
Discrete Applied Mathematics 23 (1989) 243-265

North-Holland
243

ON MINIMIZING WIDTH IN LINEAR LAYOUTS*

Fillia MAKEDON** and Ivan Hal SUDBOROUGH**
Computer Science Program, University of Texas at Dallas, Richardson, TX 7SO83-0688, USA

Received 22 December 1983
Revised 30 August 1988

Let G be a finite undirected graph and let cw(G), s(G) and b(G) denote the cutwidth, search
number, and bandwidth of G, respectively. Characterizations of graphs with cutwidth 2 and cut-

width 3 are described. Cutwidth is related to search number and bandwidth by the inequalities:
s(G) 5 cw(G) I L$deg(G)J - (s(G) - 1) + 1 and cw(G) 5 L+deg(G)J . b(G) + 1, where deg(G) de-
notes the maximum degree of any vertex in the graph G. It follows as an interesting corollary
that search number and cutwidth are identical for graphs with maximum vertex degree three. It
is also shown that these inequalities are almost the best possible. Finally, a dynamic programming
algorithm is described that determines, for each fixed k B 2, whether cw(G)s k or not in
O(&‘) steps. Thus, it follows that graphs with cutwidth 2 can be recognized in linear time.

1. Introduction

In 1967 Arnold Weinberger [18] described a method for large scale integration of
MOS complex logic circuits which is often used for the purposes of automation. The
circuit board or chip is produced with a single type of gate, e.g. NOR or NAND
gates; all gates are placed in horizontal rows with uniformly spaced intervals between
successive gates. The chip is “personalized” to represent a particular circuit by the
way in which the gates are interconnected. This approach using Weinberger arrays,
also called “gate matrices” and “uncommitted logic arrays”, has been the subject
of several papers in the literature [l, 3,9,12,15,17,20]. An objective of this approach
is to find an optimal arrangement of the circuit elements so that the number of
horizontal tracks needed for their interconnection is minimized.

An equivalent problem has been studied in graph theory. Let G = (V, E) be a finite
undirected graph. A linear layout of G is a one-to-one function L mapping the ver-
tices of G to integers. That is, L is simply a numbering of the vertices. The cutwidth
of G under the linear layout L, denoted by cw(G, L), is the maximum over all in-
tegers i, of the number of edges that connect vertices assigned to integers smaller
than i with vertices assigned to integers at least as large as i. That is, cw(G, L) is the

* A preliminary version of these results appear in: Proceedings 10th International Conference on
Automata, Languages and Programming (ICALP), Barcelona, Spain (1983).

** Supported in part by NSF grant MCS 81-09280. A portion of this work was done while the authors
were visiting the National Technical University of Athens, Greece.

0166-218X/89/$3.50 0 1989, Eisevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82053997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

244 F. Makedon, I.H. Sudborough

maximum number of edges connecting vertices on opposite sides of any of the
“gaps” between successive vertices in the linear layout L. The cutwidth of G,
denoted by cw(G), is min{cw(G, L) 1 L is a linear layout of G}. The problem in
graph theory, called the min cut linear arrangement problem, is the following:

Min cut linear arrangement (min cut) problem.

Input. A finite undirected graph G = (V, E) and a positive integer k,
Question. Is cw(G) I k?

An example is shown in Fig. 1. That the min cut problem is equivalent to the
problem of minimizing the number of “tracks” or “channels” in a horizontal cir-
cuit layout is shown in [5].

The min cut problem is known to be NP-complete [5,16]; in fact, it is known to
remain NP-complete for graphs with maximum vertex degree 3 [lo]. Polynomial
time algorithms are known for the min cut problem on trees. First, an O(n log n)
algorithm was described by Lengauer [8] which produced a layout L for any tree
T such that cw(T, L) I 2. cw(T). Secondly, for each d 2 3, an O(n logde2n) algo-
rithm was described [2] which solved the min cut problem for the class of trees with
maximum vertex degree d. Most recently, an O(n log n) algorithm has been an-
nounced by Yannakakis [19] to solve the min cut problem for arbitrary trees.

In (21 it was shown that the cutwidth of a tree with maximum vertex degree 3 is
identical to its search number. The search number of a graph G, denoted by s(G),
has been studied in [11,141. In Section 3 of this paper we extend this relationship
to show that search number and cutwidth are, in fact, identical for all graphs with
maximum vertex degree 3. Furthermore, we show that, for any graph G,

s(G) 5 cw(G) I L+deg(G)J . (s(G) - 1) + 1,

where deg(G) denotes the maximum degree of any vertex in G.
In Section 2 we give characterizations of graphs having cutwidth 2 and cutwidth

3. These characterizations strongly suggest linear time algorithms for determining
if a graph G has cutwidth 2 or cutwidth 3. We do not, however, explicitly give such
algorithms. Previous results in the literature give characterizations of graphs with
search number 2 and 3 [l l] and a linear time algorithm for recognizing graphs with
bandwidth 2 [4].

Fig. 1. A graph with cutwidth three (top) and a cutwidth three layout of this graph (bottom).

On minimizing width in linear layouts 245

In Section 4 we give explicitly a dynamic programming algorithm which deter-
mines, for each fixed k ~2, whether cw(G) I k or not in at most O(nk-r) steps.
This improves a previous dynamic programming algorithm [6] which required
O(nk) steps. In particular, the dynamic programming algorithm given in Section 4,

explicitly shows that graphs with cutwidth 2 can be recognized in !inear time.
We shall assume throughout that the graphs considered are connected. It is easily

seen that an arbitrary graph G has cutwidth k if and only if each of its connected
components has cutwidth k. Therefore, our results, while at first seemingly limited

to the connected components of a graph, in fact give the corresponding result for
the entire graph.

2. Characterizing graphs with cutwidth 2 and 3

We describe characterizations of graphs with cutwidth 2 and cutwidth 3. Let us
first consider various operations on a graph and their effect on cutwidth. The first
operation is called “node splitting”. That is, let x be a vertex in a graph G that is
incident to a set of edges E(x). Consider the partition of the set E(x) into any two

sets E,, and E,,. Construct the graph G’, which has the same set of vertices as G,,
except that vertex x has been replaced by two distinct vertices x1 and x2, and which
has the same edges as G, except that the edges in E,, are made incident to x1 and
the edges in E,, are made incident to x2. An example of the operation of node

splitting is shown in Fig. 2.
It is straightforward to show that, if G’ is obtained from G by node splitting, then

cw(G’) d cw(G). We note also that the inverse operation of “coalescing” vertices
cannot decrease the cutwidth, provided that it is understood that, when x and y are

coalesced and they are joined by an edge in the original graph, the new graph has
a self loop on the coalesced vertex. (The cutwidth of a graph with a self loop on
a vertex x is defined to be the same cutwidth as the graph in which a single degree
2 vertex is inserted into the self loop.)

Next consider the operation of “edge subdivision”. That is, let e be an edge in
a graph G connecting vertices x and y. Construct the new graph G’ from G by ad-

ding a new vertex z, and replacing the edge e with two edges, one connecting x and
z and one connecting z and y. It is straightforward to see that G’ has the same cut-
width as G.

Similarly, the operation of “reduction”, which is the deletion of degree 2 vertices

G: @ G':m

Fig. 2. G’ is obtained from G by node splitting.

