
Theoretical Computer Science 320 (2004) 419–448
www.elsevier.com/locate/tcs

On the number of nonterminals in linear
conjunctive grammars�

Alexander Okhotin
School of Computing, Queen’s University, Kingston, Ont., Canada K7L3N6

Received 7 September 2003; received in revised form 25 February 2004; accepted 3 March 2004
Communicated by D. Perrin

Abstract

The number of nonterminals in a linear conjunctive grammar is considered as a descriptional
complexity measure of this family of languages. It is proved that a hierarchy collapses, and
for every linear conjunctive grammar there exists and can be e4ectively constructed a linear
conjunctive grammar that accepts the same language and contains exactly two nonterminals.
This yields a partition of linear conjunctive languages into two nonempty disjoint classes of
those with nonterminal complexity 1 and 2. The basic properties of the family of languages
for which one nonterminal su5ces are established. Nonterminal complexity of grammars in the
linear normal form is also investigated.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Formal languages; Conjunctive grammar; Trellis automaton; Cellular automaton; Language
equation; Descriptional complexity; Minimal linear grammar

1. Introduction

Linear conjunctive grammars, which are linear context-free grammars augmented
with an explicit intersection operation, were introduced several years ago [16,18], and
soon thereafter were shown to generate a language family that has been studied long
before [23]. It is now known that the following formalisms de@ne the same family
of languages: one-way real-time cellular automata [6,24], trellis automata [2,4,5], a
certain very restricted type of Turing machines [13,14], linear conjunctive grammars

� A preliminary version of this paper was presented at the Descriptional Complexity of Formal Systems
(DCFS 2003) workshop held in Budapest, Hungary, July 12–14, 2003, and its extended abstract appeared
in the proceedings.

E-mail address: okhotin@cs.queensu.ca (A. Okhotin).

0304-3975/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.03.002

mailto:okhotin@cs.queensu.ca

420 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

[16,23], language equations with union, intersection and linear concatenation [17] and
the recently introduced linear Boolean grammars [21]. The abundancy of natural char-
acterizations coming from di4erent areas of theoretical computer science clearly justi@es
the importance of this language family and gives a reason for the continued study of
its properties.
Let us summarize the most important known facts about this family. It contains some

usual examples of non-context-free languages, such as {anbncn | n¿0} [4,6,18] and
{wcw |w∈{a; b}∗} [4,16], as well as the language of all computations of any Turing
machine [15,16,18] and the von Dyck language [6,23], which is not linear context-
free. It contains some P-complete languages [13,20]. Every language it contains can
be recognized in time O(n2) and space O(n) [4,16]. It is known to be closed under
all set-theoretic operations [4,6,18], not closed under concatenation [25] and not closed
under star [23]. It is incomparable with the context-free languages [25] and is properly
contained in the conjunctive languages [23].
The descriptional complexity of one-way real-time cellular automata was @rst in-

vestigated in [15], where the tradeo4s between them and several devices of di4erent
recognition power were proved to be recursively unbounded using the method of [12].
The succinctness of description of these languages by linear conjunctive grammars was
@rst studied in [22], where the transition from them to trellis automata was shown to
cause superpolynomial blowup in the total length of description. It was also proved in
[22] that for every n there exist languages that can be denoted with an n-state but not
an (n− 1)-state trellis automaton, thus establishing a strict in@nite hierarchy of n-state
languages.
This paper considers another descriptional complexity measure for this family of

languages—the number of nonterminals in a linear conjunctive grammar. Somewhat
surprisingly, the more or less expected in@nite hierarchy of n-nonterminal languages
actually collapses, as it turns out that two nonterminals always su3ce. This con-
trasts the known in@nite hierarchy of n-nonterminal context-free and linear context-free
languages [9] and can be compared with the results on the representability of all re-
cursively enumerable languages in several di4erent grammar formalisms using a @xed
number of nonterminals [7].
The proof of this main result, given in Section 3, is constructive: given a trellis

automaton, one can represent its entire operation in the form of a certain language and
denote this language using a single nonterminal, employing the other one as a start
symbol that “analyzes” the encoded computation by referring to the former nonterminal
and generates exactly the strings accepted by the automaton.
This upper bound of 2 nonterminals is strict: as demonstrated in Section 4, two

nonterminals are required even for some regular languages. At the same time, for
every linear conjunctive language a certain closely related language can be denoted
using a single nonterminal; among these are some P-complete languages. The basic
properties of one-nonterminal linear conjunctive grammars are developed in Section 4.
The class of languages they generate admits another noteworthy characterization, as the
set of languages de@ned by one-variable language equations with union, intersection and
linear concatenation, and thus the results on one-nonterminal languages have important
implications on the theory of language equations.

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 421

In the @nal Section 5 the nonterminal complexity of linear conjunctive grammars in
the linear normal form [16] is investigated and compared with the number of states in
trellis automata.

2. Grammars, equations and automata

2.1. Linear conjunctive grammars

Conjunctive grammars, introduced in [16], are an extension of context-free grammars
with an explicit intersection operation.

De�nition 1. A conjunctive grammar is a quadruple G=(�; N; P; S), in which � and
N are disjoint @nite nonempty sets of terminal and nonterminal symbols respectively;
P is a @nite set of grammar rules, each of the form

A →
1& · · ·&
n (A ∈ N; n¿ 1;
i ∈ (� ∪ N)∗ for all i); (1)

where the strings
i are distinct and their order is considered insigni@cant; S ∈N is
a nonterminal designated as the start symbol. For a rule (1), an object of the form
A→
i is called a conjunct; denote the set of all conjuncts as conjuncts(P).

A conjunctive grammar generates strings by deriving them from the start symbol,
generally in the same way as context-free grammars do. Intermediate strings used in
course of a derivation are de@ned as follows:

De�nition 2. Let G=(�; N; P; S) be a conjunctive grammar. The set of conjunctive
formulae F⊂ (�∪N ∪{“(”; “&”; “)”})∗ is de@ned inductively:
• The empty string � is a conjunctive formula.
• Any symbol from �∪N is a formula.
• If A and B are nonempty formulae, then AB is a formula.
• If A1; : : : ;An (n¿1) are formulae, then (A1& · · ·&An) is a formula.

Next, de@ne the notion of derivability in one step as a binary relation G=⇒ on the
set F. There are two types of derivation steps:
(1) A nonterminal can be rewritten with a body of a rule enclosed in parentheses:

s′As′′ G=⇒ s′(
1& · · ·&
n)s′′ (2)

if A→
1& · · ·&
n ∈P and s′As′′ ∈F, where s′; s′′ ∈ (�∪N ∪{“(”; “&”; “)”})∗.
(2) A conjunction of one or more identical terminal strings enclosed in parentheses

can be replaced with one such string without the parentheses:

s′(w& · · ·&w)s′′ G=⇒ s′ws′′ (3)

if w∈�∗ and s′ws′′ ∈F.

422 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

De�nition 3. Let G=(�; N; P; S) be a conjunctive grammar. The language of a formula
is the set of all terminal strings derivable from the formula in zero or more steps:

LG(A)= {w∈�∗ |A G=⇒∗ w}. De@ne L(G)=LG(S).

Let us now restrict conjunctive grammars of the general form to obtain the subclass
of linear conjunctive grammars:

De�nition 4. A conjunctive grammar G=(�; N; P; S) is said to be linear, if each rule
in P is of the form

A → u1B1v1& · · ·&umBmvm (m¿ 1; ui; vi ∈ �∗; Bi ∈ N) or (4a)

A → w (w ∈ �∗) (4b)

It is said to be in the linear normal form, if the rules of the type (4a) are restricted
to be of the form A→ bB1& · · ·&bBm&C1c& · · ·&Cnc, where b; c∈�, m + n¿1 and
Bi ∈N .

2.2. Language equations with union, intersection and linear concatenation

Context-free grammars are known to have an algebraic representation by least solu-
tions of systems of language equations with union and concatenation [1,3]. Conjunctive
grammars possess a similar characterization by language equations with union, inter-
section and concatenation [17].
Let us retell the main results of [17], simplifying them for the subcase of linear

conjunctive grammars studied in this paper.

De�nition 5 (System of equations). Let � be an alphabet. Let n¿1. Let X =(X1; : : : ;
Xn) be a set of language variables, which assume values of languages over �. Let
’1; : : : ; ’n be expressions that depend upon the variables X and may contain these
variables, the constant languages {�} and {a} (for all a∈�), set-theoretic union and
intersection, as well as linear concatenation (i.e., left- and right-concatenation of {a}).
Then

X1 = ’1(X1; : : : ; Xn)
...

Xn = ’n(X1; : : : ; Xn)

(5)

is called a resolved system of equations over � in variables X . A vector of languages
L=(L1; : : : ; Ln) is a solution of (5) if for every i the value of ’i under the assignment
Xj =Lj (for all j) is Li.

Note that language equations can be de@ned in a more rigorous way by @rst de@ning
a formula as a syntactical concept and then supplying semantics for it by de@ning its
value on a vector of languages [17,21].

