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Let G be a finite undirected graph and let cw(G), s(G) and b(G) denote the cutwidth, search 
number, and bandwidth of G, respectively. Characterizations of graphs with cutwidth 2 and cut- 

width 3 are described. Cutwidth is related to search number and bandwidth by the inequalities: 
s(G) 5 cw(G) I L$deg(G)J - (s(G) - 1) + 1 and cw(G) 5 L+deg(G)J . b(G) + 1, where deg(G) de- 
notes the maximum degree of any vertex in the graph G. It follows as an interesting corollary 
that search number and cutwidth are identical for graphs with maximum vertex degree three. It 
is also shown that these inequalities are almost the best possible. Finally, a dynamic programming 
algorithm is described that determines, for each fixed k B 2, whether cw(G)s k or not in 
O(&‘) steps. Thus, it follows that graphs with cutwidth 2 can be recognized in linear time. 

1. Introduction 

In 1967 Arnold Weinberger [18] described a method for large scale integration of 
MOS complex logic circuits which is often used for the purposes of automation. The 
circuit board or chip is produced with a single type of gate, e.g. NOR or NAND 
gates; all gates are placed in horizontal rows with uniformly spaced intervals between 
successive gates. The chip is “personalized” to represent a particular circuit by the 
way in which the gates are interconnected. This approach using Weinberger arrays, 
also called “gate matrices” and “uncommitted logic arrays”, has been the subject 
of several papers in the literature [l, 3,9,12,15,17,20]. An objective of this approach 
is to find an optimal arrangement of the circuit elements so that the number of 
horizontal tracks needed for their interconnection is minimized. 

An equivalent problem has been studied in graph theory. Let G = (V, E) be a finite 
undirected graph. A linear layout of G is a one-to-one function L mapping the ver- 
tices of G to integers. That is, L is simply a numbering of the vertices. The cutwidth 
of G under the linear layout L, denoted by cw(G, L), is the maximum over all in- 
tegers i, of the number of edges that connect vertices assigned to integers smaller 
than i with vertices assigned to integers at least as large as i. That is, cw(G, L) is the 
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maximum number of edges connecting vertices on opposite sides of any of the 
“gaps” between successive vertices in the linear layout L. The cutwidth of G, 
denoted by cw(G), is min{cw(G, L) 1 L is a linear layout of G}. The problem in 
graph theory, called the min cut linear arrangement problem, is the following: 

Min cut linear arrangement (min cut) problem. 

Input. A finite undirected graph G = (V, E) and a positive integer k, 
Question. Is cw(G) I k? 

An example is shown in Fig. 1. That the min cut problem is equivalent to the 
problem of minimizing the number of “tracks” or “channels” in a horizontal cir- 
cuit layout is shown in [5]. 

The min cut problem is known to be NP-complete [5,16]; in fact, it is known to 
remain NP-complete for graphs with maximum vertex degree 3 [lo]. Polynomial 
time algorithms are known for the min cut problem on trees. First, an O(n log n) 
algorithm was described by Lengauer [8] which produced a layout L for any tree 
T such that cw(T, L) I 2. cw(T). Secondly, for each d 2 3, an O(n logde2n) algo- 
rithm was described [2] which solved the min cut problem for the class of trees with 
maximum vertex degree d. Most recently, an O(n log n) algorithm has been an- 
nounced by Yannakakis [19] to solve the min cut problem for arbitrary trees. 

In (21 it was shown that the cutwidth of a tree with maximum vertex degree 3 is 
identical to its search number. The search number of a graph G, denoted by s(G), 
has been studied in [ 11,141. In Section 3 of this paper we extend this relationship 
to show that search number and cutwidth are, in fact, identical for all graphs with 
maximum vertex degree 3. Furthermore, we show that, for any graph G, 

s(G) 5 cw(G) I L+deg(G)J . (s(G) - 1) + 1, 

where deg(G) denotes the maximum degree of any vertex in G. 
In Section 2 we give characterizations of graphs having cutwidth 2 and cutwidth 

3. These characterizations strongly suggest linear time algorithms for determining 
if a graph G has cutwidth 2 or cutwidth 3. We do not, however, explicitly give such 
algorithms. Previous results in the literature give characterizations of graphs with 
search number 2 and 3 [l l] and a linear time algorithm for recognizing graphs with 
bandwidth 2 [4]. 