246 F. Makedon. I.H. Sudborough

from an edge, does not change the cutwidth of a graph. That is, if G has a degree
2 vertex x adjacent to vertices y and z, then G’, which is obtained by deleting x and

its incident edges and joining y and z together by a new edge, is obtained by a single
reduction operation. The reduction of G is the graph obtained from G by applying
all possible reduction operations.

Finally, the operation of deleting an edge can, clearly, not increase the cutwidth

of a graph. So, if G’ is obtained from G by the deletion of some edge, then

cw(G’) 5 cw(G).

Theorem 2.1. Let G = (V, E) be a finite undirected graph. The following statements
are equivalent:

(1) G has cutwidth at most 2.
(2) G does not contain a homeomorphic image of any of the graphs shown in

Fig. 3 or of any of the graphs that can be obtained from any of these graphs by
coalescing vertices.

(3) The reduced graph G’ of G has at most vertex degree 4 and consists of a se-
quence of vertices a 1, a2, . . . , a, (for some r 2 1) such that, for all i (1 5 i < r), a, is
joined to ai,, by either one or two edges, together with the following attachments:
(a) single edges and (b) a serf loop added to one of the vertices a 1, a2, a,_ ,, or a,,
provided that, if a self loop is attached to a2 (ar- 1), then aI (a,, respectively) has
degree one.

Proof. (1) + (2) It is straightforward to verify that all of the graphs shown in Fig. 3
have cutwidth larger than 2. Since coalescing vertices can not decrease cutwidth,
graphs formed from these graphs by coalescing vertices can not have cutwidth 2.
Also, no graph that is a homeomorphic image of these graphs can have cutwidth 2.
Since the cutwidth of a graph is at least as large as the cutwidth of any of its sub-

graphs, if G has a subgraph that is a homeomorphic image of any of these graphs,
then G cannot have cutwidth 2.

(2) + (3) We assume that G does not contain a subgraph that is a homeomorphic
image of any of the five subgraphs shown in Fig. 3 or of any graph formed from

these graphs by coalescing vertices. Let G’ be the reduction of G, so that G’ has no
degree 2 vertices. We will show that G’ consists of a chain of vertices a1,a2, . . . ,a,
(some rz l), with ai attached to ai+ 1 by one or two edges, for all i (1 I i< r),

Fig. 3. Graphs that are forbidden components of any cutwidth 2 graph.

On minimizing width in linear layouts 247

together with the type of attachments indicated. We note that such a chain must
contain all vertices in G’ with degree greater than 2.

Suppose that there were no chain that contained all vertices in G’ with degree at
least 3. Then, there must be a vertex x and three vertex disjoint paths to vertices,
say a, b, and c, with degree at least three. We observe that no cycle can contain two
of the vertices a, b, c and also the vertex x, since then the graph G’ would contain
a homeomorphic image of the fifth graph in Fig. 3 or one obtained from it by
coalescing vertices. But, if there is no cycle and there is a vertex x with three disjoint
paths to vertices with degree at least three, then G’ would contain a subgraph that
is a homeomorphic image of the fourth graph in Fig. 3. So, in fact, there can be
no such vertex x, and it must be possible to construct a chain C containing all ver-
tices with degree greater than two. Furthermore, since G’ does not contain any
degree 2 vertices, all vertices not part of the chain must have degree one. It follows
that G’ must be the chain C together with single edges or self loops added to the
vertices of this chain.

Suppose that a self loop were attached to a vertex x in this chain C such that x
had two neighbors with degree 3. Then, G’ would contain a subgraph that is a
homeomorphic image of the third graph in Fig. 3 or a graph formed from it by
coalescing vertices. So, in fact, the only self loops must be attached to vertices at
the ends of the chain as specified. Clearly the successive vertices of the chain C can-
not be connected by more than two edges, for then the second graph of Fig. 3 would
be a subgraph of G’. Finally, no vertex can have degree greater than four, for then
the first graph of Fig. 3 would be a subgraph of G’.

(3) -+ (1) Let G be a graph whose reduction G’ satisfies the conditions indicated
in the third statement. To show that G has cutwidth 2 it is sufficient to show that
G’ has cutwidth 2. This is straightforward. One creates a layout in which the chain
vertices al,a2, a, (for some rz 1) are laid out in the order they appear in the se-
quence and then “folds in” the edges and self loops attached to the chain vertices
in a straightforward manner. Cl

Let G be a reduced graph with cutwidth 2. By Theorem 2.1 there is a chain of
vertices al, a2, . . . , a, (some rl 1) such that, for all i (1 zz i < r) ai is connected to ai+ 1

by one or two edges such that G consists of the chain C together with single edges
or self loops added to the vertices in the stated manner. An “endpoint” of G is a
vertex such that, for some chain C, as above, it is (1) either the first or last vertex
in the sequence, when there is no self loop at that end of the sequence, or (2) a new
degree 2 vertex inserted into a self loop of G. That is, an endpoint of G is a vertex
that can be the first or the last vertex of G in a cutwidth 2 layout.

Definition 2.2. A graph G is outerplanar if it has a planar embedding in which a
single face includes all of its nodes. The edges of that face are called sides and the
remaining edges are called chords. A graph G is biconnected if the removal of any
single vertex from G (and all of its incident edges) leaves a connected graph. A bi-

248 F. Makedon, I.H. Sudborough

connected outerplanar graph G satisfies the collinear chord property if it is possible
to add some chords to G (possibly zero) forming an outerplanar graph G’ in which

all the chords form a simple chain.

In other words, a biconnected outerplanar graph G satisfies the collinear chord

property if in an outerplanar representation of G one can draw a line, never entering
the external region or picking up the pencil, which passes through all of the chords
of G such that one part of the line never crosses or touches another part of the line.

Examples of a biconnected outerplanar graph with the collinear chord property and

a biconnected outerplanar graph that does not satisfy the collinear chord property
are given in Fig. 4.

Aemtna 2.3. Let G be a finite biconnected graph. The following statements are
equivalent:

(1) cw(G) I 3.

(2) The reduction of G is outerplanar and satisfies the collinear chord property.

Proof. (1) ---t (2) Let G have cutwidth 3. Let G’ be the reduction of G. Consider a
layout L of G’ such that cw(G’, L) 5 3. Let x and y be the first and last vertices of
G’ under the layout L, respectively. Since G’ is biconnected there must be two vertex
disjoint paths, say P, and P2, connecting x and y. The vertices in these two paths

must be positioned in such a way by the layout L such that if u is closer than u to
the vertex x by the path Pi (i= 1,2), then u is before u in the layout. If this were not

true, then L could not be a cutwidth 3 layout of G’. Furthermore, in every cut of
G’ between x and y, there are at least two edges, one contributed by the path P,
and one by the path Pt. So, if we delete the edges in these two paths from G’, the
result must be a cutwidth one graph. (It need not be connected, however.) First,
observe that every vertex in G’ lies on one of the two paths PI or Pt. For suppose
a vertex x did not lie on either path. Such a vertex must have degree one, since there

are no vertices of degree two in a reduced graph and if the degree was three or more,
then the cut adjacent to this vertex would be at least of size four. However, no vertex
in a biconnected graph with at least three vertices can have degree one. So, it follows

that every vertex in G’ lies on one of the two paths: P, or P2.
Next, we observe that when the edges from the two paths PI and PI are deleted

from G’ the remaining edges connect vertices which are adjacent in the layout L.