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 423

Denote the right-hand side of a system (5) as a vector function:

’(X1; : : : ; Xn) = (’1(X1; : : : ; Xn); : : : ; ’n(X1; : : : ; Xn)) (6)

and inductively de@ne its substitutions into itself as

’0(X1; : : : ; Xn) = (X1; : : : ; Xn) (7a)

and

’i+1(X1; : : : ; Xn) = ’(’i(X1; : : : ; Xn)): (7b)

De@ne a partial order “4” on the set of language vectors of length n as componen-
twise inclusion: (L′

1; : : : ; L
′
n)4 (L

′′
1 ; : : : ; L

′′
n) if and only if L′

i ⊆L′′
i for all i (16i6n).

Then one can prove that the operator ’ on the set (2�
∗
)n is monotone and ∪-continuous

with respect to this partial order [17], which, by the @xed point theory, yields the fol-
lowing result:

Theorem 1 (Okhotin [17]). Every system (5) over an alphabet � and in variables
X1; : : : ; Xn has least solution (with respect to “4”) given by

L = (L1; : : : ; Ln) = sup
i¿0

’i


∅; : : : ; ∅︸ ︷︷ ︸

n


 : (8)

Theorem 2 (Okhotin [17]). A language L is generated by a linear conjunctive gram-
mar if and only there exists a system of equations (5) with union, intersection and
linear concatenation, such that L is the 8rst component of its least solution.

Another important issue treated in [17] is the uniqueness of solution. For language
equations with unrestricted concatenation it is convenient to use the notion of a strict
system, developed in [17] by generalizing the corresponding notion for the context-free
case [1], as a su5cient condition for uniqueness. When concatenation is linear, this
condition degrades to quite a simple one, which will now be stated:

De�nition 6 (Okhotin [17]). An expression (in the sense of De@nition 5) ’ is said to
be admissible in strict systems if it is {�}, {a}, union or intersection of two expressions
admissible in strict systems, or a left- or right-concatenation of a terminal symbol to
an arbitrary expression as in De@nition 5.
A system (5) of language equations with union, intersection and linear concatenation

is said to be strict if every expression ’i on its right-hand side is admissible in strict
systems.

Basically, the only restriction imposed on strict systems is that variables can appear
in expressions only when concatenated to terminal symbols. This dismisses pathological
cases of language equations like X =X and guarantees the following property:

Theorem 3 (Okhotin [17]). Every strict system has unique solution.

424 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

Now let us strengthen the result of Theorem 2 on the equivalence of linear conjunc-
tive grammars and language equations as in De@nition 5. In this stronger formulation
it will be very useful in the following:

Theorem 4. Let n¿1. For any vector of languages (L1; : : : ; Ln) over �, the following
two conditions are equivalent:
• There exists a linear conjunctive grammar G=(�; {A1; : : : ; An}; P; A1), such that

LG(Ai)=Li for all i.
• There exists a system of language equations with union, intersection and linear
concatenation over � in variables (X1; : : : ; Xn), such that its unique solution is
(L1; : : : ; Ln).

Proof. The conversion of an n-nonterminal grammar to a system of n equations can
be done as follows: @rst, unit conjuncts are removed from the grammar using the
method of [16], i.e., all rules of the form A→B&
2& · · ·&
n are eliminated; this does
not a4ect the number of nonterminals and the languages they generate. Then every
nonterminal Ai is represented as a variable Xi. If there are some rules for Ai, then the
equation for Xi is

Xi =
⋃

Ai→
1&···&
n∈P

n⋂
j=1

j; (9a)

where all instances of nonterminals in
j are replaced with the corresponding variables.
If there are no rules for Xi, then the equation may be taken as, say,

Xi = �&a (for some a ∈ �): (9b)

This system has least solution (LG(A1); : : : ; LG(An)) by the results of [17]. On the other
hand, it is a strict system, so the mentioned solution is unique by Theorem 3.
Going from language equations back to linear conjunctive grammars is somewhat

complicated by the fact that the expressions in the right-hand sides of equations might
be arbitrarily complex, while the rules in linear conjunctive grammars must be of the
speci@c form (4). This can be trivially solved by introducing new variables and moving
subexpressions to separate equations, as in Theorem 2, but this would contradict our
goal of having as many nonterminals as there were variables.
In order to meet this goal, let us start from equivalent transformations of right-hand

sides. Two expressions over union, intersection and linear concatenation that depend
upon language variables (X1; : : : ; Xn) and contain constant languages {a} (a∈�) and
{�} are said to be equivalent, denoted ’≡ , if they evaluate to the same language
for every substitution of languages for its variables. The following equivalencies can
easily be proved to hold for all expressions ’, and �:

’ ∩ (∪ �) ≡ (’ ∩) ∪ (’ ∩ �); (10a)

(∪ �) ∩ ’ ≡ (∩ ’) ∪ (� ∩ ’); (10b)

a(’ ∪) ≡ a’ ∪ a ; (10c)

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 425

a(’ ∩) ≡ a’ ∩ a ; (10d)

(’ ∪) · a ≡ ’a ∪ a; (10e)

(’ ∩) · a ≡ ’a ∩ a: (10f)

Now, given any expression ’ and using these equivalencies as rewriting rules that
operate from left to right, one can move linear concatenation to the bottom of the
formula, raise union to the top level and let intersection remain in between.
This can be done with the right-hand sides of a given system X =’(X), resulting

in a system X =’′(X) with the same unique solution, in which every equation is of
the form

Xi =
mi⋃
j=1

lij⋂
k=1

uijkXijkvijk : (11)

This system of equations can be directly simulated by a grammar

Ai → uij1Xij1vij1& · · ·&uijlijXijlij vijlij (16 i 6 n; 16 j 6 mi) (12)

which satis@es the @rst condition of the theorem.

It should be noted that the claim of Theorem 4 is speci@c to linear conjunctive gram-
mars, and likely does not hold for conjunctive grammars of the general form. Indeed,
equalities (10d) and (10f) cannot be generalized for the general case (as concatenation
is not distributive over intersection), and hence one would probably need to add extra
nonterminals to represent concatenation of intersections. A statement similar to Theo-
rem 2 [17] remains the strongest known statement on the equivalence of conjunctive
grammars of the general form and language equations with intersection.

2.3. Trellis automata

(Systolic) trellis automata [4] were introduced in early 1980s as a model of a mas-
sively parallel system with simple identical processors connected in a uniform pattern.
Triangular (real-time, homogeneous) trellis automata are a particular case of trellis
automata, in which the connections between nodes form a @gure of triangular shape,
as shown in Fig. 1. These automata are used as acceptors of strings loaded from the
bottom, and the acceptance is determined by the topmost element. In the following
they will be referred to as just trellis automata.
Following the notation of [23], de@ne a trellis automaton as a quintuple M =(�;Q; I;

$; F), where � is the input alphabet, Q is a @nite nonempty set of states (of process-
ing units), I :�→Q is a function that sets the initial states (loads values into the
bottom processors), $:Q×Q→Q is the transition function (the function computed
by processors) and F ⊆Q is the set of @nal states (e4ective in the top processor).
Given a string a1 : : : an (ai ∈�; n¿1), every node corresponds to a certain substring
ai : : : aj (16i6j6n) of symbols on which its value depends. The value of a bottom
node corresponding to one symbol of the input is I(ai); the value of a successor of

426 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

a1 a2 a3 a4 a5

Fig. 1. Computation of a trellis automaton.

two nodes is $ of the values of these ancestors. Denote the value of a node corre-
sponding to ai : : : aj as &(I(ai : : : aj))∈Q: here I(ai : : : aj) is a string of states (the
bottom row of the trellis), while & denotes the result (a single state) of a trian-
gular computation starting from a row of states. By de@nition, &(I(ai))= I(ai) and
&(I(ai : : : aj))= $(&(I(ai : : : aj−1)); &(I(ai+1 : : : aj))). Now de@ne L(M)= {w |&(I(w))
∈F}.
The computational equivalence of trellis automata to linear conjunctive grammars

was proved as follows:

Theorem 5 (Okhotin [23]). For every linear conjunctive grammar G there exists and
can be e:ectively constructed a trellis automaton M , such that L(M)=L(G)\{�}.

Assuming without loss of generality that G is in the linear normal form, the proof
of Theorem 5 is based upon a subset construction and results in exponentially as
many states as there are nonterminals in the normal form grammar G. To be more
speci@c, if G=(�; N; P; S), then the set of states of a constructed trellis automaton is
Q=�× 2N ×�.

Theorem 6 (Okhotin [23]). For every trellis automaton M , there exists and can be
e:ectively constructed a linear conjunctive grammar G, such that L(G)=L(M).

Theorem 6 is proved by a simple construction [23], where for each state q of the
automaton (�;Q; I; $; F) one creates a nonterminal Aq, for each initial state q= I(a)
one adds a rule Aq → a, for each transition q= $(q1; q2) one adds |�|2 rules

Aq → bAq2&Aq1c (for all b; c ∈ �) (13)

and @nally one introduces a start symbol S with a rule S →Aq for every q∈F . The
correctness of this construction is stated as follows:

Lemma 1 (Okhotin [23]). For every w∈�+ and q∈Q, Aq
G=⇒∗ w i: &(I(w))= q.

