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1. Introduction

  There are many kinds of reactive oxygen species (ROS), 
such as hydrogen peroxide, hydroxyl radical and singlet 
oxygen[1]. Free radicals are produced in normal or 
pathological cell metabolism[2]. Oxidation reactions, often 
radical initiated, are important processes in biological 
systems[3]. Antioxidant supplements or antioxidant 
containing plants may be used to help the human body to 
reduce oxidative damage[2,4-6]. Many bioactive compounds 
from plants have been screened for their potential uses as 
alternatives medicines for the treatment of many infectious 
diseases and also in preservation of food from the toxic 
effects of oxidants. In modern days the antioxidants and 
antimicrobial activities of plant have formed the basis 
of many applications in pharmaceuticals, alternative 
medicines and natural therapy[7]. The trend to use bioactive 

compounds from plants may act as natural antimicrobial 
and antioxidants influence the health. Also many bioactive 
compounds from plants have been used as a source of 
medicinal agents to cure urinary tract infections, cervicitis 
vaginitis, gastrointestinal disorders, respiratory diseases, 
cutaneous affections, helmintic infections, parasitic 
protozoan diseases and inflammatory processes[8].
  Pongamia pinnata (Linn) Pierre [family Fabacae , 
synonym;  Pongamia glabra Vent., Derris indica (Lam.) 
Bennet, Cystisus pinnatus Lam.] popularly known as 
‘Karanj’ or ‘Dittouri’ in Hindi and Indian beech, Pongam 
oil tree, Hongay oil tree in English[9,10]. Pongamia 
pinnata reported significant antihyperglycaemic and 
antilipidperoxidase[11-14], antifungal and antibacterial[15], 
antimicrobial [16-18].  Recently,  we have reported 
the antihyperglycaemic activity of alcoholic[19] and 
petroleum ether extract[20] of Pongamia pinnata (L.) 
and their concomitant administration with synthetic 
oral hypoglycaemic drugs[21]. We have also reported 
antihyperglycaemic[22] and antidiabetic[23]  activity activity 
cycloart-23-ene-3毬, 25-diol isolated from stem bark of 
Pongamia pinnata in streptozotocin-nicotinamide induced 
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diabetic mice. However, there is paucity of reports on the 
antioxidant antimicrobial activity of cycloart-23-ene-3毬, 
25-diol (B2). Therefore, the objective of present investigation 
was to evaluate in vitro antioxidant and antimicrobial 
activity of cycloart-23-ene-3毬, 25-diol (called as B2).

2. Material and methods

2.1. Cycloart-23-ene-3毬, 25-diol 

  Isolation and characterization of cycloart-23-ene-             
3毬, 25-diol (B2) has been previously reported by Badole 
and Bodhankar (2009). The structure of cycloart-23-ene-3
毬, 25-diol (B2) is shown in Figure 1[22]. 

2.2. Chemicals 

  1,1-Diphenyl-2-picryl-hydrazyl (DPPH), 毩-tocopherol, 
3-(2-pyridyl)-5,6-bis (4-phenyl-sulfonic acid)-
1,2,4-triazine (Ferrozine), thiobarbituric acid (TBA), 
trichloraceticacid (TCA),  potassium ferricyanide, nitroblue 
tetrazolium (NBT), phenazine methosulphate (PMS), 
nicotinamide adenine dinucleotide (NADH), ferric chloride, 
ascorbic acid and 2-deoxyribose were purchased from were 
purchased from Sigma Chemical Co. (St Louis, MO, USA). 
Sodium nitroprusside, hydrochloric acid, methanol, sodium 
hydroxide, and hydrogen peroxide (H2O2) were purchased 
from Merck (India). Disodium hydrogen phosphate 
(Research Lab, India), Potassium dihydrogen phosphate 
(S.D. Fine, Mumbai), sulphanilamide (Sisco Research Lab 
Pvt. Ltd, India), phosphoric acid (S.D. Fine Chem. Ltd. India) 
and napthylethylenediamine dihydrochloride (Unichem Ltd, 
India) were purchased from respective vendors. All other 
chemicals were analytical grade. 