Fig. 4. A biconnected outerplanar graph (a) satisfying the collinear chord property and (b) not satisfying

the collinear chord property.

On minimizing width in linear layouts 249

For otherwise, if a remaining edge connected vertices u and u and passed over a
vertex w, then the vertex w must have had degree 2 in the graph G’ and this con-
tradicts the fact that G’ is reduced.

Now consider the following outerplanar representation of 6’. The vertices of G’
are laid out along a line in the order specified by the layout L. The edges in the path

P, are drawn above the line, the edges in the path P2 are drawn below the line, and
all of the remaining edges are positioned on the line containing the vertices. This
is, in fact, an outerplanar layout, since all of the vertices of G’ are on the external

region and none of the edges intersect except at the ends. The edges in the line con-
taining the vertices are the chords. Furthermore, it is evident that G’ satisfies the

collinear chord property, since one can draw a line starting from the leftmost vertex
in the layout and proceeding through the line of vertices to the rightmost vertex.

This line must, as we have seen, pass through all of the chords. So, if G has cutwidth
3, then the reduced graph G’ must be outerplanar and satisfy the collinear chord

property.
(2) + (1) For the other direction, let G be a biconnected graph whose reduction

G’ has an outerplanar representation and satisfies the collinear chord property. We

need to show that G’ has cutwidth 3, since G and its reduction G’ have the same
cutwidth. As G’ satisfies the collinear chord property there is a chain al,a2,aP

(some p 1 1) such that, for every chord c in G’, there is an i (1 I i<p) such that

{ai,ai+t) CC. Th is c h ain must, in fact, include every vertex in G’, since every vertex
in G’ is incident to a chord, i.e. it must have degree 13. Furthermore, no vertex
is listed twice in this chain by the collinear chord property. So, define the layout L
that maps the vertex ai to the integer i, for all i (1 I ir p). G’ must have cutwidth

at most three under the layout L, since the sides of G’ (from its outerplanar

representation) add only two additional edges to every cut across the layout L. 0

Let G be an arbitrary graph. A biconnected component of G is “simple” if it con-

sists of a single edge; otherwise, the biconnected component is said to be “non-
simple”. An arbitrary vertex of G is “simple” if it does not belong to any nonsimple
biconnected component; it is “semisimple” if it belongs to a simple biconnected

component and to a nonsimple component.

Theorem 2.4. Let G be a finite undirected graph. G has cutwidth at most three if
and only if G can be obtained by the operations of node splitting, edge subdivision,
reduction, and edge deletion from a chain C= C,, . . . , C, (m L 1) of biconnected
graphs, together with cutwidth two graphs attached to some of its vertices, such that
the following properties are satisfied:

(1) For all i (1 5 i < m), Ci and Ci+ I share an articulation point ai.
(2) For ail i (1 5 i 5 m), Ci satisfies the conditions of Lemma 2.3; in fact, all of

the chords in Ci are part of a line that can be drawn from ai_ I to ai (a0 and a,,, are
vertices that are chosen in Cl and C,,,, respectively).

(3) For all i (1 I i< m), if ai is simple, then a single cutwidth 2 graph can be at-

250 F. Makedon, I.H. Sudborough

tached to ai and, if ai is semisimple, then a single cutwidth 2 graph can be attached
by an endpoint to ai.

(4) No attachments of cutwidth 2 graphs can be made to C except those allowed
in (3).

Proof. First we show that, if G can be obtained from such a chain and attachments
by the stated operations, then G has cutwidth at most 3. In fact, since the operations
do not increase the cutwidth of a graph, it is sufficient to show that such a chain
with the indicated attachments always has cutwidth at most three. This is relatively
straightforward. That is, one first lays out the chain of biconnected graphs. It is
clear, since each biconnected graph satisfies the collinear chord property of
Lemma2.3 and the chain of chords can be drawn from one articulation point to the
next, that this chain of biconnected graphs can be laid out with cutwidth 3. Thus,
it is sufficient to show that all the indicated attachments can be “folded in” without
making the cutwidth greater than three. If ai is a simple articulation point, i.e. it
is a vertex shared by two single edges in the chain C, then clearly the indicated cut-
width 2 attachment can be laid out with just these two edges passing over and the
resulting cuts between successive vertices have 3 edges. Similarly, if ai is a semi-
simple articulation point, i.e. it is a vertex shared by a simple edge and a nonsimple
biconnected component, then a cutwidth 2 graph attached by an endpoint to ai can
be laid out under the simple edge with the cutwidth total at most three. That is, since
the cutwidth 2 graph is attached by its endpoint, it can be laid out with cutwidth
2 and its attached vertex at one end of its layout. So, it follows that any chain of
biconnected graphs with the indicated attachments has a layout with cutwidth at
most 3.

Conversely, let G be a graph with cutwidth at most 3. Let L be a layout of G such
that cw(G,L) I 3. Let A and B be the vertices that are first and last, respectively,
under the layout L. There must be a path connecting A to B. Let P be such a path.
Let C,,Cz,..., C,, be the biconnected components of G that share at least two ver-
tices with path P (for some m 2 1) and let ai, for all i (1 I i< m), be the articulation
point that is part of the components C’i and Ci+ ,.

If all of the edges in the components C,,Cz,C. are deleted, the remaining
graph must have cutwidth at most two, since there is at least one edge from the path
P in each of the cuts in the linear layout L. So, all attachments to this chain of corn--
ponents must have chtwidth at most two.

Consider now the attachments one of the nonsimple biconnected components in
this chain may have. Let Ci be any such nonsimple component. C’i can have several
graphs with cutwidth one attached to it; however, at most two graphs with cutwidth
two can be attached. That is, from the leftmost vertex of C’i to the rightmost vertex
of Ci (in the layout L) there are at least tno edges that are part of Ci in each suc-
cessive cut. Thus, at most two cutwidth two attachments are possible: one could be
laid out before the leftmost vertex of Ci and one laid out after the rightmost vertex
of Ci. We want now to show that these cutwidth two attachments to Ci can be ob-

On minimizing width in linear layouts 251

tained by node splitting and reduction operations from cutwidth 2 graphs attached
by their endpoints to either ai_l or a;.

Let ai be one of the nonsimple articulation points. There can be at most one edge

passing over ai. (An edge “passes over” a vertex x in a linear layout if it connects
a vertex placed to the right of x with a vertex placed to the left of x.) If there were
two edges passing over ai then G would have cutwidth at least 4, since aj has degree

at least 3. For all i (15 i c m), if there is an edge passing over ai in the layout L,

then subdivide this edge by inserting a new degree 2 vertex and then coalescing this

new degree 2 vertex with ai. The resulting graph still has cutwidth at most 3. One
can, of course, obtain the original graph back again by the inverse operations: node
splitting and reduction.