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 427

3. Two nonterminals su#ce

In this section the main result of the paper is established, which is a construction of a
linear conjunctive grammar with two nonterminals out of an arbitrary linear conjunctive
grammar.

3.1. Encoding of a computation

The given grammar is @rst converted to an equivalent trellis automaton M =(�;Q; I;
$; F)—for instance, using the known method [23],—and the rest of the construction is
a particular kind of simulation of this automaton by another grammar.
The straightforward method of simulating trellis automata by linear conjunctive gram-

mars, explained in the previous section, represents every state with a nonterminal. As
a result, for every string w∈�+, the set {Aq |Aq=⇒∗ w} of nonterminals that derive
w directly corresponds to the state of one node &(I(w)) in the trellis. If one aims to
reOect the value of each and every element of the trellis in the form of a derivation
of the corresponding string from some nonterminal, then it is easy to see that no less
than �log2 |Q|� nonterminals are required just to be able to store all this information.
However, storing every element is unnecessary, as one can simulate at a time larger

portions of a computation than a single $ transition, and explicitly store only some
selection of the computed states, such that the rest of the states could be inferred from
those that are stored. The grammar that will be constructed records every (6|Q|−1)-th
row of the computation and simulates the whole $ machinery of a trellis automaton
using just one nonterminal instead of the set {Aq | q∈Q} from [23]. This nonterminal
can be viewed as a single bit corresponding to every substring of the input string, and
the operation of the grammar, which involves deriving longer strings from the shorter
ones, is essentially a computation of these bits using @nite-range data access. The other
nonterminal will be a start symbol that will decode the appropriate information from
the @rst nonterminal and use it to accept the right strings.
Let d=6|Q| − 1. Our one-bit simulation determines and uses the values in every

dth row of the computation of the trellis automaton, starting from the @rst one; these
rows are emphasized in Fig. 2(a). Every dth row of the simulation (i.e., the rows
1; 1 + d; 1 + 2d; : : :) is called a control row, and its bits are always set to true (shown
as black squares in Fig. 2(b)). The numbers of states forming each (kd+1)-th (k¿0)
row of the trellis are encoded as bits in the rows kd + 2; : : : ; kd + d of the one-bit
simulation (white squares in Fig. 2(b), which can be true or false).
Let u be a substring (of some longer input string), such that |u|=1 (mod d), and

let us show how the state qi=&(I(u)) is encoded in the bit rows following the row
number |u| in the simulated computation. In Fig. 3, the central black square in the lower
control row corresponds to the substring u. The number of the state qi is encoded in
the bits shown in grey: both bits labeled qi in the @gure are set to true, while the rest
of the grey bits are set to false.
ReOecting the same state qi in two identical bits is a clear redundancy of the encod-

ing. However, this redundancy is necessary, because the “data access” capabilities of
a grammar simulating an automaton are fairly limited: the derivability of a substring

428 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

a1 a2 a3 ad+1ad.
1

2
3

d
d+1

d+2

2d
2d+1

. .
 .

. .
 .

. .
 .

control
rowsencoded

states from
the row 1

a1 a2 a3 ad+1ad.

2
3

d
d+1

d+2

2d
2d+1

. .
 .

. .
 .

. .
 .

q
q

q q
q

q
qq

q qq

q q
q

q
qq

q qq

q
q

q q

q

q

q q
q

q
qq

qq

q q
q

q
qq

q qq

q

q

q

q
q

q
qq

qq

q

q

q

q
q

q
qq

qq

q q
q

q
qq

q qq

1

not
used

not
used

encoded
states from
the row d+1

(a) (b)

Fig. 2. (a) A computation and (b) its one-bit simulation.

control row

qn?

q2?

q1?

2n-1 more data rows:
again, every second one

is empty

2n-1 empty
rows

.
u

control row

q1?

2n data rows:
every second one

is empty

q2?

qn?

. . .

. . .

. . .

. . .
. . .

. . .

Fig. 3. Encoding of a state qi =&(I(u)), where |u|=1 (mod d).

from a nonterminal depends on this substring alone, and cannot be inOuenced by the
context it appears. As will be shown below, most of the time only one of these two
bits will be accessible.
This information is stored in 4n− 1 rows above the control row; every second row

among these is intentionally left blank (i.e., set to false). The remaining 2n− 1 rows
are also empty. As will be proved below, these empty rows ensure that one can always
tell where the control rows are. Once the control rows of the simulated computation
are located, it is possible to decode the numbers of those states from the original
computation that are located in every dth row. Knowing the states in these selected
rows, one can easily compute the states in any row located in between: indeed, in

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 429

a b
32

I

2
1

4
3

1 2 3 4

1
2

2 2 2
3

3
33

4 4
4 4

δ F={1}

1
2 3
2 1 3
2 2 3 3
2 1 4 3 3
2 2 3 4 3 3
2 2 4 3 4 3 3
2 2 4 4 3 4 3 3
2 2 4 4 4 3 4 3 3
2 2 4 4 4 4 3 4 3 3
2 2 4 4 4 4 4 3 4 3 3
2 2 4 4 4 4 4 4 3 4 3 3
2 2 4 4 4 4 4 4 4 3 4 1 3
2 2 4 4 4 4 4 4 4 4 3 2 3 3
2 2 4 4 4 4 4 4 4 4 4 1 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 1 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 1 4 1 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 3 2 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 1 4 1 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 3 2 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 1 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 1 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 1 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 1 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 1 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 1 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 1 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 1 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 1 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 1 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 1 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 2 3 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 1 4 1 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 2 3 2 3 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 1 4 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 2 4 1 4 3 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 3 4 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 2 4 2 3 4 3 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 1 3 4 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 2 4 2 1 3 4 3 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 2 3 3 4 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 3 3 4 3 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 1 4 1 3 4 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 2 4 2 1 4 3 3 4 3 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 2 3 2 3 3 4 4 4 4 2 2 4 2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 3 4 3 3 4 3 3 3 4 3 3 3 4 3 4 3 3 4 3 3 4 3 3
2 2 2 4 1 4 3 3 4 4 4 2 1 4 2 4 2 2 2 4 2 2 2 4 2 2 4 2 1 4 3 4 1 3 4 3 3 3 4 3 3 3 4 3 4 1 3 4 3 3 4 3 3
2 2 2 4 2 3 4 3 3 4 4 2 2 3 2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 3 4 3 2 3 3 4 3 3 3 4 3 3 3 4 3 2 3 3 4 3 3 4 3 3
2 2 1 4 2 1 3 4 1 3 4 2 1 4 1 4 2 2 1 4 2 2 1 4 2 1 4 2 2 1 3 4 1 4 1 3 4 1 3 3 4 1 3 3 4 1 4 1 3 4 1 3 4 1 3
2 2 2 3 2 2 3 3 2 3 3 2 2 3 2 3 2 2 2 3 2 2 2 3 2 2 3 2 2 2 3 3 2 3 2 3 3 2 3 3 3 2 3 3 3 2 3 2 3 3 2 3 3 2 3 3
a a a b a a b b a b b a a b a b a a a b a a a b a a b a a a b b a b a b b a b b b a b b b a b a b b a b b a b b

Fig. 4. A computation of a trellis automaton for the von Dyck language.

order to compute one state in a row kd + i, it is su5cient to know i adjacent states
in the row kd+1. This decoding process will be explained in more detail in a formal
construction below, and for now let us illustrate the encoding on an example.
Consider a certain four-state trellis automaton for the Dyck language over �= {a; b}

[4]. This automaton and its computation on the 56-symbol-long string w= aaabaabbabb
aababaaabaaabaabaaabbababbabbbabbbababbabbabb are given in Fig. 4. The number
d equals 6|Q| − 1=6 · 4 − 1=23, and thus every 23rd row of this computation will
be stored in its one-bit simulation; in the @gure these rows (1, 24, 47) are emphasized
with a boldface font.
The next Fig. 5 contains the one-bit simulation of this computation. The top left

corner of the @gure reminds how every state is encoded, and indeed one can easily
decipher the states emphasized in Fig. 4 by a careful examination of the bits in Fig.
5. For instance, the row number 24 of the original computation contains one instance
of state “1”; it is easy to @nd the encoding of this state by looking right above the
middle control row in the simulated computation.

430 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

d = 6|Q|-1 = 23

a a a b a a b b a b b a a b a b a a a b a a a b a a b a a a b b a b a b b a b b b a b b b a b a b b a b b a b b

1/
ctrl

2/
3/
4/

1\
2\
3\
4\

1/
control

2/
3/

4/
1\

2\
3\

4\

1\
2\
3\
4\

1/
2/
3/
4/

control

1/
2/
3/
4/

control

1\

Fig. 5. One-bit simulation of the computation from Fig. 4.