Fig. 1. A graph with cutwidth three (top) and a cutwidth three layout of this graph (bottom). 
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In Section 4 we give explicitly a dynamic programming algorithm which deter- 
mines, for each fixed k ~2, whether cw(G) I k or not in at most O(nk-r) steps. 
This improves a previous dynamic programming algorithm [6] which required 
O(nk) steps. In particular, the dynamic programming algorithm given in Section 4, 

explicitly shows that graphs with cutwidth 2 can be recognized in !inear time. 
We shall assume throughout that the graphs considered are connected. It is easily 

seen that an arbitrary graph G has cutwidth k if and only if each of its connected 
components has cutwidth k. Therefore, our results, while at first seemingly limited 

to the connected components of a graph, in fact give the corresponding result for 
the entire graph. 

2. Characterizing graphs with cutwidth 2 and 3 

We describe characterizations of graphs with cutwidth 2 and cutwidth 3. Let us 
first consider various operations on a graph and their effect on cutwidth. The first 
operation is called “node splitting”. That is, let x be a vertex in a graph G that is 
incident to a set of edges E(x). Consider the partition of the set E(x) into any two 

sets E,, and E,,. Construct the graph G’, which has the same set of vertices as G,, 
except that vertex x has been replaced by two distinct vertices x1 and x2, and which 
has the same edges as G, except that the edges in E,, are made incident to x1 and 
the edges in E,, are made incident to x2. An example of the operation of node 

splitting is shown in Fig. 2. 
It is straightforward to show that, if G’ is obtained from G by node splitting, then 

cw(G’) d cw(G). We note also that the inverse operation of “coalescing” vertices 
cannot decrease the cutwidth, provided that it is understood that, when x and y are 

coalesced and they are joined by an edge in the original graph, the new graph has 
a self loop on the coalesced vertex. (The cutwidth of a graph with a self loop on 
a vertex x is defined to be the same cutwidth as the graph in which a single degree 
2 vertex is inserted into the self loop.) 

Next consider the operation of “edge subdivision”. That is, let e be an edge in 
a graph G connecting vertices x and y. Construct the new graph G’ from G by ad- 

ding a new vertex z, and replacing the edge e with two edges, one connecting x and 
z and one connecting z and y. It is straightforward to see that G’ has the same cut- 
width as G. 

Similarly, the operation of “reduction”, which is the deletion of degree 2 vertices 

G: @ G':m 

Fig. 2. G’ is obtained from G by node splitting. 
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from an edge, does not change the cutwidth of a graph. That is, if G has a degree 
2 vertex x adjacent to vertices y and z, then G’, which is obtained by deleting x and 

its incident edges and joining y and z together by a new edge, is obtained by a single 
reduction operation. The reduction of G is the graph obtained from G by applying 
all possible reduction operations. 

Finally, the operation of deleting an edge can, clearly, not increase the cutwidth 

of a graph. So, if G’ is obtained from G by the deletion of some edge, then 

cw(G’) 5 cw(G). 

Theorem 2.1. Let G = (V, E) be a finite undirected graph. The following statements 
are equivalent: 

(1) G has cutwidth at most 2. 
(2) G does not contain a homeomorphic image of any of the graphs shown in 

Fig. 3 or of any of the graphs that can be obtained from any of these graphs by 
coalescing vertices. 

(3) The reduced graph G’ of G has at most vertex degree 4 and consists of a se- 
quence of vertices a 1, a2, . . . , a, (for some r 2 1) such that, for all i (1 5 i < r), a, is 
joined to ai,, by either one or two edges, together with the following attachments: 
(a) single edges and (b) a serf loop added to one of the vertices a 1, a2, a,_ ,, or a,, 
provided that, if a self loop is attached to a2 (ar- 1), then aI (a,, respectively) has 
degree one. 