By doing this to each nonsimple articulation point ai we create a graph G’ with

cutwidth at most 3 such that all cutwidth 2 attachments are attached to either simple
articulation points or semisimple articulation points. We note that if a cutwidth 2
graph is attached to a vertex in a nonsimple component Ci through an edge e and
the component C,_r is a nonsimple component with no chords, then it may be

possible to lay out the attachment to the left of both Cj and Ci_ t. If this is the case
in the layout L, then the edge e will be subdivided with at least two degree 2 vertices,
one coalesced with ai, and one coalesced with ai-,. See Fig. 5 for an example.

A cutwidth 2 attachment in G’, which was formerly a cutwidth 2 attachment to
a nonsimple component of G, must be attached by an endpoint to a semisimple ar-
ticulation point. That is, it must be laid out by the layout L either entirely to the
left or entirely to the right of every nonsimple component. (Only one edge passes

over any articulation point in G and it has been subdivided and coalesced with the

articulation point in G’. Thus, no edges pass over these nonsimple articulation
points in G’. Clearly, no cutwidth 2 graph can be laid out in positions between the
leftmost and rightmost vertices of a nonsimple biconnected component and still
have cutwidth 3.)

All of the cutwidth one attachments to the nonsimple components of G’ and all

of the chords of these components must satisfy a collinear property. That is, for all
i (1 5 i < m), if Ci is a nonsimple component in G’, then from the leftmost vertex

(b)

Fig. 5. (a) A graph showing a nonsimple component and cutwidth 2 attachment; (b) subdividing the edge
of this attachment; and (c) coalescing the added degree 2 vertices with the nonsimple articulation points.

252 F. Makedon, I.H. Sudborough

of Ci to the rightmost vertex of Ci in the layout there are at least two edges from
Ci. Following the same argument used in Lemma 2.3 it can be seen that all the
chords of this component and all the degree one attachments must satisfy a col-
linearity property. So, one may coalesce vertices and perform reductions and arrive
at a component that is outerplanar and satisfies the collinear chord property. By the
inverse of these operations, namely node splitting and edge subdivision, one may
reconstruct the original component CP

Thus, we have shown that, for any graph G with cutwidth 3, there is a graph G’,
consisting of a chain of biconnected graphs and attachments with cutwidth at most
2, satisfying all of the properties indicated, such that G can be obtained from G’
by node splitting, edge subdivision, reduction and edge deletion. Cl

Some graphs with cutwidth 3 are shown in Fig. 6; some with cutwidth greater than
3 are shown in Fig. 7.

3. Relating cutwidth to search mnmher

The search number of a graph has been defined and the complexity of computing
it has been discussed in [2,11,13,14]. The search number of a graph G, denoted by
s(G), is the minimum number of searchers needed to guarantee catching a fugitive
who is lurking about on the edges of G. The fugitive is assumed to have unlimited
speed and complete knowledge about the searchers’ movements. The fugitive is
caught if (1) he or she is on an edge guarded at both ends by searchers and a searcher
is moved through the edge or (2) he or she is on an edge from which there is no
escape and a searcher is moved through this edge. The searchers may be added to
any vertex at any time, deleted from a vertex at any time, and moved at any time
from one end of an edge to the other end. An edge e of a graph G has been cleared
after a given sequence of searcher movements if it is not possible for the fugitive

Fig. 6. Some graphs with cutwidth 3.

On minimizing width in linear layouts 2.53

Fig. 7. Some graphs with cutwidth greater than 3.

to be on that edge without having been caught. Recontamination occurs to an edge
e if it has been cleared and, after an additional sequence of searcher movements,
it is again possible for the fugitive to be on that edge. LaPaugh [7] has recently
shown that, if s(G) = k, then there is a sequence of searcher movements in which
recontamination does not occur, the fugitive is caught, and k searchers are used.
That is, allowing recontamination does not reduce the number of searchers needed
to clear all edges of a graph.

It is known that search number and cutwidth are identical for trees having max-
imum vertex degree 3 [2]. It is also known that search number can be considerably
smaller than cutwidth for arbitrary trees. For example, for all k z 1, the star S,,.,
i.e. the tree with k+ 1 vertices and k leaves, has search number 2 and cutwidth
r+kl . The following result shows that search number is never greater than

cutwidth.

Lemma 3.1. For any graph G, s(G) I cw(G).

Proof. An algorithm is presented for searching a graph in which the number of
searchers is bounded by the cutwidth. Let G=(V,E) be an arbitrary graph. Let L
be a linear layout of G such that cw(G, L) = k. We shall say that an edge e = (x, JJ)
is in the ith cut (under the layout L) if L(x) I i and L(y) > i. The algorithm con-
structed has as its “loop invariant” the property that during the ith iteration a search-
er is located on the left end of each edge in the ith cut. During the ith iteration,
searchers are moved through all edges that are in the ith cut and are incident to the
(i+ 1)st vertex. The number of searchers on the graph is then adjusted to maintain
the loop invariant. Since cw(G, L) 5 k, each cut has at most k edges. Therefore, the
algorithm needs at most k searchers. The algorithm is called SEARCH and is
presented below:

254 F. Makedon, I.H. Sudborough

procedure SEARCH(G)
begin

forj=l step 1 until ICI do
begin

let y be the jth vertex under the layout L;
for each vertex x such that x is assigned a position to the left of

y under the layout L and {x, y} is an edge in G do
have a searcher through the edge {x, y} from vertex x to
vertex y;

let m be the number of edges incident to y that are in the ith cut
while there are fewer than m searchers on y do

add a new searcher to vertex y;
while there are more than m searchers on y do

delete a searcher from y;
end

end

The correctness of this algorithm follows from the straightforward observation
that the loop invariant is maintained throughout. That is, since all edges have search-
ers moved through them and the fugitive is prevented from moving back into
cleared edges by the positions of the searchers, the fugitive is eventually caught.
There are never more than k edges in any cut of the graph G under the layout L,
since L is a cutwidth k layout of G. Therefore, the algorithm never places more than
k searchers on G. Cl

So, the search number of a graph G is never larger than its cutwidth. In fact, as
we will show, the search number of a graph G is identical to its cutwidth, provided
that the graph has maximum vertex degree 3.

How does one show that, for any degree 3 graph G, cw(G) IS(G)? The most
natural approach would seem to be to go from a search strategy which does not
allow recontamination to a linear layout by assigning a vertex to the integer i if it
is the ith vertex to be visited by a searcher. This, however, does not work. We can
construct examples of graphs with maximum vertex degree 3 in which the cutwidth
of a layout obtained in this way is larger that the number of searchers used.

In fact, an appropriate layout is obtained by assigning vertices to integers in the
order in which at least half of their incident edges are cleared. This is shown in the
following result.

Theorem 3.2. FW any graph G, w(G) I L+ deg(G)j . (s(G) - 1) + 1, where deg(G)
denotes the maximum degree of any vertex in G.

Proof. Let G be an arbitrary undirected, connected, and finite graph. Let G’ be the
reduction of G. Let G(” be the graph obtained from G’ by adding a single degree

On minimizing width in linear layouts 25s

two vertex into every self loop of G’ (if there are any). It is easily seen that
s(G) =s(Gc2)) and, as we have already observed in Section 2, cw(G) is identical to

CW(G’~‘). Therefore, without any loss of generality, we may show the result for
Gf2’. In fact, for ease of notation, we simply assume that G = Gt2)_

Let s(G) = k. So, there is a sequence S of movements of searchers which (a) never

places more than k searchers on G simultaneously, (b) never allows recontamina-
tion, and (c) clears all of the edges of G. Our goal is to describe a linear layout L,
of G such that cw(G, Ls) I L+deg(G)j . (k - 1) + 1.