3.2. A language equation for the encoded computation

Now let us formalize this one-bit simulation as a language of the strings that have
their corresponding bit set to true. Fix a trellis automaton M with the set of states
Q= {q1; : : : ; qn} and let d=6n− 1. Consider the language

L′
M = Lcontrol ∪ Lleft ∪ Lright ; (14a)

where

Lcontrol = {w | |w| = 1 (mod d)}; (14b)

Lleft = {xw | |w| = 1 (mod d); |x| = 2n+ 2i − 1; where &(I(w)) = qi}; (14c)

Lright = {wy | |w| = 1 (mod d); |y| = 2i − 1; where &(I(w)) = qi} (14d)

de@ned with respect to M . Note that all strings from Lleft have length 2n+2imodulod
(16i6n), while the strings from Lright have length 2imodulod. Thus each of the three

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 431

. .
 .

. .
 .

. .
 . k

control row

control row

2i-1

u vx

y

Fig. 6. Decoding of the states: xuv∈ locate[k](L′M) (&(I(x))= qi for some i).

components in (14) has its own set of admissible lengths modulod, and these sets are
disjoint.

Lemma 2. For every trellis automaton M =(�;Q; I; $; F) there exists and can be ef-
fectively constructed a language equation X =’(X), where ’ may contain the oper-
ations of union, intersection and concatenation of terminals, such that language (14)
corresponding to M is the unique solution of this equation.

Proof. For every k, such that 16k6d, de@ne the function

locate[k](A) =
⋃

qi∈Q

⋃
u;v: |u|=2i−1;
|uv|=d+k−1

Auv ∩ Av; (15)

which maps a language (denoted by the language variable A) to a language. Let us
substitute A=L′

M ; it is claimed that a string w is in locate[k](L′
M) if and only if

|w|¿d+ 1 and |w|= k (mod d).
⇐© In order to prove that every such w is in locate[k](L′

M), factorize it as w= xy,
where |x|=1 (mod d) and d6|y|¡2d. Since |w|= k (mod d), |y|= k−1 (mod d), and
hence |y|=d+k−1. Let qi=&(I(x)) be the result of computation of M on x. Further
factorize y as uv, where |u|=2i − 1. Then xu∈Lright. On the other hand, x∈Lcontrol.
Hence, xu∈L′

M and x∈L′
M , and therefore, xuv∈L′

Mv∩L′
Muv⊆ locate[k](L′

M). This is
illustrated in Fig. 6.
⇒© Let us prove the converse. If w∈ locate[k](L′

M), then w can be factorized as xuv,
where x∈L′

M , xu∈L′
M , |u|=2i− 1 and |uv|=d− 1 + k for some 16i6n. Since x is

in (14), consider the two potential possibilities:
• x∈Lcontrol (i.e., the control row has been correctly identi@ed as intended). Then

|x|=1 (mod d); therefore, |w|= |xuv|=1 + d − 1 + k = k (mod d). Also, x

432 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

must be at least 1 symbol long, and hence |w|= |xuv|¿1 + d − 1 + k =d+
k¿d+ 1.

• x∈Lright or x∈Lleft (supposing that the some data bit could be mistaken for a control
row). Then |x|=2j (mod d) for some 16j62n, and thus x can be factorized as yz,
where |y|=1 (mod d) and |z|=2j − 1. Then xu=y · zu is a concatenation of y (of
length 1modulod) and a string zu, such that |zu|=2(i+ j)−2, where 26i+ j63n,
and therefore |zu| is an even number between 2 and 6n− 2.
This upper bound 6n − 2 does not permit yzu to reach the next control row and

the rows above; the evenness of |zu| shows that yzu cannot be in Lleft or in Lright.
Hence, yzu= xu =∈ L′

M , which yields a contradiction, proving that this case is in fact
impossible.
Note that the empty rows inserted between the data rows (see Fig. 3) were essentially

used to rule out this possibility.
Now, de@ne

’control(A) = locate[1](A) ∪
⋃
a∈�

a; (16)

which, by the argument above, implies

’control(L′
M) = Lcontrol: (17)

Obtaining a similar representation of Lright and Lleft requires a more complicated
construction. First, it is needed to decode the information on the states contained in
(14c) and (14d), which will be done by the following function:

is[qi; j](A) =




⋃
u;z: |u|=j−1;

|z|=d+1−j−(2i−1)

uAz if 16 j 6 4n;

⋃
y;v: |y|=j−1−(2n+2i−1);

|v|=d+1−j

yAv if 4n+ 16 j 6 d+ 1;
(18)

which ensures that the state in the jth relative position in the control row below
is qi (see Fig. 7). Formally, the claim is that for every string w (|w|¿d) of length
1modulod, w∈ is[qi; j](L′

M) if and only if for the partition w= uxv (|u|= j−1; |v|=d+
1− j) it holds that &(I(x))= qi.
⇐© Let w= uxv, where |u|= j − 1, |v|=d + 1 − j and &(I(x))= qi. Note that, since
|uxv|=1 (mod d) and |uv|=d, x also has length 1modulod. Consider two cases:
• If j64n, then |v|=6n−j¿2n, and hence v can be factorized as yz, where |y|=2i−1
and |z|=d+1−j−(2i−1). By (14d), xy∈Lright, and thus w= uxyz ∈ uL′

Mz⊆ is[qi; j]
(L′

M). This case is illustrated in Fig. 7(a).
• If j¿4n + 1, |u|¿4n, and u can be factorized as yz, where |z|=2n + 2i − 1 and
|y|= j− 1− (2n+2i− 1). By (14c), zx∈Lleft , and w=yzxv∈yL′

Mv⊆ is[qi; j](L′
M).

See Fig. 7(b).
Note that for low values of j the relevant bits from Lleft would be inaccessible,
and similarly for j close to d + 1 the bits from Lright might be out of reach; this

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 433

control row

control row

u
vy

2n+2i-1

1 2 3 d+1

x zu

(a) (b)

j1 2 3 d+1

2i -1

j

y
v

xz

x'x'

4n4n

Fig. 7. Decoding of the states: is[qi; j](L′M), the cases (a) j64n and (b) j¿4n.

is the exact reason why the same state is redundantly encoded in two di4erent
places.
⇒© Let w∈ is[qi; j](L′

M) (|w|¿d; |w|=1 (mod d)). Then, by (18):
• If 16j64n, then w= ux′z, where |u|= j− 1, x′ ∈L′

M and |z|=d+1− j− (2i− 1).
Factorize x′ as xy, where |y|=2i − 1. Note that |uyz|= j − 1 + 2i − 1 + d + 1 −
j − (2i − 1)=d and |x|= |w| − |uyz|=1 − d=1 (mod d). Since |u|= j − 1 and
|yz|=2i− 1+d+1− j− (2i− 1)=d+1− j, the factorization w= u · x ·yz satis@es
the requirement above. Since |y|=2i− 1, the string xy∈L′

M has to be in Lright, and
therefore, by (14d), &(I(x))= qi.

• If 4n+ 16j6d+ 1, then w=yx′v, where |y|= j − 1− (2n+ 2i − 1), x′ ∈L′
M and

|v|=d + 1 − j. Factorize x′= zx, where |z|=2n + 2i − 1. As in the previous case,
|yzv|= j − 1 − (2n + 2i − 1) + (2n + 2i − 1) + d + 1 − j=d and |x|=1 (mod d).
The factorization w=yz · x · v is again as required, since |yz|= j − 1. According to
(14c), zx∈Lleft , and therefore &(I(x))= qi.
This proves that (18) works as intended: for every w, such that |w|¿d and |w|=1

(mod d), w∈ is[qi; j](L′
M) if and only if M produces qi on certain substring of w

that is d symbols shorter. Let us now devise a expression over L′
M that contains

w (|w|¿d; |w|=1 (mod d)) if and only if M produces qi on the same string w.
Indeed, decoding d + 1 adjacent states using is[qi; j] allows us to simulate d rows

of a computation of trellis automaton and thus determine &(I(w)). De@ne

computes[qi](A) =
⋃

qt1 ;:::;qtd+1∈Q:
&(qt1 :::qtd+1)=qi

d+1⋂
j=1

is[qtj ; j](A) (19)

and now, for every w as above (i.e., |w|=1 (mod d) and |w|¿d), w∈ computes[qi](A)
if and only if &(I(w))= qi. This process is explained in Fig. 8.

434 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

control row

ctrl row

encoded states

d+1

qi = ?

. .
 .

is[qtj, j](LM)'

...
... ...

...

qt2 qtd+1

simulation
of TA

qtjqt1

...

. .
 .

(for all j=1..d+1)

Fig. 8. Decoding of the states: computes[qi](L′M).

