dt2 + �2(dψ2 + f 2

k (ψ)(dθ2 + sin2 θ dϕ2)). One should
also consider the interaction of the matter fields in the dual CFT with a background non-Abelian field, whose expression, as read
from (2), (4) is

(9)A(0) = 1

2

{
τ3(ω0 dψ + cos θ dϕ) − dfk(ψ)

dψ
(τ2 dθ + τ1 sin θ dϕ) + ω0fk(ψ)(τ1 dθ − τ2 sin θ dϕ)

}
.

The expectation value 〈τa
b 〉 of the dual CFT stress tensor can be calculated using the relation [18]

√−γ γ ab〈τbc〉 =
limr→∞

√−hhabTbc . Employing also (7), we find the finite and covariantly conserved stress tensor (with x1 = ψ , x2 = θ , x3 = ϕ,
x4 = t )

(10)8πG〈τa
b 〉 = 1

2�

(
M

�2
+ k2

4

)⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ − 4πG(w2

0 − k)2

e2�3

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ .
0 0 0 −3 0 0 0 0
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Different e.g. from the case of Reissner–Nordström–AdS Abelian solutions, this stress tensor has a nonvanishing trace, 〈τa
a 〉 =

AYM = −3(w2
0 − k)2/(2�2e2). This agrees with the general results [16,19,20] on the trace anomaly in the presence of an external

gauge field, AYM =RF 2
(0), the coefficient R being related to the charges of the fundamental constituent fields in the dual CFT.

3. Non-Abelian black strings solutions

For the situation discussed above, the gravitational Weyl anomaly Ag vanishes, since Ag = − �3

8πG
(− 1

8 RabRab + 1
24 R2) is zero

for the induced metric of the boundary. Here we present an example of configurations where both types of anomalies are present.
This occurs for the non-Abelian version of a class of solutions recently considered in [21,22] and describing AdS5 black strings
and vortices. The metric ansatz in this case reads

(11)ds2 = dr2

p(r)
+ r2 dΩ2

2,k + a(r) dz2 − b(r) dt2,

where dΩ2
2,k = dθ2 + f 2

k (θ) dϕ2 denotes the line element of a two-dimensional space with constant curvature, and the direction z

is periodic with period L. Considering again an SU(2) YM field, the gauge field ansatz has two magnetic potentials and reads

(12)A = 1

2

{
ω(r)τ1 dθ +

(
d lnfk(θ)

dθ
τ3 + ω(r)τ2

)
fk(θ) dϕ + H(r)τ3 dz

}
.

Similar to the black hole case, we have found a continuum of black string solutions presenting an event horizon at r = rh, where
p(rh) = b(rh) = 0, while a(rh) = ah > 0, w(rh) = wh, H(rh) = Hh. The Hawking temperature of the black strings is TH =√

b′(rh)p′(rh)/4π . The solutions have the following asymptotic expression in terms of four arbitrary constants ct , cz, H0 and w2:

a(r) = k

2
+ r2

�2
+ cz

(
�

r

)2

+ k2

2

(
1

6
− 8πG

e2�2

)
log

r

�

(
�

r

)2

+ · · · ,

b(r) = k

2
+ r2

�2
+ ct

(
�

r

)2

+ k2

2

(
1

6
− 8πG

e2�2

)
log

r

�

(
�

r

)2

+ · · · ,

p(r) = 2k

3
+ r2

�2
+

(
ct + cz + 8πG

e2�2

)(
�

r

)2

+ k2
(

1

6
− 8πG

e2�2

)
log

r

�

(
�

r

)2

+ · · · ,

(13)w(r) = w2

r2
+ · · · , H(r) = H0

(
1 + w2

2�
2

12r6

)
+ · · · .