Define the function fs which maps vertices of G into natural numbers by:
fs(x) = i if and only if i is the smallest integer such that after the ith step of S at

least half of the edges incident to x are cleared. The function fs is not in general
a layout, since during the ith step an edge connecting vertices x and Y may be cleared
and both x and Y may satisfy the stated property for the first timo. So, let L, be

an arbitrary layout of G satisfying the following properties:

(1) if fs(x) cfs(y), then L,(x) < Ls(Y),
(2) if fs(x) =fs(y), degree(x) =2, and the set (z 1 { y,z} is an edge and fs(z) <

fs(y)) contains at least L+deg(G)J elements, then Ls(y)< Ldx); otherwise,

Ls(x) c J%(Y).

In other words, the layout Ls is obtained from fs by arbitrarily deciding which

of two vertices assigned to the same integer by fs gets the smaller number, except
when one of the two vertices has degree two. When two vertices, say x and y, are
mapped to the same integer by fs and x has degree 2, then x is given the smaller in-
teger only when y is connected to fewer than L+deg(G)J vertices that have smaller
values than y under the mapping fs.

We show that there are at most Lfdeg(G)J . (k- 1) + 1 edges in any one of the suc-

cessive cuts of G under the layout Ls. The bound on the number of edges in the

ith cut, for each i (1 size [vertices(G)]), follows by showing, as we do, that there
are at most L+deg(G)J edges in this cut for each searcher that is not moved during

step ti and a single edge in this cut for the one searcher that is moved during step
ti, where ti is the step in the search sequence S when the ith vertex first has at least
half of its incident edges cleared. Since there are at most k searchers used in the se-
quence S, there are at most k- 1 stationary searchers at any step and, consequently,
the indicated bound on the size of the ith cut follows.

Consider now the edges in the ith cut. These edges are in one of the following

sets: (a) the set of edges C(i) that have been cleared before step ti, (b) the set of
edges N(i) not cleared at the end of step ti, and (c) the singleton set containing the
edge ei which is cleared during step tiv

We show first that each edge in C(i) is incident to a vertex to the right of the ith

vertex that contains a stationary searcher during step ti and that at most L+deg(G) J
edges in C(i) are incident to a common vertex to the right of the ith vertex. Let
e= {x, y) be an edge in C(i). We assume that Ls(x) < L,(y). The vertex y is inci-

256 F. Makedon, I. H. Sudborough

dent also to at ieast two edges that are not cleared before step ti. That is, if y were
incident to at most one edge not cleared before step ti, then at least half of its inci-
dent edges would be cleared and y would be assigned to a position to the left of the

ith vertex by the layout Ls. However, y lies to the right of the ith vertex. Conse-
quently, a stationary searcher must be located on y during step ti, since y is inci-

dent to at least two uncleared edges and at least one cleared edge and no

recontamination is allowed. Also, if any vertex to the right of the ith vertex were
incident to more than L+deg(G)] edges in C(i), then at least half of its incident

edges would be cleared before step ti and so it would be positioned to the left, not
the right, of the ith vertex.

Each edge in N(i) is incident to a vertex to the left of the (i+ 1)st vertex that either
(a) contains a stationary searcher during step ti or (b) is a degree two vertex that is
also incident to the edge ei cleared during step tia Any vertex to the left of the
(i+ 1)st vertex must be incident to at least one edge that is cleared at the end of step
ti, since at least half of its incident edges are cleared. Consequently, any vertices to
the left of the (i+ 1)st vertex that are also incident to an uncleared edge must contain
a searcher to prevent recontamination. So, if {x,y} is an edge in N(i), where
L,(x) < Ls(y), then the vertex x must contain a searcher at the end of step ti. If the

cleared edge incident to x is not ei, i.e. the edge cleared during step ti, then x con-
tains a stationary searcher during step tim Similarly, if x has degree at least three,

then at least two edges incident to x must be cleared at the end of step ti and, con-

sequently, at least one edge incident to x was cleared before step ti. So, again in
this case, the vertex x contains a stationary searcher during step tie It follows that
the only vertex to the left of the (i+ 1)st vertex that may be incident to an edge in
N(i) and not contain a stationary searcher during step tj is a degree two vertex that
is also incident to ei.

Furthermore, if any vertex to the left of the (i+ 1)st vertex were incident to more

than L+deg(G)j edges in N(i), then half of its incident edges would not be cleared
-u the end of step ti and this would contradict the definition of the layout Ls. That
is, all vertices up to the ith vertex in the layout Ls must have at least half of their

incident edges cleared by the end of step tie So, each stationary searcher cor-
responds to at most L+deg(G)] edges in the ith cut.

There is still the possibility, of course, that a single edge in N(i) is incident to a

vertex to the left of the (i+ 1)st vertex that does not contain a stationary searcher
during step ti. As we have seen, this vertex must be a degree two vertex that is also
incident to the edge ei cleared during step ti. We must look carefully at this case,
since it would seem at first glance to upset the counting arrangement for edges in
the ith cut.

Let ei= {x, y} and let the searcher move from vertex y to vertex x during step ti.

As indicated above, vertex x in this case has degree two and is also incident to a
single edge in N(i). If the edge ei is not in the ith cut, then the edge in N(i) incident
to vertex x can be made to correspond to the searcher moved during step ti and the
number of edges in the ith cut are bounded in the way specified. However, if ei and

On minimizing width in linear layouts 257

the edge in N(i) incident to x are both in the ith cut, then we cannot make both edges
correspond to the searcher moved in step tie Since degree two vertices in G are only
those that exist in self-loops, the edge in N(i) and incident to x must also connect

vertex x with vertex y. The situation is described in Fig. 8.
It follows that there must be a stationary searcher on vertex y during step ti,

since recontamination must be prevented. There are two cases to consider: (a) the
vertex y has fewer than half of its incident edges cleared after step ti and (b) vertex

y has at least half of its incident edges cleared after step tis

In case (a), since vertex y has fewer than half of its incident edges cleared after
step ti, there are at most L+deg(G)J cleared edges incident to y including the edge

ei cleared during step tis So, the edge ei can be made to correspond to the stationary
searcher on vertex y and the edge {x,y} in N(i) can be made to correspond to the

searcher moved in step tis

In case (b), since y has at least half of its incident edges cleared after step ti and

yet lies to the right of the ith vertex, it follows that fs(x) =fs(y). By the definition
of the layout L,, at most L+deg(G)j edges incident to y are in the ith cut; other-

wise, the vertex x would be to the right of y and not to the left of y. Consequently,
at most L+deg(G)j - 1 edges in C(i) are incident to y. So, the edge ei can be in-
cluded with those edges in C(i) that correspond to the stationary searcher on vertex
y and the total number of edges corresponding to this searcher is bounded by
L+deg(G)j . The edge (x, y} in N(i) can then be made to correspond to the searcher

moved during step tis

In conclusion, we have shown that for each stationary searcher during step ti

there are at most L+deg(G)J edges in the ith cut, there is one edge in the ith cut
corresponding to the searcher moved during step ti, and every edge in the ith cut

corresponds to a searcher. Consequently, since there are at most k- 1 stationary

searchers at step tip there are at most L+deg(G)J . (s(G) - 1) + 1 edges in the ith cut.
Since the integer i was chosen arbitrarily, the result cw(G, Ls) I L+deg(G)J -

(s(G) - 1) + 1 follows. 17

The following result follows immediately from Lemma 3.1 and Theorem 3.2.

i-th cut

Fig. 8. A situation in which an edge in N(i) is incident to a degree 2 vertex.