In terms of locate[k] and computes[qi] it is easy to de@ne the functions:

’left(A) =
⋃

w∈Lleft ;
|w|6d

w ∪

⋃
qi∈Q

(
locate[2n+ 2i](A) ∩ ⋃

u: |u|=2n+2i−1
u · computes[qi](A)

)
; (20a)

’right(A) =
⋃

w∈Lright ;
|w|6d

w ∪

⋃
qi∈Q

(
locate[2i](A) ∩ ⋃

v: |v|=2i−1
computes[qi](A) · v

)
(20b)

and prove that

’left(L′
M) = Lleft ; (21a)

’right(L′
M) = Lright : (21b)

Let us give the proof for (21b). By (20b), w∈’right(L′
M) if and only if either |w|6d

and w∈Lright, or there exists i (16i6n), such that

w ∈ locate[2i](L′
M) (22)

and a factorization w= xv (where |v|=2i − 1) yields
x ∈ computes[qi](L′

M): (23)

As proved above, (22) is equivalent to |w|¿d and |w|=2i (mod d). This means that
|x|= |w|− |v|=1 (mod d), and hence, by the properties of computes[qi], (23) is equiv-
alent to &(I(x))= qi.
Taking note that these conditions on v and x are as in (14d), it can be concluded that

w∈’right(L′
M) if and only if either |w|6d and w∈Lright, or |w|¿d and w∈Lright—i.e.,

if and only if w∈Lright. This completes the proof of (21b); the case of ’left is handled
in exactly the same way.

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 435

control row
j1 2

ψ

k+1

computes[qtj](LM)'

vu

simulation
of TA

 F
?

qt1 qt2 qtk+1

k

qtj... ...

computes[qtj](LM)'(for j=1..k+1)

k+1

Fig. 9. Decoding L(M) out of L′M using .

Now consider the language equation:

X = ’control(X) ∪ ’left(X) ∪ ’right(X): (24)

By (17), (21a), (21b) and (14a), the language L′
M is a solution of this equation. On

the other hand, this equation is strict (see De@nition 6), and therefore its solution L′
M

is unique, which completes the proof of the lemma.

3.3. Decoding the original language

Lemma 3. For every trellis automaton M =(�;Q; I; $; F), there exists an expression
 (X) over union, intersection and linear concatenation, such that (L′

M)=L(M),
where L′

M is as in (14).

Proof (Sketch of proof). Let locate[k](X) and computes[q](X) be as in the proof of
Lemma 2. De@ne

 =
⋃

w∈L(M):
|w|6d

w ∪
d⋃

k=1


locate[k](X)∩

⋃
qt1 ;:::;qtk+1∈Q:
&(qt1 :::qtk+1)∈F

k⋂
j=1

⋃
u;v: |u|=j−1;
|v|=k+1−j

u · computes[qtj](X) · v


 : (25)

It is left to demonstrate that, indeed, (L′
M)=L(M).

For every string w of length ld+k (l¿1; 16k6d), it su5ces to decode the outcome
of the computation of M on all substrings of w of length ld from the language L′

M
(using the mapping computes), thus obtaining a vector of k+1 states, and then ensure
that the subcomputation of M on this vector leads to a @nal state. This method is
illustrated in Fig. 9.

436 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

Formula (25) separately considers all possible lengths of wmodulod (the union
⋃d

k=1
and the reference to locate[k](X)), and for each k it tries all possible vectors of k +1
states that lead to a @nal state. For every such vector (qt1 ; : : : ; qtk+1), each of its states
qtj is checked for being the outcome of the computation of M on the substring x of
w, such that w= uxv, |u|= j − 1 and |v|= k + 1 − j. This can be done by a single
reference to computes[qtj](L

′
M).

Now the main result of this paper can be stated:

Theorem 7. For every trellis automaton M =(�;Q; I; $; F), there exist and can be
e:ectively constructed:
• a system of language equations with two variables that has unique solution (L(M);

L′
M).

• a linear conjunctive grammar G with two nonterminals, such that L(G)=L(M).

Proof. Let X =’(X) be the language equation constructed in Lemma 2, which has
unique solution L′

M . Let be the expression constructed in Lemma 3. Then the system

S = (X);
X = ’(X)

(26)

is easily seen to have unique solution (L(M); L′
M), which proves the @rst part of the

theorem.
A two-nonterminal linear conjunctive grammar for L(M) can be constructed out of

system (26) by Theorem 4.

Another related result is that every linear conjunctive language can be “almost”
represented by a single language equation:

Theorem 8. Let � be an alphabet, let # =∈ �. Then for every trellis automaton M
there exists and can be e:ectively constructed a single language equation that has
unique solution L′

M ∪ #L(M).
Proof. Let X =’(X) be the language equation from Lemma 2 and let be the ex-
pression from Lemma 3. De@ne the expression

/(X) = X ∩


 ⋃

a∈�
a ∪ ⋃

u∈�∗:
16|u|6d+1

uX


 (27)

and the equation

X = ’(/(X)) ∪ # (/(X)): (28)

Let us prove that Eq. (28) has unique solution L′
M ∪ #L(M).

The @rst claim is that

/(L′
M ∪ #L(M)) = L′

M : (29)

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 437

The left-hand side of (29) can be equivalently transformed as follows:

/(L′
M ∪ #L(M))

= (L′
M ∪ #L(M)) ∩


 ⋃

a∈�
a ∪ ⋃

u∈�∗:
16|u|6d+1

u · (L′
M ∪ #L(M))




= (L′
M ∪ #L(M)) ∩


 ⋃

a∈�
a ∪ ⋃

u∈�∗:
16|u|6d+1

uL′
M ∪ ⋃

u∈�∗:
16|u|6d+1

u#L(M)




= L1 ∪ L2;

where

L1 = L′
M ∩


 ⋃

a∈�
a ∪ ⋃

u∈�∗:
16|u|6d+1

uL′
M ∪ ⋃

u∈�∗:
16|u|6d+1

u#L(M)


 ; (30a)

L2 = #L(M) ∩


 ⋃

a∈�
a ∪ ⋃

u∈�∗:
16|u|6d+1

uL′
M ∪ ⋃

u∈�∗:
16|u|6d+1

u#L(M)


 : (30b)

Language (30a) equals

L1 = L′
M ∩


 ⋃

a∈�
a ∪ ⋃

u∈�∗:
16|u|6d+1

uL′
M




︸ ︷︷ ︸
L′
M

∪L′
M ∩ ⋃

u∈�∗:
16|u|6d+1

u#L(M)

︸ ︷︷ ︸
∅

= L′
M ;

where the @rst part follows from the containment of every string of length 1modulod
in L′

M , while the second component is ∅, because no string in L′
M contains #. Turning

to (30b):

L2 = #L(M) ∩


 ⋃

a∈�
a ∪ ⋃

u∈�∗:
16|u|6d+1

uL′
M ∪ ⋃

u∈�∗:
16|u|6d+1

u#L(M)


 = ∅;

here the two languages are disjoint, because all strings in #L(M) start from #, while
all strings in the other language start from some symbol in �.
Putting together the equalities obtained:

/(L′
M ∪ #L(M)) = L1 ∪ L2 = L′

M ∪ ∅ = L′
M ; (31)

which proves claim (29).
Now let us substitute L′

M ∪ #L(M) for X in (28): ’(/(L′
M ∪ #L(M)))∪ # (/(L′

M ∪ #L
(M))) equals ’(L′

M)∪ # (L′
M) by Eq. (29), which in turn equals L′

M ∪ # (L′
M) by

438 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

Lemma 2 and L′
M ∪ #L(M) by Lemma 3, thus proving that L′

M ∪ #L(M) is a solution
of (28). This solution is unique, because the equation is strict.

4. One-nonterminal grammars

Having proved that every linear conjunctive language can be generated using two
nonterminal symbols, it is natural to investigate whether this estimation is precise, and
could not a single nonterminal be su5cient. It turns out that it could not, and, as it
will be shortly demonstrated, there exist linear conjunctive languages that require two
nonterminals.
This section is devoted to the study of one-nonterminal linear conjunctive grammars

and of the language family they generate. Due to the correspondence between lin-
ear conjunctive grammars and systems of language equations, these are the languages
denoted by unique (or least) solutions of individual language equations with union,
intersection and linear concatenation, resolved with respect to their single variable; this
characterization makes the study of their properties worthwhile.
A similar object, linear context-free grammars with one nonterminal—minimal linear

context-free grammars—have been studied in the early days of formal language theory
[3,8,10] (note that Chomsky and SchRutzenberger [3] and Haines [10] use a more re-
strictive de@nition than just the singularity of a nonterminal; the present paper follows
the de@nition of Greibach [8], also assumed by Harrison [11]), and some key results
on linear context-free grammars were demonstrated to hold for this class: this is the
existence of languages with non-context-free complement [10] and the undecidability
of the ambiguity problem [8].
The conjunctive counterpart of this class, linear conjunctive languages of nonterminal

complexity 1, as it was already demonstrated in Theorem 8, similarly share some
essential qualities of linear conjunctive languages of the general form. Their basic
formal properties are studied in this section.

4.1. The shrinking lemma

Let us @rst establish the following shrinking lemma for one-nonterminal linear con-
junctive grammars, using which one can prove that some linear conjunctive languages
actually require two nonterminals.

Lemma 4 (Shrinking lemma). Let G=(�; {S}; P; S) be a linear conjunctive grammar
comprised of a single nonterminal. Then there exists a constant k¿0, such that for
every string w∈L(G), where |w|¿k, there exists a factorization w= xuy (0¡|x| +
|y|6k), such that u∈L(G).