2.3. Determination of free radical scavenging activity 
(DPPH)

  The scavenging activity of the B2 was determined by using 
1,1-diphenyl-2-pycrylhydrazyl (DPPH) assay previously 
reported by Bakar et al(2009). 1 mL of B2 solution (20, 40, 
60, 80 and 100 毺g/mL) and 毩-tocopherol (20, 40, 60, 80 
and 100 毺g/mL) were mixed with 5.0 mL of 1 mM DPPH 
in absolute methanol. The mixture was shaken vigorously 
and incubated at room temperature for 30 min in the dark. 
The absorbance was read by UV-visible spectrophotometer 
(Jasco V-530, Japan) against methanol at 517 nm[24]. The 
experiment was repeated triplicate. The activity was 
expressed as percentage DPPH-scavenging activity relative 
to the control, using the following equation:
  % inhibition (DPPH) = [1-(absorbance of sample/
absorbance of control)] 伊 100

2.4. Determination of reducing power

  Reducing power of B2 was determined by previously 
reported method Oyaizu (1986). 1 mL B2 solution (20, 40, 60, 
80 and 100 毺g/mL) as well as 毩-tocopherol (20, 40, 60, 80 
and 100 毺g/mL) were mixed with 2.5 mL phosphate buffer 
(0.2 M, pH 6.6) and 2.5 mL potassium ferricyanide (1%). The 

reaction mixture was incubated at 50 ℃ for 20 min. After 
incubation, 2.5 mL of trichloroacetic acid (10%) was added 
and centrifuged at 7 000 rpm. for 10 min. 2.5 mL solution 
from the upper layer was mixed with 2.5 mL distilled water 
and freshly prepared 0.5 mL FeCl3 (0.1%). The absorbance of 
sample solutions was read by UV-visible spectrophotometer 
at 700 nm. Increased absorbance of the reaction mixture 
indicated increased reducing power[25].

2.5. Determination of superoxide anion radical scavenging 
activity

  The method described by Liu et al(1997) with modification 
of Oktay (2003) was used for determination of superoxide 
anion scavenging activity of B2[26,27]. Superoxide radicals are 
generated non-enzymatically in phenazine methosulphate-
nicotinamide adenine dinucleotide (PMS-NADH) systems by 
the oxidation of NADH and assayed by the reduction of nitro 
blue tetrazolium (NBT). In this experiment, the superoxide 
radicals were generated in 3 mL of Tris-HCl buffer (16 mM, 
pH 8.0) containing NBT (50 毺M) solution and 1 al NADH 
(78 毺M) solution and sample solution of the B2 (20, 40, 60, 
80 and 100 毺g/mL) as well as 毩-tocopherol (20, 40, 60, 80 
and 100  毺g/mL) in methanol. The reaction was initiated by 
adding 1.0 mL of phenazine methosulphate (PMS) solution 
(10 毺M) to the mixture. The reaction mixture was incubated 
at 25 ℃ for 5 min, and the absorbance was read at 560 nm 
by UV-visible spectrophotometer. Decreased absorbance 
of the reaction mixture indicated increased superoxide 
anion scavenging activity[26,27]. The percentage inhibition 
of superoxide anion generation was calculated using the 
following formula:
  % inhibition (Superoxide anion) = [1-(absorbance of 
sample/absorbance of control)] 伊 100