Proof. (1) + (2) It is straightforward to verify that all of the graphs shown in Fig. 3 
have cutwidth larger than 2. Since coalescing vertices can not decrease cutwidth, 
graphs formed from these graphs by coalescing vertices can not have cutwidth 2. 
Also, no graph that is a homeomorphic image of these graphs can have cutwidth 2. 
Since the cutwidth of a graph is at least as large as the cutwidth of any of its sub- 

graphs, if G has a subgraph that is a homeomorphic image of any of these graphs, 
then G cannot have cutwidth 2. 

(2) + (3) We assume that G does not contain a subgraph that is a homeomorphic 
image of any of the five subgraphs shown in Fig. 3 or of any graph formed from 

these graphs by coalescing vertices. Let G’ be the reduction of G, so that G’ has no 
degree 2 vertices. We will show that G’ consists of a chain of vertices a1,a2, . . . ,a, 
(some rz l), with ai attached to ai+ 1 by one or two edges, for all i (1 I i< r), 

Fig. 3. Graphs that are forbidden components of any cutwidth 2 graph. 
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together with the type of attachments indicated. We note that such a chain must 
contain all vertices in G’ with degree greater than 2. 

Suppose that there were no chain that contained all vertices in G’ with degree at 
least 3. Then, there must be a vertex x and three vertex disjoint paths to vertices, 
say a, b, and c, with degree at least three. We observe that no cycle can contain two 
of the vertices a, b, c and also the vertex x, since then the graph G’ would contain 
a homeomorphic image of the fifth graph in Fig. 3 or one obtained from it by 
coalescing vertices. But, if there is no cycle and there is a vertex x with three disjoint 
paths to vertices with degree at least three, then G’ would contain a subgraph that 
is a homeomorphic image of the fourth graph in Fig. 3. So, in fact, there can be 
no such vertex x, and it must be possible to construct a chain C containing all ver- 
tices with degree greater than two. Furthermore, since G’ does not contain any 
degree 2 vertices, all vertices not part of the chain must have degree one. It follows 
that G’ must be the chain C together with single edges or self loops added to the 
vertices of this chain. 

Suppose that a self loop were attached to a vertex x in this chain C such that x 
had two neighbors with degree 3. Then, G’ would contain a subgraph that is a 
homeomorphic image of the third graph in Fig. 3 or a graph formed from it by 
coalescing vertices. So, in fact, the only self loops must be attached to vertices at 
the ends of the chain as specified. Clearly the successive vertices of the chain C can- 
not be connected by more than two edges, for then the second graph of Fig. 3 would 
be a subgraph of G’. Finally, no vertex can have degree greater than four, for then 
the first graph of Fig. 3 would be a subgraph of G’. 

(3) -+ (1) Let G be a graph whose reduction G’ satisfies the conditions indicated 
in the third statement. To show that G has cutwidth 2 it is sufficient to show that 
G’ has cutwidth 2. This is straightforward. One creates a layout in which the chain 
vertices al,a2, . . . . a, (for some rz 1) are laid out in the order they appear in the se- 
quence and then “folds in” the edges and self loops attached to the chain vertices 
in a straightforward manner. Cl 

Let G be a reduced graph with cutwidth 2. By Theorem 2.1 there is a chain of 
vertices al, a2, . . . , a, (some rl 1) such that, for all i (1 zz i < r) ai is connected to ai+ 1 

by one or two edges such that G consists of the chain C together with single edges 
or self loops added to the vertices in the stated manner. An “endpoint” of G is a 
vertex such that, for some chain C, as above, it is (1) either the first or last vertex 
in the sequence, when there is no self loop at that end of the sequence, or (2) a new 
degree 2 vertex inserted into a self loop of G. That is, an endpoint of G is a vertex 
that can be the first or the last vertex of G in a cutwidth 2 layout. 

Definition 2.2. A graph G is outerplanar if it has a planar embedding in which a 
single face includes all of its nodes. The edges of that face are called sides and the 
remaining edges are called chords. A graph G is biconnected if the removal of any 
single vertex from G (and all of its incident edges) leaves a connected graph. A bi- 
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connected outerplanar graph G satisfies the collinear chord property if it is possible 
to add some chords to G (possibly zero) forming an outerplanar graph G’ in which 

all the chords form a simple chain. 