Proof. Let G=(�; {S}; P; S) be an arbitrary linear conjunctive grammar that generates
an in@nite language. Assume, without loss of generality, that G does not contain unit
conjuncts of the form S → S (all rules containing this conjunct are of no use and can

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 439

be removed from P [16]). Let

k = max
S→
∈conjuncts(P)

|
| (32)

be the maximum length of a right-hand side of a conjunct. Let w∈L(G) be any string,
such that |w|¿k.
Since S =⇒∗ w, there exists a rule S →
1& · · ·&
m, such that
i=⇒∗ w for all

i. Consider the @rst conjunct of the rule:
1 cannot be in �∗, since that would imply

1 =w and |
1|¿k, which is a contradiction. So,
1 = xSy for some x; y∈�∗ (0¡|x|+
|y|6k). Since
1 =⇒∗ w, this implies that w= xuy for some u∈�∗, such that S =⇒∗ u.
This factorization satis@es the statement of the lemma.

The shrinking lemma is a necessary but not a su5cient condition of being a one-
nonterminal language. An example of language that satis@es shrinking lemma but is
not one-nonterminal will be constructed in Theorem 9 (the case of union). However,
in many cases the shrinking lemma does work:

Proposition 1. The regular language ba∗b cannot be generated by a one-nonterminal
linear conjunctive grammar.

Proof. Suppose L= ba∗b is generated by such a grammar. Then, by Lemma 4, there
exists a constant k¿0, such that for the string bakb∈L there exists a factorization
bakb= xuy (|x| + |y|¿0), where u∈L. Therefore, a string of the form bai, aib or ai

must be in L, which is a contradiction.

Could there be a pumping lemma for one-nonterminal linear conjunctive grammars?
The answer is negative. It is known that linear conjunctive languages of the general
form do not have a pumping lemma due to the undecidability of the emptiness problem.
If one supposes that there is a pumping lemma for the one-nonterminal case, then, given
an arbitrary linear conjunctive grammar G, one can construct an equivalent trellis au-
tomaton M and consider the language L′

M ∪ #L(M) that is a one-nonterminal language
by Theorem 8. Since the supposed one-nonterminal pumping lemma should apply to ev-
ery su5ciently long string #w∈ #L(M) from this language, producing #w′ ∈ #L(M), its
statement would at the same time be applicable to the corresponding string w∈L(M),
similarly producing w′ ∈L(M). This gives a pumping lemma for linear conjunctive
grammars of the general form, which is a contradiction.
Let us continue with some examples of languages that can be denoted with one-

nonterminal grammars.

Proposition 2. There exists a linear conjunctive grammar with one nonterminal for
the regular language a∗b∪ ba∗.

Proof. The grammar is S → b|ab|ba|aaS&aS|Saa&Sa. While the @rst three rules denote
a base set of strings, the last two specify that if a string begins with an a (ends with
an a, resp.), then one more a can be appended to its beginning (to its end, resp.).

440 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

Formally, it can be proved that this grammar generates a∗b∪ ba∗ by checking that this
language is a solution of the corresponding language equation.

Note that, although the language a∗b∪ ba∗ is obviously linear context-free, it is easy
to prove that no one-nonterminal linear context-free grammar generates it.

Proposition 3. There exists a language generated by a one-nonterminal linear con-
junctive grammar, which cannot be represented as a 8nite intersection of context-free
languages.

Proof. Consider the linear conjunctive language L= {wcw |w∈{a; b}∗}, and let M =
(�;Q; I; $; F) be an arbitrary trellis automaton for this language. Let L′

M be the (one-
nonterminal) language constructed using the method of Lemma 2, and let us prove that
it is not in the intersection closure of the context-free languages.
Suppose it can be represented as an intersection of @nitely many context-free lan-

guages. Then, by (25) in Lemma 3, the language L can also be represented as such a
@nite intersection, which is known to be untrue [26].

A wealth of other one-nonterminal languages is provided by Theorem 8. Its result
will be used in the later Section 4.4 to @nd the hardest language in the family.

4.2. Closure properties

Theorem 9. The family of one-nonterminal linear conjunctive languages is not closed
under union, intersection, complement, concatenation and star.

Proof. The case of concatenation is straightforward: it su5ces to represent the lan-
guage ba∗b, which is not a one-nonterminal language by Proposition 1, as b · a∗b.
In order to prove nonclosure under intersection, consider the languages L1 = (a∪ b)∗b

and L2 = b(a∪ b)∗. Both can clearly be generated using one nonterminal, but their
intersection L1 ∩L2 = b(a∪ b)∗b∪ b cannot, which is proved in the same way as in
Proposition 1.
Turning to the case of complement, let L= a∗b∪ ba∗ ∪ a∗. L is generated by a

grammar S → �|a|b|ab|ba|aaS&aS|Saa&Sa, based on the same idea as the grammar
from Proposition 2. Let us prove that its complement, L= a∗ba∗b(a∪ b)∗ ∪ a+ba+,
cannot be generated with one nonterminal. Supposing that it can, let k be the constant
given by the shrinking lemma, and consider the string w= bakb∈L. There should exist
a factorization w= xuy, such that 0¡|x| + |y|6k and the string u is in L; however,
every such factorization results in u∈ ba∗, u∈ a∗b or u∈ a∗, which implies u =∈ L and
yields a contradiction.
Proving that one-nonterminal languages are not closed under union is somewhat

harder, because the shrinking lemma will not work: it is easy to see that for every
L1; L2 that satisfy the shrinking lemma, the language L1 ∪L2 also does. Consider the

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 441

languages:

L1 = {amban |m ¡ n}; (33a)

L2 = {amban |m ¿ n}: (33b)

L1 is generated by the grammar S → aS|aSa|b, and L2 by a similar one. Let us give
a direct proof that their union, L=L1 ∪L2 = {amban |m �= n} is not a one-nonterminal
language.
Suppose L is generated by a linear conjunctive grammar G=({a; b}; {S}; P; S); as

in Lemma 4, assume without loss of generality that S → S =∈ conjuncts(P). As in (32),
let k be the maximum length of conjuncts’ right-hand sides. Consider the derivation
of the string bak ∈L:

S =⇒ (
1& · · ·&
l) =⇒ · · · =⇒ bak (34)

It is easy to see that every
i must be of the form Saji , where ji¿0. Indeed, the case

i= bak is impossible by the de@nition of k, because |bak |¿k;
i cannot be in ba∗Sa∗,
because then ba∗Sa∗=⇒∗ bak would mean that some string from a∗ is derivable from
S, which cannot be true;
i ∈ Sa+ is the only remaining opportunity to derive bak .
Therefore, derivation (34) is of the form

S =⇒ (Saj1& · · ·&Sajl) =⇒ · · · =⇒ bak (35)

and the grammar contains the rule S → Saj1& · · ·&Sajl (ji¿0).
Using this rule and taking note that for every i the string akbak−ji is in L, construct

the following derivation:

S =⇒ (Saj1& · · ·&Sajl) =⇒ · · · =⇒ (akbak−j1aj1& · · ·&akbak−jlajl)

=⇒ akbak : (36)

Since akbak =∈ L, this contradicts the assumption that L(G)=L, proving that L=L1 ∪L2
is not a one-nonterminal linear conjunctive language, and thus this family is not closed
under union.
It remains to prove nonclosure under star. Let L= {anbn | n¿0}, an obvious one-

nonterminal language. Suppose that L∗ is a one-nonterminal language as well, and let
k be the constant given by the shrinking lemma. Consider w= akbkakbk ∈L∗. Since
every factorization w= xuy (0¡|x|+ |y|6k) gives u= ak−|x|bkakbk−|y| =∈ L∗ (because
k − |x| �= k or k �= k − |y|), a contradiction is obtained.

4.3. Decision problems

Theorem 10. The emptiness and universality problems for one-nonterminal linear con-
junctive grammars are decidable. The equivalence problem is undecidable.

The decidability results are proved by establishing necessary and su5cient conditions
for emptiness and universality. These conditions are given in Lemmata 5 and 6, which
will be followed by the proof of Theorem 10.

442 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

Lemma 5. Let G=(�; {S}; P; S) be a one-nonterminal linear conjunctive grammar
over �. Then L(G) �= ∅ if and only if P contains a rule of the form S →w (w∈�∗).

Proof. If there is such a rule, then w∈L(G) and thus L(G) �= ∅. Conversely, for any
conjunctive derivation to be successful, it has to contain at least one application of a
rule of the form A→w, and thus if there is no rule of this form, then L(G)= ∅.

Lemma 6. Let G=(�; {S}; P; S) be a linear conjunctive grammar, such that S → S =∈
conjuncts(P), and let d be the maximum length of right-hand side of a conjunct.
Then L(G)=�∗ if and only if
• Every string of length less or equal to 2d is in L(G), and
• For every string w of length 2d there exists a rule

S → u1Sv1& · · ·&ulSvl ∈ P; (37)

such that every ui is a pre8x of w and every vi is a su3x of w.