2.6. Determination of hydroxyl (OH.) radical scavenging 
activity

  Deoxyribose method of Halliwell et al(1987) was used to 
determine the hydroxyl radical scavenging activity[28]. The 
reaction mixture, which contained B2 (20, 40, 60, 80 and 100 
毺g/mL) as well as 毩-tocopherol (20, 40, 60, 80 and 100 
毺g/mL), deoxyribose (3.75 mM), H2O2 (1 mM), potassium 
phosphate buffer (20 mM, pH 7.4), FeCl3 (0.1 mM), EDTA 
(0.1 mM) and ascorbic acid (0.1 mM), was incubated in 
a water bath at (37依0.5) ℃ for 1 h. 1 mL of TBA (1% w/
v) and 1 mL of TCA (2.8% w/v) were added to the mixture 
and heated in a water bath at 100 ℃ for 20 min. The 
absorbance of the resulting solution was measured UV-
visible sprectophotmeter at 532 nm[28]. All the analyses 
were performed in triplicates. The percent inhibition of 
deoxyribose degradation was calculated by the following 
formula:
% inhibition [hydroxyl (OH.) radical] = [1-(absorbance of 
sample/absorbance of control)] 伊 100

2.7. Determination of metal chelating scavenging activity

  The chelation of ferrous ions by B2 and 毩-tocopherol 
were determined by the method of Dinis et al(1994)[29]. B2 
(20, 40, 60, 80 and 100 毺g/mL) as well as 毩-tocopherol (20, 
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40, 60, 80 and 100 毺g/mL) were added to a 0.05 mL solution 
of FeCl2 (2 mM). The reaction was initiated by the addition 
of 0.2 mL ferrozine (5 mM) and the mixture was shaken 
vigorously and left standing at room temperature for 10 min. 
After the mixture had reached equilibrium, the absorbance 
of the solution was read UV-visible spectrophotometer at 
562 nm[29]. All tests and analyses were run in triplicate 
and averaged. The percentage inhibition of ferrozine-
Fe2+ complex formation was calculated using the following 
formula:
% inhibition (Metal chelating) = [1-(absorbance of sample/
absorbance of control)] 伊 100

2.8. Determination of hydrogen peroxide (H2O2) scavenging 
activity

  The ability of the B2 to scavenge H2O2 was determined 
by the method of Ruch et al (1989)[30]. Solution of H2O2 
(4 mM) was prepared in phosphate buffer (pH 7.4). H2O2 
concentration was determined UV-visible spectrophotometer 
from absorption at 230 nm in UV-Visible spectrophotometer 
(Jasco V-530). B2 (20, 40, 60, 80 and 100 毺g/mL) as well as 
毩-tocopherol (20, 40, 60, 80 and 100 毺g/mL) in methanol 
was added to a H2O2 solution (0.6 mL, 40 mM). Absorbance of 
H2O2 at 230 nm was determined after 10 min against a blank 
solution containing in phosphate buffer without H2O2[30]. The 
percentage of H2O2 scavenging was calculated by following 
formula:
% inhibition (H2O2) = [1-(absorbance of sample/absorbance 
of control)] 伊 100

2.9. Determination of nitric oxide radical scavenging activity

  The method described by Green et al(1982) was used for 
determination of nitric oxide radical scavenging of B2[31]. 
Sodium nitroprusside (5 mM) in phosphate-buffered saline (PBS) 
was mixed with 3.0 mL of B2 (20, 40, 60, 80 and 100 毺g/mL)
as well as 毩-tocopherol (20, 40, 60, 80 and 100 毺g/mL) 
dissolved in the methanol and incubated at 25 ℃ for 150 min.
The samples from the above were reacted with Greiss 
reagent (1% sulphanilamide, 2% phosphoric acid and 0.1% 
napthylethylenediamine dihydrochloride). The absorbance 
of the chromophore formed during the diazotization of 
nitrite with sulphanilamide and subsequent coupling 
with napthylethylenediamine was read by UV-visible 
spectrophotometer at 546 nm[31]. The percentage inhibition 
of nitric oxide was calculated by the following formula:
  NO scavenged (%) = [1-(absorbance of sample/absorbance 
of control)] 伊 100