In other words, a biconnected outerplanar graph G satisfies the collinear chord 

property if in an outerplanar representation of G one can draw a line, never entering 
the external region or picking up the pencil, which passes through all of the chords 
of G such that one part of the line never crosses or touches another part of the line. 

Examples of a biconnected outerplanar graph with the collinear chord property and 

a biconnected outerplanar graph that does not satisfy the collinear chord property 
are given in Fig. 4. 

Aemtna 2.3. Let G be a finite biconnected graph. The following statements are 
equivalent: 

(1) cw(G) I 3. 

(2) The reduction of G is outerplanar and satisfies the collinear chord property. 

Proof. (1) ---t (2) Let G have cutwidth 3. Let G’ be the reduction of G. Consider a 
layout L of G’ such that cw(G’, L) 5 3. Let x and y be the first and last vertices of 
G’ under the layout L, respectively. Since G’ is biconnected there must be two vertex 
disjoint paths, say P, and P2, connecting x and y. The vertices in these two paths 

must be positioned in such a way by the layout L such that if u is closer than u to 
the vertex x by the path Pi (i= 1,2), then u is before u in the layout. If this were not 

true, then L could not be a cutwidth 3 layout of G’. Furthermore, in every cut of 
G’ between x and y, there are at least two edges, one contributed by the path P, 
and one by the path Pt. So, if we delete the edges in these two paths from G’, the 
result must be a cutwidth one graph. (It need not be connected, however.) First, 
observe that every vertex in G’ lies on one of the two paths PI or Pt. For suppose 
a vertex x did not lie on either path. Such a vertex must have degree one, since there 

are no vertices of degree two in a reduced graph and if the degree was three or more, 
then the cut adjacent to this vertex would be at least of size four. However, no vertex 
in a biconnected graph with at least three vertices can have degree one. So, it follows 

that every vertex in G’ lies on one of the two paths: P, or P2. 
Next, we observe that when the edges from the two paths PI and PI are deleted 

from G’ the remaining edges connect vertices which are adjacent in the layout L. 

Fig. 4. A biconnected outerplanar graph (a) satisfying the collinear chord property and (b) not satisfying 

the collinear chord property. 
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For otherwise, if a remaining edge connected vertices u and u and passed over a 
vertex w, then the vertex w must have had degree 2 in the graph G’ and this con- 
tradicts the fact that G’ is reduced. 

Now consider the following outerplanar representation of 6’. The vertices of G’ 
are laid out along a line in the order specified by the layout L. The edges in the path 

P, are drawn above the line, the edges in the path P2 are drawn below the line, and 
all of the remaining edges are positioned on the line containing the vertices. This 
is, in fact, an outerplanar layout, since all of the vertices of G’ are on the external 

region and none of the edges intersect except at the ends. The edges in the line con- 
taining the vertices are the chords. Furthermore, it is evident that G’ satisfies the 

collinear chord property, since one can draw a line starting from the leftmost vertex 
in the layout and proceeding through the line of vertices to the rightmost vertex. 

This line must, as we have seen, pass through all of the chords. So, if G has cutwidth 
3, then the reduced graph G’ must be outerplanar and satisfy the collinear chord 

property. 
(2) + (1) For the other direction, let G be a biconnected graph whose reduction 

G’ has an outerplanar representation and satisfies the collinear chord property. We 

need to show that G’ has cutwidth 3, since G and its reduction G’ have the same 
cutwidth. As G’ satisfies the collinear chord property there is a chain al,a2, . . ..aP 

(some p 1 1) such that, for every chord c in G’, there is an i (1 I i<p) such that 

{ai,ai+t) CC. Th is c h ain must, in fact, include every vertex in G’, since every vertex 
in G’ is incident to a chord, i.e. it must have degree 13. Furthermore, no vertex 
is listed twice in this chain by the collinear chord property. So, define the layout L 
that maps the vertex ai to the integer i, for all i (1 I ir p). G’ must have cutwidth 

at most three under the layout L, since the sides of G’ (from its outerplanar 

representation) add only two additional edges to every cut across the layout L. 0 

Let G be an arbitrary graph. A biconnected component of G is “simple” if it con- 

sists of a single edge; otherwise, the biconnected component is said to be “non- 
simple”. An arbitrary vertex of G is “simple” if it does not belong to any nonsimple 
biconnected component; it is “semisimple” if it belongs to a simple biconnected 

component and to a nonsimple component. 