Proof. ⇒© If L(G)=�∗, then the @rst condition is obviously satis@ed. Supposing that
the second is not—i.e., there exists a string w, such that no rule in P has all conjuncts
in the required form—one can easily see that w cannot be derived at all and therefore
L(G) �= �∗, which is untrue.
⇐© Let both conditions hold and let us show that every w∈�∗ is in L(G). The proof
is an induction on the length of w.
Basis: |w|62d. Every such w is in L(G) by the @rst condition.
Induction step: |w|¿2d. Factorize the string as w=w′zw′′, where |w′|= |w′′|=d.

Now for the string w′w′′ there should exist a rule of form (37), such that every ui is a
pre@x of w′w′′ and every vi is a su5x of w′w′′. Since |ui|; |vi|6d and |w′|= |w′′|=d,
it follows that for every i, w′= uixi and w′′=yivi for some xi; yi ∈�∗.
Since every string xizyi is shorter than w= uixizyivi, it is in L(G) by the induction

hypothesis. This allows to construct the derivation

S =⇒ (u1Sv1& · · ·&ulSvl) =⇒ (u1x1zy1v1& · · ·&ulxlzylvl) =⇒ w′zw′′; (38)

which proves that w∈L(G).

Proof (Proof of Theorem 10). The emptiness problem, stated as “given a linear
conjunctive grammar G=(�; {S}; P; S), determine whether L(G)= ∅”, can be algo-
rithmically solved by checking the condition given in Lemma 5. Similarly, the univer-
sality problem (“given G, determine whether L(G)=�∗”) can be decided according
to Lemma 6.
Let us show that there is no algorithm to solve the equivalence problem for one-

nonterminal linear conjunctive grammars (given G1 and G2, determine whether L(G1)=
L(G2)). Suppose it is decidable and construct an algorithm for checking the emptiness
of the language generated by a linear conjunctive grammar of the general form, which
is easily seen to be undecidable by reduction from Turing machine halting problem
[18].

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 443

Let G be an arbitrary linear conjunctive grammar over �. Construct a trellis au-
tomaton M =(�;Q; I; $; F) that accepts L(G) and consider the equation X =’(X) from
Lemma 2, which has unique solution L′

M as in (14), and the equation X =’(/(X))∪ #
 (/(X)) from Theorem 8, which has unique solution L′

M ∪ #L(M).
Taking note that L′

M =L′
M ∪ #L(M) if and only if L(M)= ∅, each of the two equa-

tions can be converted to a one-nonterminal grammar using the method of Theorem 4,
and then by checking the equivalence of these grammars one can decide the emptiness
of L(G), which contradicts its known undecidability.

4.4. The hardest language and the membership problem

In [13] it was shown that some P-complete languages can be accepted by a certain
restricted type of Turing machines and thus by trellis automata; this was rediscovered
in [20] using trellis automata and linear conjunctive grammars. Using the results of
this paper one can prove a stronger claim, stating that a one-nonterminal grammar
(or a single resolved language equation) is actually enough to denote a P-complete
language.

Theorem 11. The family of one-nonterminal linear conjunctive languages contains a
P-complete language.

Proof. Let L0 be some P-complete linear conjunctive language, let M be a trellis
automaton for L0. Using the method of Theorem 8, construct a one-variable language
equation that has unique solution L=L′

M ∪ #L(M) Clearly, L0 is reducible to L under
any sensible de@nition of reducibility (it su5ces to add # to the beginning of a string),
which proves the P-hardness of L.
On the other hand, L is in P as a linear conjunctive language. This completes

the proof of the statement that L is a P-complete one-nonterminal linear conjunctive
language.

The complexity of the general membership problem for this family of grammars now
follows as a simple corollary of Theorem 11.

Theorem 12. The membership problem for one-nonterminal linear conjunctive gram-
mars, stated as “Given a grammar G=(�; {S}; P; S) and a string w∈�∗, determine
whether w∈L(G)”, is P-complete.

Proof. It is solvable in polynomial time, because so is the membership problem for
conjunctive grammars of the general form [19]. Its P-hardness can be proved by re-
ducing the @xed membership problem in some one-nonterminal P-complete language,
which exists by Theorem 11, to this more general problem.

The properties of one-nonterminal linear conjunctive grammars are summarized and
compared to those of linear conjunctive grammars of the general form in Table 1.

444 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

Table 1
Properties of one-nonterminal linear conjunctive grammars

One-nonterminal Of the general form

Closure properties
∪ − +
∩ − +
∼ − +
· − − [25]
∗ − − [23]

Decision problems
Emptiness + −
Universality + −
Equivalence − −
The hardest language P-complete P-complete

5. Nonterminal complexity of grammars in the linear normal form

While a @nite number of nonterminals turns out to be su5cient in linear conjunctive
grammars of the general form, this is not the case for the grammars in the linear
normal form, since every n-nonterminal grammar in this normal form can be converted
to a trellis automaton of 2n+C states, where C depends upon the alphabet [23], and
there exist @nitely many automata of a @xed size.
Let us investigate succinctness tradeo4s between these two representations.

5.1. Simulating trellis automata with grammars

The original proof of simulation of trellis automata by linear conjunctive grammars
[23] represented every state of an n-state automaton with a nonterminal symbol and
added one extra start symbol, thus resulting in n+1 nonterminals (see Theorem 6). In
this section a new method, much more e5cient in terms of the number of nonterminals,
is proposed: an n-state trellis automaton is converted to a grammar with O(log2 n)
nonterminals.
Given an automaton M =(�;Q; I; $; F), where |Q|= n, let k = �log2 n� and rename

the states (without loss of generality), so that Q⊆{0; 1}k . Now construct the grammar
with the nonterminals {S; A(1)0 ; : : : ; A(k)0 ; A(1)1 ; : : : ; A(k)1 } and with the following rules:

A(t)it → a (if I(a) = (i1; : : : ; ik); for all t); (39a)

A(t)lt → bA(1)j1 & · · ·&bA(k)jk &A(1)i1 c& · · ·&A(k)ik c

(if $((i1; : : : ; ik); (j1; : : : ; jk)) = (l1; : : : ; lk); for all b; c ∈ � and t); (39b)

S → A(1)i1 & · · ·&A(k)ik (for all (i1; : : : ; ik) ∈ F): (39c)

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 445

Let us prove the correctness of construction.

Lemma 7. For every string w∈�+, and for every t (16t6k) and x∈{0; 1}, if
A(t)x

G=⇒∗ w then the tth component of &(I(w)) is x.

Proof. Induction on the length of w.
Basis: w= a∈�. If A(t)x =⇒∗ a, then there should be a rule A(t)x → a in the grammar.

By construction (39a), this implies that the tth component of I(a) is x.
Induction step: Let |w|¿2 and let A(t)x =⇒∗ w. Then there exists a derivation of the

form

A(t)x =⇒ (bA(1)j1 & · · ·&bA(k)jk &A(1)i1 c& · · ·&A(k)ik c) =⇒ · · · =⇒ w: (40)

This implies that w= buc for some u∈�∗, A(t)it =⇒∗ bu (for all t) and A(t)jt =⇒∗ uc (for
all t). Invoking the induction hypothesis 2k times, one obtains that the @rst component
of &(I(bu)) is i1, the second component of &(I(bu)) is i2 and so on, and similarly every
tth component of &(I(uc)) is jt . Putting these facts together, &(I(bu))= (i1; : : : ; ik) and
&(I(uc))= (j1; : : : ; jk).
Let (l1; : : : ; lk)= $((i1; : : : ; ik); (j1; : : : ; jk))=&(I(w)). By (39b) in the construction

of the grammar, the existence of the rule A(t)x = bA(1)j1 & · · ·&bA(k)jk &A(1)i1 c& · · ·&A(k)ik
implies that x= lt , which is exactly the tth component of &(I(w)).

Lemma 8. For every string w∈�+, if &(I(w))= (i1; : : : ; ik), then A(t)it
G=⇒∗ w for all t.

Proof. Induction on |w|.
Basis: w= a∈�. By the construction of grammar (39a), for every t there is a rule

A(t)it → a, and hence A(t)it =⇒∗ a.
Induction step: Let &(I(w))= (l1; : : : ; lk). Let w= buc, where b; c∈�, u∈�∗. Let

&(I(bu))= (i1; : : : ; ik) and &(I(uc))= (j1; : : : ; jk). By the induction hypothesis:

A(t)it =⇒∗ bu (for all t) (41a)

and

A(t)jt =⇒∗ uc (for all t): (41b)

Since $((i1; : : : ; ik); (j1; : : : ; jk))= $(&(I(bu)); &(I(uc)))=&(I(w))= (l1; : : : ; lk), by
the construction of the grammar there should be a rule (39b) for every t, which,
together with all 2k rules (41), is enough to construct a derivation of w from A(t)lt .

Theorem 13. For every n-state trellis automaton there exists an can be e:ectively
constructed an equivalent linear conjunctive grammar in the linear normal form with
2�log2 n�+ 1 nonterminals.