2.10. Determination of antimicrobial activity by cup plate 
method

  Antimicrobial activity of B2 was screened against different 
test organisms. The particular concentration 10-100 毺g/
mL of B2 were prepared and added in each well. Bacterial 
cultures were grown overnight in sterile nutrient broth and 
fungal culture grown for 18-24 h in sterile SDA medium. 
Their optical density (OD) was adjusted to 0.1. This adjusted 
OD culture was spread (100 毺L) on sterile nutrients agar 
plates and fungal culture on sterile sabouraud’s dextrose 

agar plate. The cavities were prepared in agar plate by 
using cork borer and 100 毺L of drug solution was added. 
The plates were incubated at 37 ℃ for 48 h for detection of 
antibacterial activity and at 28 ℃ for 72 h for the detection 
of antifungal activity. Zone of inhibition around the drug 
was recorded in mm. This activity was compared with 
standard antibiotic tetracycline (bacteria) and fluconazol 
(antifungal). The test bacteria included were Staphylococcus 
aureus (NCIM2079), Escherichia coli (NCIM2345), Bacillus 
subtilis (NCIM2063) and the test fungi included Aspergillus 
niger (NCIM529), Aspergillus fumigates (NCIM623), Candida 
albicans (NCIM3471), Penicillium (NCIM745) species.

2.11. Statistical analysis

  All analyses were performed in triplicate. Data was 
expressed as mean依SEM.  Statistical analysis was carried 
out by one way ANOVA followed by post hoc Tukey test 
performed using GraphPad InStat version 3.00 for Windows 
VistaTM BASIC, GraphPad Software, San Diego, California, 
USA. P < 0.05 was considered statistically significant.

3. Results 

3.1. Determination of free radical scavenging activity 
(DPPH)

  The DPPH scavenging effect of B2 were (40.44依1.40)%, 
(43.58依1.21)%, (45.56依0.77)%, (50.91依0.95)%, and (53.06依
0.92)% at the concentration of 20, 40, 60, 80 and 100 毺g/mL, 
respectively. While DPPH scavenging effect of 毩-tocopherol 
were (28.86依0.32)%, (30.96依0.99)%, (33.60依1.29)%, (36.38依
1.08)% and (42.09依0.75)% at the concentration of 20, 40, 60, 
80 and 100 毺g/mL, respectively. The results thus indicated 
that significant (P<0.001) decrease in the DPPH radicals may 
be due to the scavenging ability of B2 and 毩-tocopherol. 
Free radical scavenging activity was increased with an 
increasing concentration. B2 was more effective than 毩
-tocopherol as scavenging compound.

3.2. Determination of reducing power

  The reducing power of B2 and 毩-tocopherol was dose 
dependent. The absorbance was 0.13依0.01, 0.17依0.01, 0.20
依0.01, 0.25依0.01 and 0.27依0.01 at the concentration 20, 40, 
60, 80 and 100 毺g/mL of B2 respectively. The absorbance 
by 毩-tocopherol was 0.05依0.01, 0.07依0.01, 0.09依0.01, 0.11依
0.02 and 0.15依0.002 at the concentration of 20, 40, 60, 80 and 
100 毺g/mL, respectively. B2 thus exhibited strong reducing 
power compared to 毩-tocopherol.

3.3. Determination of superoxide scavenging 

  B2 significant inhibited superoxide radicals in a dose 
dependent(P<0.001). The percentage (34.67依0.76)%, (40.08
依0.69)%, (50.90依0.72)%, (58.94依0.12)% and (63.86依0.41)% 
inhibition of superoxide radical generation by B2 was at 20, 
40, 60, 80 and 100 毺g/mL whereas 毩-tocopherol had (23.95
依0.43)%, (33.63依0.43)%, (41.19依0.21)%, (48.87依0.27)% and 
(57.66依0.59)% inhibition by the at concentration 20, 40, 60, 
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80 and 100 毺g/mL, respectively.