Theorem 2.4. Let G be a finite undirected graph. G has cutwidth at most three if 
and only if G can be obtained by the operations of node splitting, edge subdivision, 
reduction, and edge deletion from a chain C= C,, . . . , C, (m L 1) of biconnected 
graphs, together with cutwidth two graphs attached to some of its vertices, such that 
the following properties are satisfied: 

(1) For all i (1 5 i < m), Ci and Ci+ I share an articulation point ai. 
(2) For ail i (1 5 i 5 m), Ci satisfies the conditions of Lemma 2.3; in fact, all of 

the chords in Ci are part of a line that can be drawn from ai_ I to ai (a0 and a,,, are 
vertices that are chosen in Cl and C,,,, respectively). 

(3) For all i (1 I i< m), if ai is simple, then a single cutwidth 2 graph can be at- 
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tached to ai and, if ai is semisimple, then a single cutwidth 2 graph can be attached 
by an endpoint to ai. 

(4) No attachments of cutwidth 2 graphs can be made to C except those allowed 
in (3). 

Proof. First we show that, if G can be obtained from such a chain and attachments 
by the stated operations, then G has cutwidth at most 3. In fact, since the operations 
do not increase the cutwidth of a graph, it is sufficient to show that such a chain 
with the indicated attachments always has cutwidth at most three. This is relatively 
straightforward. That is, one first lays out the chain of biconnected graphs. It is 
clear, since each biconnected graph satisfies the collinear chord property of 
Lemma2.3 and the chain of chords can be drawn from one articulation point to the 
next, that this chain of biconnected graphs can be laid out with cutwidth 3. Thus, 
it is sufficient to show that all the indicated attachments can be “folded in” without 
making the cutwidth greater than three. If ai is a simple articulation point, i.e. it 
is a vertex shared by two single edges in the chain C, then clearly the indicated cut- 
width 2 attachment can be laid out with just these two edges passing over and the 
resulting cuts between successive vertices have 3 edges. Similarly, if ai is a semi- 
simple articulation point, i.e. it is a vertex shared by a simple edge and a nonsimple 
biconnected component, then a cutwidth 2 graph attached by an endpoint to ai can 
be laid out under the simple edge with the cutwidth total at most three. That is, since 
the cutwidth 2 graph is attached by its endpoint, it can be laid out with cutwidth 
2 and its attached vertex at one end of its layout. So, it follows that any chain of 
biconnected graphs with the indicated attachments has a layout with cutwidth at 
most 3. 

Conversely, let G be a graph with cutwidth at most 3. Let L be a layout of G such 
that cw(G,L) I 3. Let A and B be the vertices that are first and last, respectively, 
under the layout L. There must be a path connecting A to B. Let P be such a path. 
Let C,,Cz,..., C,, be the biconnected components of G that share at least two ver- 
tices with path P (for some m 2 1) and let ai, for all i (1 I i< m), be the articulation 
point that is part of the components C’i and Ci+ ,. 

If all of the edges in the components C,,Cz, . . ..C. are deleted, the remaining 
graph must have cutwidth at most two, since there is at least one edge from the path 
P in each of the cuts in the linear layout L. So, all attachments to this chain of corn-- 
ponents must have chtwidth at most two. 

Consider now the attachments one of the nonsimple biconnected components in 
this chain may have. Let Ci be any such nonsimple component. C’i can have several 
graphs with cutwidth one attached to it; however, at most two graphs with cutwidth 
two can be attached. That is, from the leftmost vertex of C’i to the rightmost vertex 
of Ci (in the layout L) there are at least tno edges that are part of Ci in each suc- 
cessive cut. Thus, at most two cutwidth two attachments are possible: one could be 
laid out before the leftmost vertex of Ci and one laid out after the rightmost vertex 
of Ci. We want now to show that these cutwidth two attachments to Ci can be ob- 
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tained by node splitting and reduction operations from cutwidth 2 graphs attached 
by their endpoints to either ai_l or a;. 