258 F. Makedon. I.H. Sudborough

Corollary 3.3. For any graph G with maximum vertex degree three, s(G) = cw(G).

We observe that the result indicated in Theorem 3.2 is almost the best possible.
That is, we have seen that, for all k 12, the star Sk, which has maximum vertex de-

gree k, satisfies s(&) = 2 and cw(&) = r+kl. C onsequently, for all odd values of k,

cw(&) = r+kl = L+kJ + 1 = L+deg(&)J . @(Sk) - 1) + 1.

In [lo] it was shown that, for any graph G, s(G) I b(G) + 1, where b(G) denotes
the bandwidth of the graph G. (The bandwidth of a graph G under a linear layout

L is max(IL(x)-L(y)1 I Cx,u> is an edge in G). It is denoted by b(G, L). The band-
width of G is min{b(G,L) 1 L is a linear layout of G).) Combining this with
Theorem 3.2, we have the following result.

Corollary 3.4. For any graph G, cw(G) s L+deg(G)J - b(G) + 1, where deg(G)
denotes the maximum degree of any vertex in G.

The result indicated ill Corollary 3.4 is also almost the best possible. That is, for

each d, m,n 2 1, there is a graph R:‘,., such that, for sufficiently large n and all

m L d,

(1) deg(R$,A=2d+ 1,
(2) b(R$ J=m, and
(3) cw(R,!,),,)=m+ 1 and, for all d> 1, cw(R$,)=d.m.

Thus, cw(R$,) 2 Ltdeg(R$,,)J - W%,,).
Let R$, be the m x n rectangle graph with vertex degree 2d + 1, whose vertices

are those in the set {(i, j) 1 1 5 ic m, 1 r j 5 n} and whose edges are those in the
following sets:

(1) {((j,i),(k,i+ 1)) 1 j-d+1 <kr j} for all i (1 Si<t;),
(2) {((j,i),(k,i)) 1 j<d, k>m-d+l} for all i(l<iln),
(3) {(2j- 1,2i- 1),(2j,2i- 1)} for all i (1 li< L+n]) and all j (15 j I L+mJ),

(4) ((2j,2i),(2j+ 1,2i)} for all i (1 <is L+nJ) and all j (1~ j< L+mJ),

(5) ({(j, l),(j+ 1, 1)) I 1s.i -cm>, and

(6) CiCitn),(j+ Ln) 1 1 sj <ml.

For example, the rectangle graph R& is shown in Fig. 9.

That b(R$,) = m, for sufficiently large n, follows from the fact that Rt,,, can be
laid out column-by-column with bandwidth m. That is, all edges in this graph con-
nect vertices in adjacent columns or in the same column and there are m vertices
per column. (The bandwidth cannot be smaller than m without contradicting the
result of Corollary 3.4, since cw(R$,)=d. m, as we shall show.) The fact that

cw(Rf,,,) = m + 1 was shown in [lo]. A similar argument suffices to show that
cw(R$,) =d. m. That is, a column-by-column layout has cutwidth d. m and an

On minimizing width in linear layouts 259

Fig. 9. The rectangle graph R&.

argument based on the number of edge disjoint paths connecting sets of vertices
shows that cw(Rd,,,) I d. m.

4. An improved dynamic programming algorithm

In [6] Gurari and Sudborough described an algorithm which, for an arbitrary
graph G, and for any fixed value k, decides whether cw(G) I k in O(nk) steps,
where n is the number of vertices in G. In this section it is shown that the earlier
algorithm can be improved to yield an O(nk- r) step process for determining if
cw(G) I k, for each k 12. Thus, for example, there is a linear time algorithm for
testing cutwidth 2. A linear time algorithm has been described earlier by Garey,
Graham, Johnson and Knuth [4] for testing bandwidth 2.

The basic idea in the improvement is to consider reduced graphs. We show that
when the graph G is reduced, except that degree two vertices are reinserted into any
resulting self loops, one only needs to consider partial layouts with at most k- 1
“active” vertices.

A partial /ayout of a graph G = (V, E) is a one-to-one function L mapping some sub-
set V’ of the set of vertices I/to the set of positive integers { 1, . . . ,I I/’ I> . The cutwidth
of thepartial layout L, denoted by cw(G, L), is max{ ICUTL(i) 1 1 15 i < 1 V’ / }, where
CUT,(i) is the set of all edges in the ith cut (an edge e = (x, y) is in the ith cut in
this context, when L(x) is defined and L(y) is not defined or when L(x) s i and
L(y) > i). An edge e = (x, y) is dangling from thepartial layout L, or simply dangling
when the partial layout is understood, if L(x) is defined and L(y) is not defined.
A vertex x is active in the partial Zayout L, or simply active when the partial layout
is understood, if x is incident to one of the dangling edges of L. The set of dangling
edges and the set of active vertices of a partial layout L are denoted by dangling(L)
and active(L), respectively.

Two partial layouts LI and L2 are cutwidth equivalent if:

(a) (active(L ,),dangling(L r)) = (active(Lz),dangling(L,)), and
(b) cw(G, L 1) = cw(G, L,).

In [6] Gurari and Sudborough showed that, if L1 and Lz are cutwidth equivalent
partial layouts of a graph G, then L1 and L2 must be defined on the same set of

260 F. Makedon, I.H. Sudborough

vertices of G and either both L, and L2 can be extended to cutwidth k layouts or
the entire graph G or neither can be extended to such a complete cutwidth k layout.

The dynamic programming algorithm works with equivalence classes of partial
layouts defined by this equivalence relation.

Clearly, no partial layout L can be extended to a complete cutwidth k layout if

dangling(L) contains more than k edges. In fact, we show that it is not necessary
to consider partial layouts with more than k- 1 active vertices. Clearly, a partial

layout with k active vertices can be produced only by adding another vertex to a par-

tial layout with k- 1 active vertices. So, let L be any partial layout with k- I active
vertices and at most k dangling edges. There are two cases: (1) L has k dangling
edges and (2) L has k- 1 dangling edges.