3.4. Hydroxyl (OH.) radical scavenging activity

  B2 and 毩-tocopherol significantly (P<0.001) inhibited 
hydroxyl radical scavenging activity in a dose dependent 
manner. The hydroxyl radical scavenging activity of B2 
was (22.35依0.48)%, (29.77依0.19)%, (43.44依0.56)%, (51.22依
0.98)% and (59.88依0.38)% at the concentration of 20, 40, 60, 
80 and 100 毺g/mL, respectively. While hydroxyl radical 
scavenging activity of 毩-tocopherol was (16.17依0.29)%, 
(24.05依0.25)%, (30.41依0.64)%, (35.57±0.77)% and (45.63依
0.35)% at the concentration of 20, 40, 60, 80 and 100 毺g/mL, 
respectively. 

3.5. Determination of metal chelating scavenging activity

  A dose dependent decrease in the absorbance of Fe2+-
ferrozine complex was produced by B2 and 毩-tocopherol. 
The percentage of metal chelating capacity of 20, 40, 
60, 80 and 100 毺g/mL of B2 was 26.04依0.75) %, (38.18依
0.92)%, (47.61依0.45)%, (52.50依0.53)% and (59.43依1.09)%, 
respectively. While metal chelating capacity of 20, 40, 60, 80 
and 100 毺g/mL of 毩-tocopherol was (12.78依1.18)%, (22.41
依0.63)%, (36.41依0.79)%, (43.01依0.63)% and (53.86依0.70)%, 
respectively. 

3.6. Hydrogen peroxide (H2 O2
.) radical scavenging activity

  B2 and 毩-tocopherol significantly (P<0.001) inhibited 
hydrogen peroxide radical scavenging activity in a dose 
dependent manner. The hydrogen peroxide radical 
scavenging activity of B2 was (23.27依0.99)%, (31.35依
1.40)%, (39.40依0.71)%, (47.14依0.71)% and (51.58依0.41)% 
at the concentration of 20, 40, 60, 80 and 100 毺g/mL, 
respectively. While hydrogen peroxide scavenging activity 
of 毩-tocopherol was (13.45依0.62)%, (19.93依0.62)%, 
(24.32依0.76)%, (29.58v0.69)% and (33.33依0.31)% at the 
concentration of 20, 40, 60, 80 and 100 毺g/mL, respectively. 

3.7. Determination of nitric oxide radical scavenging activity

  Both B2 and 毩-tocopherol significantly  inhibited nitric 
oxide radical scavenging activity in a dose dependent 
manner(P <0.001). Nitric oxide radical scavenging activity of 
B2 was 22.40%, 34.20%, 42.22%, 52.09% and 58.19% at the 
concentration of 20, 40, 60, 80 and 100 毺g/mL, respectively. 
While nitric oxide scavenging activity of 毩-tocopherol 
was 17.64%, 26.03%, 35.70%, 42.55% and 51.83% at the 
concentration of 20, 40, 60, 80 and 100 毺g/mL, respectively. 

3.8. Determination of antimicrobial activity by cup plate 
method

  Different concentrations of B2 from 10 毺g/mL to 100 毺g/
mL showed linear activity with increase in concentration. 
This data indicated that the species exhibited broad-
spectrum activity against bacteria and strong activity against 
yeast type of fungi, whereas does not shown activity against 
Pseudomonas aeruginosa, very low activity against mold 
type of fungi such as Aspergillus niger, Aspergillus fumigatus 

and no activity against Penicillium notatum. The minimum 
inhibitory concentration (MIC) of B2 was found to be at 80 毺g/mL
for bacteria and 100 毺g/mL for fungi. 

Figure 1. Structure of Cycloart-23-ene-3毬, 25-diol (B2).