Let ai be one of the nonsimple articulation points. There can be at most one edge 

passing over ai. (An edge “passes over” a vertex x in a linear layout if it connects 
a vertex placed to the right of x with a vertex placed to the left of x.) If there were 
two edges passing over ai then G would have cutwidth at least 4, since aj has degree 

at least 3. For all i (15 i c m), if there is an edge passing over ai in the layout L, 

then subdivide this edge by inserting a new degree 2 vertex and then coalescing this 

new degree 2 vertex with ai. The resulting graph still has cutwidth at most 3. One 
can, of course, obtain the original graph back again by the inverse operations: node 
splitting and reduction. 

By doing this to each nonsimple articulation point ai we create a graph G’ with 

cutwidth at most 3 such that all cutwidth 2 attachments are attached to either simple 
articulation points or semisimple articulation points. We note that if a cutwidth 2 
graph is attached to a vertex in a nonsimple component Ci through an edge e and 
the component C,_r is a nonsimple component with no chords, then it may be 

possible to lay out the attachment to the left of both Cj and Ci_ t. If this is the case 
in the layout L, then the edge e will be subdivided with at least two degree 2 vertices, 
one coalesced with ai, and one coalesced with ai-,. See Fig. 5 for an example. 

A cutwidth 2 attachment in G’, which was formerly a cutwidth 2 attachment to 
a nonsimple component of G, must be attached by an endpoint to a semisimple ar- 
ticulation point. That is, it must be laid out by the layout L either entirely to the 
left or entirely to the right of every nonsimple component. (Only one edge passes 

over any articulation point in G and it has been subdivided and coalesced with the 

articulation point in G’. Thus, no edges pass over these nonsimple articulation 
points in G’. Clearly, no cutwidth 2 graph can be laid out in positions between the 
leftmost and rightmost vertices of a nonsimple biconnected component and still 
have cutwidth 3.) 

All of the cutwidth one attachments to the nonsimple components of G’ and all 

of the chords of these components must satisfy a collinear property. That is, for all 
i (1 5 i < m), if Ci is a nonsimple component in G’, then from the leftmost vertex 

(b) 

Fig. 5. (a) A graph showing a nonsimple component and cutwidth 2 attachment; (b) subdividing the edge 
of this attachment; and (c) coalescing the added degree 2 vertices with the nonsimple articulation points. 



252 F. Makedon, I.H. Sudborough 

of Ci to the rightmost vertex of Ci in the layout there are at least two edges from 
Ci. Following the same argument used in Lemma 2.3 it can be seen that all the 
chords of this component and all the degree one attachments must satisfy a col- 
linearity property. So, one may coalesce vertices and perform reductions and arrive 
at a component that is outerplanar and satisfies the collinear chord property. By the 
inverse of these operations, namely node splitting and edge subdivision, one may 
reconstruct the original component CP 

Thus, we have shown that, for any graph G with cutwidth 3, there is a graph G’, 
consisting of a chain of biconnected graphs and attachments with cutwidth at most 
2, satisfying all of the properties indicated, such that G can be obtained from G’ 
by node splitting, edge subdivision, reduction and edge deletion. Cl 

Some graphs with cutwidth 3 are shown in Fig. 6; some with cutwidth greater than 
3 are shown in Fig. 7. 

3. Relating cutwidth to search mnmher 

The search number of a graph has been defined and the complexity of computing 
it has been discussed in [2,11,13,14]. The search number of a graph G, denoted by 
s(G), is the minimum number of searchers needed to guarantee catching a fugitive 
who is lurking about on the edges of G. The fugitive is assumed to have unlimited 
speed and complete knowledge about the searchers’ movements. The fugitive is 
caught if (1) he or she is on an edge guarded at both ends by searchers and a searcher 
is moved through the edge or (2) he or she is on an edge from which there is no 
escape and a searcher is moved through this edge. The searchers may be added to 
any vertex at any time, deleted from a vertex at any time, and moved at any time 
from one end of an edge to the other end. An edge e of a graph G has been cleared 
after a given sequence of searcher movements if it is not possible for the fugitive 

Fig. 6. Some graphs with cutwidth 3. 
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Fig. 7. Some graphs with cutwidth greater than 3. 

to be on that edge without having been caught. Recontamination occurs to an edge 
e if it has been cleared and, after an additional sequence of searcher movements, 
it is again possible for the fugitive to be on that edge. LaPaugh [7] has recently 
shown that, if s(G) = k, then there is a sequence of searcher movements in which 
recontamination does not occur, the fugitive is caught, and k searchers are used. 
That is, allowing recontamination does not reduce the number of searchers needed 
to clear all edges of a graph. 