446 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

Proof. Construct the grammar as (39), and let us prove that for every string w∈�+,
S =⇒∗ w if and only if &(I(w))∈F .
⇒© Let S =⇒∗ w. Consider the derivation

S =⇒ (A(1)i1 & · · ·&A(k)ik) =⇒ · · · =⇒ w; (42)

which implies that A(t)it
G=⇒∗ w for all t. Using Lemma 7, it can be obtained that for

every t the tth component of &(I(w)) is it . The conjunction of these k statements
implies &(I(w))= (i1; : : : ; ik). Now, since S →A(1)i1 & · · ·&A(k)ik ∈P, from construc-
tion (39c) it follows that (i1; : : : ; ik)∈F .

⇐© Let &(I(w))= (i1; : : : ; ik)∈F . Then, by Lemma 8, A(t)it =⇒∗ w for every t. By the
construction of the grammar, there is a rule (39c). This allows to construct the
derivation

S =⇒ (A(1)i1 & · · ·&A(k)ik) =⇒ · · · =⇒ (w& · · ·&w) =⇒ w; (43)

proving that w∈L(G).

5.2. Simulating grammars with trellis automata

How many states does a minimal trellis automaton equivalent to an n-nonterminal
linear conjunctive grammar in the linear normal form have? The grammar-to-automaton
construction of [23] provides |�|2 · 2n=2n+C upper bound. Let us infer 2	n=2
−1 lower
bound from the automaton-to-grammar construction given in Theorem 13.
Suppose the contrary, i.e., that there exists n¿0, such that for every grammar in

the linear normal form with n nonterminals there exists an equivalent automaton with
2	n=2
−1 − 1 states. Choose m, such that n=2�log2 m� + 1. Then for every m-state
automaton the construction from Theorem 13 can be applied to obtain a grammar
comprised of n nonterminals, and then the supposed construction can be used to get
another (2	(2�log2 m�+1)=2
−1 − 1)-state automaton that accepts the same language as the
original one. However,

2	(2�log2 m�+1)=2
−1 − 1=2	�log2 m�+12
−1−1 = 2�log2 m�−1−1¡ 2log2 m−1 = m−1
and thus it is shown that an arbitrary m-state automaton can be reduced, which cannot
be true in light of the results of [22].
Thus it has been proved that the number of states in the minimal trellis automata

equivalent to an n-nonterminal linear conjunctive grammar in the linear normal form
lies between 2	n=2
−1 and 2n+C , i.e., is 2O(n).

6. Conclusion

It was demonstrated that two nonterminals in a linear conjunctive grammar are su5-
cient to denote any language from this quite noteworthy family, and a certain variation
of any such language can even be generated with a single nonterminal. Besides charac-
terizing the nonterminal complexity of this family of grammars, these results will surely

A. Okhotin / Theoretical Computer Science 320 (2004) 419–448 447

have impact on the theory of language equations, showing how much can be expressed
in a single resolved equation that uses quite a modest set of language-theoretic opera-
tions.
A classi@cation of linear conjunctive languages into two classes of those that require

one nonterminal and those that require two of them was developed. One-nonterminal
linear conjunctive languages, akin to the known minimal linear context-free languages,
were found to cover some paradigmatic examples of languages from this family. Ad-
ditionally, they turned out to have di4erent decidability and closure properties than
linear conjunctive grammars with two nonterminals. For the class of linear conjunctive
grammars in the linear normal form, an exponential tradeo4 between the number of
nonterminals and the number of states in trellis automata was proved.
Naturally, the given technique of converting a linear conjunctive grammar to an

equivalent one with two nonterminals causes a signi@cant blowup in the total length of
description. In future research it might be interesting to investigate the tradeo4 between
these two measures of succinctness.
A more interesting question is whether a bounded number of nonterminals is enough

for conjunctive grammars of the general form, or is there an in@nite hierarchy of n-
nonterminal conjunctive languages, similar to the context-free one? If a @xed number
of nonterminals is enough, then the construction would probably be quite di4erent from
the one presented in this paper, as the present method does not seem to be extendable
to general conjunctive grammars. On the other hand, proving the more likely hierarchy
result appears to be a challenging task, since it would most probably require to prove
some languages not to be conjunctive, for which no technique is known yet.

Acknowledgements

I am grateful to an anonymous referee for noting a subtle technical error in the
initial version of the construction in Section 3, and to Kai Salomaa for his comments
on di4erent revisions of the paper.

References

[1] J. Autebert, J. Berstel, L. Boasson, Context-free languages and pushdown automata, Rozenberg, Salomaa
(Eds.), Handbook of Formal Languages, Vol. 1, Springer, Berlin, 1997, pp. 111–174.

[2] C. Cho4rut, K. Culik II, On real-time cellular automata and trellis automata, Acta Inform. 21 (1984)
393–407.

[3] N. Chomsky, M.P. SchRutzenberger, The algebraic theory of context-free languages, in: Bra4ort,
Hirschberg (Eds.), Computer Programming and Formal Systems, 1963, pp. 118–161.

[4] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I, International J. Comput. Math. 15
(1984) 195–212;
K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, II, International J. Comput. Math. 16
(1984) 3–22.

[5] K. Culik II, J. Gruska, A. Salomaa, Systolic trellis automata: stability, decidability and complexity,
Inform. and Control 71 (1986) 218–230.

[6] C. Dyer, One-way bounded cellular automata, Inform. and Control 44 (1980) 261–281.

448 A. Okhotin / Theoretical Computer Science 320 (2004) 419–448

[7] H. Fernau, Nonterminal complexity of programmed grammars, Theoret. Comput. Sci. 296 (2) (2003)
225–251.

[8] S.A. Greibach, The undecidability of the ambiguity problem for minimal linear grammars, Inform. and
Control 6 (2) (1963) 119–125.

[9] J. Gruska, Descriptional complexity of context-free languages, Proc. MFCS, 1973, pp. 71–83.
[10] L.A. Haines, Note on the complement of a (minimal) linear language, Inform. and Control 7 (1964)

307–314.
[11] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[12] J. Hartmanis, On the succinctness of di4erent representations of languages, SIAM J. Comput. 9 (1980)

114–120.
[13] O.H. Ibarra, S.M. Kim, Characterizations and computational complexity of systolic trellis automata,

Theoret. Comput. Sci. 29 (1984) 123–153.
[14] O.H. Ibarra, S.M. Kim, S. Moran, Sequential machine characterizations of trellis and cellular automata

and applications, SIAM J. Comput. 14 (2) (1985) 426–447.
[15] A. Malcher, Descriptional complexity of cellular automata and decidability questions, J. Automat.

Languages Combin. 7 (4) (2002) 549–560.
[16] A. Okhotin, Conjunctive grammars, J. Automat. Languages Combin. 6 (4) (2001) 519–535.
[17] A. Okhotin, Conjunctive grammars and systems of language equations, Programming Comput. Software

28 (2002) 243–249.
[18] A. Okhotin, On the closure properties of linear conjunctive languages, Theoret. Comput. Sci. 299 (2003)

663–685.
[19] A. Okhotin, A recognition and parsing algorithm for arbitrary conjunctive grammars, Theoret. Comput.

Sci. 302 (2003) 365–399.
[20] A. Okhotin, The hardest linear conjunctive language, Inform. Process. Lett. 86 (5) (2003) 247–253.
[21] A. Okhotin, Boolean grammars, Developments in Language Theory, Proceedings of DLT 2003, Szeged,

Hungary, July 7–11, 2003, Lecture Notes in Computer Science, Vol. 2710, Springer, Berlin, pp. 398–
410.

[22] A. Okhotin, State complexity of linear conjunctive languages, J. Automat. Languages Combin. 9 (2004)
to appear.

[23] A. Okhotin, On the equivalence of linear conjunctive grammars to trellis automata, Inform. ThVeorique
Appl. 38 (2004) 69–88.

[24] A.R. Smith III, Real-time language recognition by one-dimensional cellular automata, J. Comput. System
Sci. 6 (1972) 233–252.

[25] V. Terrier, On real-time one-way cellular array, Theoret. Comput. Sci. 141 (1995) 331–335.
[26] D. Wotschke, The Boolean closures of deterministic and nondeterministic context-free languages, in:

W. Brauer (Ed.), Gesellschaft fRur Informatik e., Vol. 3, Jahrestagung 1973, Lecture Notes in Computer
Science, Vol. 1, Springer, Berlin, 1973, pp. 113–121.

	On the number of nonterminals in linear conjunctive grammars
	Introduction
	Grammars, equations and automata
	Linear conjunctive grammars
	Language equations with union, intersection and linear concatenation
	Trellis automata

	Two nonterminals suffice
	Encoding of a computation
	A language equation for the encoded computation
	Decoding the original language

	One-nonterminal grammars
	The shrinking lemma
	Closure properties
	Decision problems
	The hardest language and the membership problem

	Nonterminal complexity of grammars in the linear normal form
	Simulating trellis automata with grammars
	Simulating grammars with trellis automata

	Conclusion
	Acknowledgements
	References