 
4. Discussion

  DPPH assay has been widely used to provide basic 
information on the antioxidant ability of extracts from plant, 
food material or on single compounds, because this method 
has shown to be rapid and simple available[32]. The effect 
of antioxidants on DPPH radical scavenging was thought 
to be due to their hydrogen donating ability[33,34] and is a 
useful reagent for investigating the free radical scavenging 
activities of compounds[35]. DPPH radical is a stable free 
radical and accepts an electron or hydrogen radical to 
become a stable diamagnetic molecule[36]. The reduction 
capability of DPPH radicals was determined by the decrease 
in its absorbance at 517 nm induced by antioxidants. The 
decrease in absorbance of DPPH radical is caused by 
antioxidants, because of the reaction between antioxidant 
molecules and the radical, progresses, which results in the 
scavenging of the radical by hydrogen donation. It is visually 
noticeable as a discoloration from purple to yellow. Hence, 
DPPH is usually used as a substrate to evaluate antioxidative 
activity of antioxidants[37,38].
  These results indicated that B2 has a noticeable effect 
of scavenging free radicals. It was reported that oxidative 
stress, which occurs when free radical formation exceeds the 
body’s ability to protect itself, forms the biological basis of 
chronic condition[39]. B2 react with free radicals which are 
the major initiator of the autoxidation chain of fat, thereby 
terminating the chain reaction[40,41]. It is thus apparent that 
B2 is free radical inhibitor or scavenger, as well as a primary 
antioxidant that reacts with free radicals, which may limit 
free radical damage occurring in the human body. B2 had 
comparably less DPPH radical scavenging activity than 毩
-tocopherol.
  Several methods have been developed to measure the 
efficiency of antioxidants as pure compounds. Different 
studies have indicated that the antioxidant effect is related 
to the development of reductones. Reductones were reported 
to be terminators of free radical chain reactions[42].
  The reducing power assay measures the electron-donating 
ability of antioxidants using potassium ferricyanide 
reduction method. Antioxidants reduce the ferric ion/
ferricyanide complex to the ferrous form, the Perl’s Prussian 
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blue complex[43,44]. The reducing capacity of a compound 
may serve as a significant indicator of its potential 
antioxidant activity[45]. The antioxidant activity of an B2 and 
毩-tocopherol have been attributed to various mechanisms, 
among which are prevention of chain initiation, binding of 
transition metal ion catalysts, decomposition of peroxides, 
prevention of continued hydrogen abstraction, reductive 
capacity and radical scavenging[46-48]. The reducing 
capacity of a B2 and 毩-tocopherol indicate their potential 
antioxidant activity.
  Superoxide is biologically important since it can be 
decomposed to form stronger oxidative species such as 
singlet oxygen and hydroxyl radicals[49,50]. In PMS-NADH-
NBT system, superoxide anion derived from dissolved oxygen 
by PMS-NADH coupling reaction reduces NBT. The decrease 
of absorbance at 560 nm with antioxidants indicates the 
consumption of superoxide anion in the reaction mixture[51]. 
B2 had strong superoxide radical scavenging activity and 
exhibited higher superoxide radical scavenging activity than 
the 毩-tocopherol. 
  The binding of ferrous ions by B2 was estimated by the 
method of Dinis et al(1994)[29]. Ferrozine can quantitatively 
form complexes with Fe2+. In the presence of chelating 
agents, the complex formation is disrupted with the 
result that the red colour of the complex is decreased. 
Measurement of colour reduction therefore allows estimation 
of the chelating activity of the coexisting chelator[52]. 
B2 and 毩-tocopherol interfered with the formation of 
ferrous and ferrozine complex, suggesting that they have 
chelating activity and capture ferrous ion before ferrozine.  
Iron can stimulate lipid peroxidation by Fenton reaction, 
and also accelerates peroxidation by decomposing lipid 
hydroperoxides into peroxyl and alkoxyl radicals that can 
themselves abstract hydrogen and perpetuate the chain 
reaction of lipid peroxidation[38,53,54]. The data revealed that 
B2 and 毩-tocopherol marked capacity for iron binding, 
suggesting that their action as peroxidation protector may be 
related to its iron binding capacity. Metal chelating activity 
was significant since it reduced the concentration of the 
catalyzing transition metal in lipid peroxidation[37]. It has 
been reported that chelating agents which form 毩bonds 
with a metal are effective as secondary antioxidants because 
they reduce the redox potential, thereby stabilizing the 
oxidized form of the metal ion[41]. As shown in  this study, 
the formations of the Fe2+-ferrozine complex were prevented 
by B2 and 毩-tocopherol.
  OH radical is the most reactive free radical in biological 
systems and it can be formed from superoxide anion and 
hydrogen peroxide in the presence of metal ions, such as 
copper and iron. Hydroxyl radical has been implicated as a 
highly damaging species in free radical pathology, capable 
of damaging almost every molecule found in living cells. 
For example, OH- radicals react with lipid, polypeptides, 
proteins and DNA, especially thiamine and guanosine. This 
radical has the capacity to conjugate with nucleotides in 
DNA, cause strand breakage, and lead to carcinogenesis, 
mutagenesis and cytotoxicity[55]. The highly reactive OH 
radicals can cause oxidative damage to DNA, lipids and 
proteins[56]. As is the case for many other free radicals, OH- 
radicals can be neutralised if it is provided with a hydrogen 
atom. The results indicate that B2 had strong hydroxyl 
radical scavenging activity than 毩-tocopherol.