It is known that search number and cutwidth are identical for trees having max- 
imum vertex degree 3 [2]. It is also known that search number can be considerably 
smaller than cutwidth for arbitrary trees. For example, for all k z 1, the star S,,., 
i.e. the tree with k+ 1 vertices and k leaves, has search number 2 and cutwidth 
r+kl . The following result shows that search number is never greater than 

cutwidth. 

Lemma 3.1. For any graph G, s(G) I cw(G). 

Proof. An algorithm is presented for searching a graph in which the number of 
searchers is bounded by the cutwidth. Let G=(V,E) be an arbitrary graph. Let L 
be a linear layout of G such that cw(G, L) = k. We shall say that an edge e = (x, JJ) 
is in the ith cut (under the layout L) if L(x) I i and L(y) > i. The algorithm con- 
structed has as its “loop invariant” the property that during the ith iteration a search- 
er is located on the left end of each edge in the ith cut. During the ith iteration, 
searchers are moved through all edges that are in the ith cut and are incident to the 
(i+ 1)st vertex. The number of searchers on the graph is then adjusted to maintain 
the loop invariant. Since cw(G, L) 5 k, each cut has at most k edges. Therefore, the 
algorithm needs at most k searchers. The algorithm is called SEARCH and is 
presented below: 
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procedure SEARCH(G) 
begin 

forj=l step 1 until ICI do 
begin 

let y be the jth vertex under the layout L; 
for each vertex x such that x is assigned a position to the left of 

y under the layout L and {x, y} is an edge in G do 
have a searcher through the edge {x, y} from vertex x to 
vertex y; 

let m be the number of edges incident to y that are in the ith cut 
while there are fewer than m searchers on y do 

add a new searcher to vertex y; 
while there are more than m searchers on y do 

delete a searcher from y; 
end 

end 

The correctness of this algorithm follows from the straightforward observation 
that the loop invariant is maintained throughout. That is, since all edges have search- 
ers moved through them and the fugitive is prevented from moving back into 
cleared edges by the positions of the searchers, the fugitive is eventually caught. 
There are never more than k edges in any cut of the graph G under the layout L, 
since L is a cutwidth k layout of G. Therefore, the algorithm never places more than 
k searchers on G. Cl 

So, the search number of a graph G is never larger than its cutwidth. In fact, as 
we will show, the search number of a graph G is identical to its cutwidth, provided 
that the graph has maximum vertex degree 3. 

How does one show that, for any degree 3 graph G, cw(G) IS(G)? The most 
natural approach would seem to be to go from a search strategy which does not 
allow recontamination to a linear layout by assigning a vertex to the integer i if it 
is the ith vertex to be visited by a searcher. This, however, does not work. We can 
construct examples of graphs with maximum vertex degree 3 in which the cutwidth 
of a layout obtained in this way is larger that the number of searchers used. 

In fact, an appropriate layout is obtained by assigning vertices to integers in the 
order in which at least half of their incident edges are cleared. This is shown in the 
following result. 

Theorem 3.2. FW any graph G, w(G) I L+ deg(G)j . (s(G) - 1) + 1, where deg(G) 
denotes the maximum degree of any vertex in G. 