The basic features of the black strings are similar to the black hole case. Again, the k = 1 solutions possess nontrivial globally
regular limits, representing the AdS counterparts of the Λ = 0 non-Abelian vortices in Ref. [23]. The k = 0,−1 topological black
strings present a minimal event horizon radius. For given (rh,Λ) the solutions’ global charges depend on the value of the magnetic
gauge potential H at infinity, which is a free parameter. The solutions with w(r) = 0, H(r) = const represent Abelian black strings,
generalizing the exact BPS solutions in [24]. These configurations exist for values of the event horizon radius greater than a minimal
value rc

h, an extremal solution being approached in that limit. The non-Abelian solutions depend on the value H0 and exist on a
finite interval of rh. In the limit rh → rc

h the gauge function w(r) vanishes identically and the branch of non-Abelian solutions
bifurcates into the Abelian branch.

The action and global charges of these configurations are computed by employing again the counterterm formalism. As found
in [22] the action of the vacuum solutions presents a logarithmic divergence which is regularized by adding the following term to
the boundary action [11]:

(14)I s
ct = 1

8πG
log

(
r

�

) ∫
∂Mr

d4x
√−h

�3

8

(
1

3
R2 − RabRab

)
,

which implies a supplementary contribution to the boundary stress tensor (7). The bulk YM fields give another logarithmic diver-
gence, which is regularized by the matter counterterm (6). As usual with black strings [25], apart from mass M, there is also a
second global charge associated with the Killing vector ∂/∂z and corresponding to the solutions’ tension T :

M= M0 + M(k)
c , M0 = �LVk

16πG
[cz − 3ct ],

(15)T = T0 + T (k)
c , T0 = �Vk

16πG
[3cz − ct ], with M(k)

c = LT (k)
c = �

16πG
VkL,

where Vk is the total area of the angular sector, M
(k)
c and T (k)

c being Casimir-like terms. In Fig. 2 we plot the mass-parameter M0 as
a function of temperature for k = 1 black strings with several values of H0 (in a d = 4 picture, this corresponds to different vacuum
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Fig. 2. The mass-parameter M0 is plotted for k = 1 black string solutions.

expectation values of the Higgs field [23]). One can see that, in contrast with the vacuum case, the non-Abelian black strings are
thermally unstable. The situation is more complicated in the Abelian case, the solutions near extremality possessing a positive heat
capacity.

For these black strings solutions, the background metric upon which the dual field theory resides is γab dxa dxb = −dt2 +dz2 +
�2(dθ2 + f 2

k (θ) dϕ2). The boundary CFT is formulated in this case in a background Abelian gauge field, with

(16)A(0) = τ3

2

{
dfk(θ)

dθ
dϕ + H0 dz

}
.

The expectation value of the stress tensor of the dual CFT contains four different parts (with x1 = θ , x2 = ϕ, x3 = z, x4 = t )

8πG〈τa
b 〉 = − cz

2�

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −3 0
0 0 0 1

⎞
⎟⎠ − ct

2�

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎠

(17)+ k2

24�

⎛
⎜⎝

2 0 0 0
0 2 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ − 2πG

e2�3
k2

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ .

The trace of this tensor is equal to the sum of the gravitational and external gauge field contributions A=Ag +AYM = k2( 1
96πG�

−
1

2e2�3 ), vanishing for the Abelian BPS solutions in [24].

4. Further remarks

On general grounds, one expects that extending the known classes of solutions of the d = 5 supergravity to a non-Abelian gauge
group would lead to a variety of new physical effects. The black objects discussed in this Letter are perhaps the simplest solutions
relevant in this context. We expect a much richer structure to be found when relaxing the spacetime symmetries, or when taking a
more general gauge group. However, the generic non-Abelian solutions will always present a nonvanishing magnetic gauge field on
the boundary which appears as a background for the dual theory. Also, similar to the d = 4 case [9], the existence of both spherically
symmetric globally regular and hairy black hole solutions with the same set of data at infinity raises the question as to how the dual
CFT is able to distinguish between these different bulk configurations.
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