Case 1: L has k dangling edges. Whatever vertex is assigned next must be incident
to one of the dangling edges, since there are no isolated vertices (G is connected)
and the number of dangling edges can never be greater than k. If the next vertex

assigned has degree one, then the next partial layout has k- 1 dangling edges and
then either there are fewer than k- 1 active vertices or case 2 applies. If the next
vertex assigned has degree at least three or it has degree two and hence has two par-
allel edges connecting it to another vertex, then at least two of its edges are dangling

from L; otherwise, the next partial layout would have more than k dangling edges.
So, the number of active vertices does not increase. That is, at least one vertex that
was active in L is no longer active. Thus, in this case, we do not produce a partial

layout with more than k active vertices.
Case 2: L has k - 1 dangling edges. In this case, each active vertex, is incident to

exactly one of the dangling edges. If the next vertex is incident to one of these
dangling edges, then the number of active vertices does not increase by adding this
vertex. So, assume the next vertex x is incident to one new edge. Assigning x pro-
duces a partial layout L’ with k active vertices. However, this partial layout need

not be explicitly considered. That is, consider the next vertex, say y, that is assigned
after vertex x. If y has one incident edge, which must be one of the dangling edges
from L’ or there would be more than k dangling edges after assigning y, then we
can switch the positions of x and y. That is, x, y cannot be an edge, since x and y
both have degree one and the graph is connected. So, y is connected to one of the

vertices to the left of x and, consequently, the layout with the positions of x and
y switched does not have larger cutwidth. So, L’ need not be considered. The next
vertex y cannot have degree 2, since it must be incident to one of the dangling edges
and degree 2 vertices are only incident to parallel edges.

If y has degree 3, then y must be incident to at least two of the dangling edges.
If the dangling edges incident toy do not include the one incident to x, then the posi-
tion of x and y can be switched without increasing the cutwidth, as before. Again,
this means that the partial layout L’ need not be considered. If, on the other hand,

one of the dangling edges incident to y is incident to x, then the number of active

vertices in the partial layout L”, when y is assigned, is at most k - 1. That is, at least
two formerly active vertices now become inactive. So, one simply proceeds directly

On minimizing width in linear layouts 261

from the partial layout L. with k- 3 active vertices and k- 1 dangling edges to this
new partial layout L”. L” has at most k- 1 active vertices. Moreover, there is not
much choice for the vertices x and y. The vertex y must be incident to one of the
dangling edges of the original partial layout L and the vertex x must be connected
to y. Thus, only a constant number of successive partial layouts L” need be con-
sidered.

A pair p = (A, D), consisting of a set of vertices A and a set of edges D, is called
a cutwidth-k-plausible pair, if A contains at most k- 1 vertices and D contains at

procedure CUTWIDTHkfG)

/ A dynamic programming algorithm to test whether a graph G has cutwidth at most k. It is assumed

that the input graph G is reduced, except that a degree 2 vertex has been re-inserted into any resulting

self loops. /

ill
t21
131

f41

I51

161

I71

Bl

191

1101

[Ill
[I21
1131

1141
[I51
1161
iI71
[I81
[I91
[201
[211
1221
[231
[241
1251
1261
[271
WI
[291
[301
1311
1321

begin add the pair (0.0) to 0;

while Q is not empty do

begin delete a pair p= L4.D) from Q;

if A is a set of k- 1 vertices

then

begin

for all unassigned vertices z incident to an edge in D do
begin p’+ Successor(p,r); I let p’ = (A’,D’) 1

if D’ =0 then stop and return “G has cutwidth at most K’;
if p’ is cutwidth-k-plausible and Tfp’l is false then

begin TIp’l + true; add p’ to Q end

for all unassigned vertices w adjacent to z do

begin

p”+ Successor(p,w);

p’+ Successorfp”,z); / let p’ = (A’,D’) /
if D’ = 0 then stop and return “G has cutwidth at most K’;
if p’ is cutwidth-k-plausible and Tip’1 is false then

begin Tip’1 + true; add p’ to Q end

end

end

end

else I in this case A contains fewer than k- 1 vertices I

begin V+ Unassigned(A,D);

for all vertices s in V do
begin p’+ Successor(p,s); / let p’=(A’,D’l /

if D’=0 then stop and return “G has cutwidth at most K’
if p’ is cutwidth-k-plausible and TIp’l is false then

begin Tip’1 + true; add p’ to Q end
end

end
end

stop and return “G has cutwidth larger than K’
end

Fig. 10. An algorithm to decide if a given graph G has cutwidth at most k.

262 F. Makedott. I.H. Sudborough

most k edges. The algorithm uses two data structures: (1) a queue Q whose elements
are cutwidth-k-plausible pairs and (2) an array T with one entry for each cut-
width-k-plausible pair. The element T[p] is true iff the pair p = (A, 0) represents an
equivalence class of partial layouts that has already been considered before; other-
wise, T[p] is false. At the start of the algorithm T[p] is false for all pairs p.

Our improved algorithm also uses two separate procedures that were described
by Gurari and Sudborough [6]. We include these procedures here for completeness.
They are given in Figs. 11 and 12. Unassigned(A,D) computes the set of vertices that
are unassigned in any partial layout L such that (active(L),dangling(L)) = (A,D).
This procedure requires at most O(n) steps, where n is the number of vertices in the
graph. Successor(p,z) computes, for a given pair p=(A,D) and a given vertex z,
the pair p’ = (A ‘, D’) that denotes the equivalence class containing all partial layouts
that result from those in the equivalence class denoted by the pair p=(A,D) when
the vertex z is assigned. That is, A’ is the new set of active vertices and D’ is the
new set of dangling edges after the vertex z is assigned to the next available integer.
The procedure Successor(p, z) works in O(l), i.e. constant, time.

procedure UNASSIGNED(A,D)

begin

V-0; / V is a set variable that will contain the set of unassigned vertices /

Q’+0; I Q’ is a queue whose elements are certain edges of the given graph I

if D=0 then return {x 1 x is a vertex of G};

for all edges e in D do

begin
DG[e] +- true; / the boolean element DG[el is true if and only if the edge e has been added

to the queue 0’ I

add e to 0’

end

for all vertices v in A do

p[v] +- true; / the boolean element P[vl is true if and only if the vertex has been placed in V

or does not belong in V I

while Q’ is not empty do

begin

delete an edge e = {x, y) from 0’;

if /J[vl = false or PI yl = false then

begin

if P [xl = false then z + x else z + y;

PM+ true;

v+ vu (2);

for each edge e incident to z do

if DG[el = false

then begin add e to Q’; DGfel +-true end

end

end

return V

end

Fig. Il. The procedure UNASSIGNED.

On minimizing width in linear layouts 263

procedure SUCCESSOR(p,s)

begin / let p be the pair (A,D) /

for each edge e in the set D do

if e is incident to s then delete e from D;

for each edge e incident to s do

if e is not incident to a vertex in A then add e to D;

for each vertex v in the set A do

if v is not incident to any edge in D then delete v from A;

if s is incident to an edge in D then add s to A;

return the pair p’ = (A,D);

end

Fig. 12. The procedure SUCCESSOR.

The improved algorithm is described in Fig. 10. It begins, as shown in line [l],
by placing the pair (0,0) in the queue Q. In general, while the queue Q is not emnty,
the procedure works by taking off a pair p = (A, 0) from the queue Q and then
dividing its computation according to whether the set of active vertices A contains
k- 1 elements or some smaller number of vertices.

If A contains k- 1 vertices, as shown in line [4], then the procedure tries to extend
the class of partial layouts in two separate ways. The first is by trying all possible
vertices that are incident to one of the dangling edges in D as the next vertex in an
extended partial layout, as shown in lines [8]-[l l]. The second is by trying pairs of
vertices, w and y, in that order, for the next two vertices in an extended partial
layout, where y is incident to one of the dangling edges in D and w is a neighboring
vertex toy that has not yet been assigned, as shown in lines [12]-[17]. These are the
only types of extended partial layouts that need to be considered, as we have seen
already in our earlier discussion.