  The ability of B2 and 毩-tocopherol to scavenge H2O2 was 
determined according to the method of Ruch et al(1989)[30]. 
H2O2 is highly important because of its ability of penetrate 
biological membranes. H2O2 itself is not very reactive, but 
it can sometimes be toxic to cell because it may give rise to 
hydroxyl radical in the cells[28]. Thus, removing H2O2  is very 
important for the protection of living systems. The results 
indicate that B2 had strong hydrogen peroxide radical 
scavenging activity than 毩-tocopherol.
  Nitric oxide radical generated from sodium nitroprusside 
at physiological pH was found to be inhibited by B2 and 毩
-tocopherol. Sodium nitroprusside in aqueous solution at 
physiological pH spontaneously generates nitric oxide[57,58] 
which interacts with oxygen to produce nitrite ions that can 
be estimated by use of Greiss reagent. Scavengers of nitric 
oxide compete with oxygen leading to reduced production of 
nitric oxide[31]. B2 had comparably more nitric oxide radical 
scavenging activity than 毩-tocopherol.
  Antimicrobial activity of B2 was screened against 
different microbial species by using cup plate technique. 
Antimicrobial activity was checked and results were 
expressed in terms of zone of inhibition (in mm). Different 
bacterial and fungal strains were used. B2 showed strong 
activity against bacteria like Bacillus subtilis (MIC- 30 
mm), Staphylococcus aureus (MIC- 25 mm), Escherichia coli 
(MIC- 22 mm) and fungi as Candida albicans (MIC- 34 mm) 
species. Since many plant terpenoids previously have been 
found to be responsible for several biological properties, 
including antimicrobial properties[59-77], hence the 
antimicrobial activity of B2 would be related to its terpenoid 
nature of the compounds.
  In conclusion, cycloart 23-ene-3毬, 25 diol (B2) isolated 
from stem bark of Pongamia pinnata show dose dependent 
antioxidant activity. B2 show comparatively less DPPH 
radical scavenging activity but more reducing power, 
superoxide scavenging, hydroxyl radical scavenging, metal 
chelating scavenging, hydrogen peroxide radical scavenging 
and nitric oxide radical scavenging activity than 毩
-tocopherol and B2 exhibits broad-spectrum activity against 
bacteria and strong activity against yeast type of fungi. The 
results confirm antioxidant and antimicrobial activity of B2.
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