If A contains less than k- 1 vertices, then the procedure tries all unassigned ver-
tices as the next vertex in an extended partial layout. That is, it looks at all
equivalence classes corresponding to a pair Successor(p,s), where p is the current
pair taken from the queue Q and s is an unassigned vertex.

In each of these cases the strategy is the same. The procedure determines first if
the new partial layout is, in fact, a complete layout of the given graph. This is true
if and only if the set of dangling edges in the new class of layouts is empty, as shown
in lines [9], [15], and [25] of the procedure. If there is a complete layout of the given
graph that is obtained from a cutwidth-k-plausible pair in the queue Q, then it
follows easily that this layout has cutwidth at most k and, consequently, the pro-
cedure returns the appropriate answer and terminates. On the other hand, if the new
partial layout is not a complete layout of the given graph, then a decision is made
about adding the corresponding new pair p’ = (A ‘,D’) to the queue Q. It is added
to the queue if and only if it has not been considered before, i.e. T[p’] is false, and
it is cutwidth-k-plausible, as shown in lines [lo], [16], and [26]. It follows, of course,
that the only pairs added to the queue Q are cutwidth-k-plausible pairs and each
such cutwidth-k-plausible pair is added at most one time to : he queue Q. (The last

264 F. Makedon, I.H. Sudborough

observation follows from the fact that we set the value T[p’] to true when p’ is

added to the queue Q.)
The correctness of the algorithm follows from the earlier discussion that shows

that the search for a cutwidth k layout of the entire given graph can be limited to

the type of partial layouts with k - 1 active vertices and that shows that the only par-
tial layouts that need to be considered to extend a partial layout with k- 1 active

vertices are, in fact, those that the procedure considers.

We turn now to the analysis of the running time of this procedure. Observe first
that there are O(n”-‘) pairs of the form p = (A,D) with A a set of k- 1 vertices and

that there are O(nks2) pairs of the form p= (A,@ with A a set of less than k- 1
vertices. For each of the pairs p = (A,D) that is cutwidth-k-plausible, there is the
possibility that the main loop of the procedure, namely lines [2]-1301, will be ex-
ecuted. Furthermore, in each such execution of the main loop either the lines
[6]-[20] or the Iines [22]-[29] will be executed, depending upon whether there are

k- 1 active vertices or less, respectively. Observe that each execution of lines
[6]-[20] takes O(1) steps, since there are at most k vertices incident to edges in D

and, for each such vertex, there are at most 2k neighbors. Also each execution of
lines [22]-[29] requires at most O(n) steps, since there may be O(n) vertices that are
yet unassigned and the procedure UNASSIGNED requires at most O(n) steps to

enumerate them. Consequently, the total number of steps is bounded by the number

of times that lines [6]-[20] can be executed times the number of steps needed to ex-
ecute these lines plus the number of times lines [22]-[29] can be executed times the

number of steps needed to execute these lines. As we have seen, this is bounded by
O(nk-‘). O(1) + 0(nke2). O(n). Consequently, the number of steps needed to ex-
ecute the complete procedure is bounded by a function in O(nk- ‘). This result is
expressed in the following theorem.

Theorem 4.1. For each k 2 2, the problem of deciding, for a given graph G, if
cw(G) I k or not can be solved in O(nk-‘) steps.

Clearly, as a corollary, we have that graphs with cutwidth 2 can be recognized
in linear time. Although the result does not follow from the approach given here,
we recall that the results of Section 2 strongly suggest that there is a linear time

algorithm to recognize graphs with cutwidth three as well.

References

[l] M.A. Breuer, Min cut placement, J. Design Automation and Fault-Tolerant Comput. 1 (1977)
343-362.

[2] M.-J. Chung, F. Makedon, I.H. Sudborough and J. Turner, Polynomial algorithms for the min-cut
linear arrangement problem on degree restricted trees, SIAM J. Comput. 14 (1985) 1.58-177.

[3] A. Feller. Automatic layout of low-cost quick turnaround random-logic custom LSI devices, in:
Proceedings 13th Design Automation Conference (1976) 79-85.

On minimizing width in linear layouts 265

[4] M.R. Garey, R.L. Graham, D.S. Johnson and D.E. Knuth, Complexity results for bandwidth
minimization, SIAM J. Appl. Math. 34 (1978) 477-495.

[5] F. Gavril, Some NP-complete problems on graphs, in: Proceedings 1 lth Annual Conference on In-
formation Sciences and Systems, Baltimore, MD (1977) 91-95.

[6] E.M. Gurari and I.H. Sudborough, Improved dynamic programming algorithms for bandwidth

minimization and the min cut linear arrangement problem, J. Algorithms 5 (1984) 531-546.
[7] A.S. LaPaugh, Recontamination does not help to search a graph, Tech. Rept., Electrical Engineer-

ing and Computer Science Department, Princeton University, Princeton, NJ (1983).

[S] T. Lengauer, Upper and lower bounds on the complexity of the min cut linear arrangement problem
on trees, Tech. Rept. TM-80-1272-9, Bell Laboratories, Murray Hill, NJ (1980).

[9] A.D. Lopez and H.-F.S. Law, A dense gate matrix layout method for MOS VLSI, IEEE Trans.
Electron. Devices 27 (8) (1980) 1671-1675.

[lo] F. Makedon, C.H. Papadimitriou and I.H. Sudborough, Topological bandwidth, SIAM J.
Algebraic Discrete Methods 6 (1985) 418-444.

El l] N. Megiddo, S.L. Hakimi, M.R. Garey. D.S. Johnson and C.H. Papadimitriou, The complexity
of searching a graph, in: Proceedings IEEE Foundations of Computer Science Symposium (1981)

376-385.
[12] T. Ohtsuki, H. Mori, ES. Kuh, T. Kashiwabara and T. Fujisawa, One-dimensional logic gate

assignments and interval graphs, IEEE Trans. Circuits Syst. 26 (9) (1977) 675-684.
[13] T.D. Parsons, The search number of a connected graph, in: Proceedings 9th Southeastern Con-

ference on Combinatorics, Graph Theory and Computing (1978) 549-554.
1141 T.D. Parsons, Pursuit evasion in a graph, in: Y. AIavi and D.R. Lick, eds., Theory and Application

of Graphs (Springer, Berlin, 1976) 426-441.
[15] G. Persky, D. Deutsch and D. Schweikert, LTX: A minicomputer-based system for automated LSI

layout, J. Design Automation and Fault Tolerant Comput. 1 (1977) 217-255.

[16] L. Stockmeyer, Personal communication to M. Garey and D.S. Johnson (1974), in: M. Garey and
D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness
(Freeman, San Francisco, CA, 1979).

[17] S. Trimberg, Automating chip layout, IEEE Spectrum (1982) 38-45.
[18] A. Weinberger, Large scale integration of MOS complex logic: A layout method, IEEE J. Solid

State Circuits 2 (1967) 182-190.
1191 M. Yannakakis, A polynomial algorithm for the min cut linear arrangement of trees, J. ACM 32

(4) (1988) 950-959.
[20] H. Yoshizawa, H. Kawanishi and K. Kani, A heuristic procedure for ordering MOS arrays, in:

Design Automation Conference (1975) 384-393.