Proof. Let G be an arbitrary undirected, connected, and finite graph. Let G’ be the 
reduction of G. Let G(” be the graph obtained from G’ by adding a single degree 
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two vertex into every self loop of G’ (if there are any). It is easily seen that 
s(G) =s(Gc2)) and, as we have already observed in Section 2, cw(G) is identical to 

CW(G’~‘). Therefore, without any loss of generality, we may show the result for 
Gf2’. In fact, for ease of notation, we simply assume that G = Gt2)_ 

Let s(G) = k. So, there is a sequence S of movements of searchers which (a) never 

places more than k searchers on G simultaneously, (b) never allows recontamina- 
tion, and (c) clears all of the edges of G. Our goal is to describe a linear layout L, 
of G such that cw(G, Ls) I L+deg(G)j . (k - 1) + 1. 

Define the function fs which maps vertices of G into natural numbers by: 
fs(x) = i if and only if i is the smallest integer such that after the ith step of S at 

least half of the edges incident to x are cleared. The function fs is not in general 
a layout, since during the ith step an edge connecting vertices x and Y may be cleared 
and both x and Y may satisfy the stated property for the first timo. So, let L, be 

an arbitrary layout of G satisfying the following properties: 

(1) if fs(x) cfs(y), then L,(x) < Ls(Y), 
(2) if fs(x) =fs(y), degree(x) =2, and the set (z 1 { y,z} is an edge and fs(z) < 

fs(y)) contains at least L+deg(G)J elements, then Ls(y)< Ldx); otherwise, 

Ls(x) c J%(Y). 

In other words, the layout Ls is obtained from fs by arbitrarily deciding which 

of two vertices assigned to the same integer by fs gets the smaller number, except 
when one of the two vertices has degree two. When two vertices, say x and y, are 
mapped to the same integer by fs and x has degree 2, then x is given the smaller in- 
teger only when y is connected to fewer than L+deg(G)J vertices that have smaller 
values than y under the mapping fs. 

We show that there are at most Lfdeg(G)J . (k- 1) + 1 edges in any one of the suc- 

cessive cuts of G under the layout Ls. The bound on the number of edges in the 

ith cut, for each i (1 size [vertices(G)]), follows by showing, as we do, that there 
are at most L+deg(G)J edges in this cut for each searcher that is not moved during 

step ti and a single edge in this cut for the one searcher that is moved during step 
ti, where ti is the step in the search sequence S when the ith vertex first has at least 
half of its incident edges cleared. Since there are at most k searchers used in the se- 
quence S, there are at most k- 1 stationary searchers at any step and, consequently, 
the indicated bound on the size of the ith cut follows. 

Consider now the edges in the ith cut. These edges are in one of the following 

sets: (a) the set of edges C(i) that have been cleared before step ti, (b) the set of 
edges N(i) not cleared at the end of step ti, and (c) the singleton set containing the 
edge ei which is cleared during step tiv 

We show first that each edge in C(i) is incident to a vertex to the right of the ith 

vertex that contains a stationary searcher during step ti and that at most L+deg(G) J 
edges in C(i) are incident to a common vertex to the right of the ith vertex. Let 
e= {x, y) be an edge in C(i). We assume that Ls(x) < L,(y). The vertex y is inci- 
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dent also to at ieast two edges that are not cleared before step ti. That is, if y were 
incident to at most one edge not cleared before step ti, then at least half of its inci- 
dent edges would be cleared and y would be assigned to a position to the left of the 

ith vertex by the layout Ls. However, y lies to the right of the ith vertex. Conse- 
quently, a stationary searcher must be located on y during step ti, since y is inci- 

dent to at least two uncleared edges and at least one cleared edge and no 

recontamination is allowed. Also, if any vertex to the right of the ith vertex were 
incident to more than L+deg(G)] edges in C(i), then at least half of its incident 

edges would be cleared before step ti and so it would be positioned to the left, not 
the right, of the ith vertex. 

Each edge in N(i) is incident to a vertex to the left of the (i+ 1)st vertex that either 
(a) contains a stationary searcher during step ti or (b) is a degree two vertex that is 
also incident to the edge ei cleared during step tia Any vertex to the left of the 
(i+ 1)st vertex must be incident to at least one edge that is cleared at the end of step 
ti, since at least half of its incident edges are cleared. Consequently, any vertices to 
the left of the (i+ 1)st vertex that are also incident to an uncleared edge must contain 
a searcher to prevent recontamination. So, if {x,y} is an edge in N(i), where 
L,(x) < Ls(y), then the vertex x must contain a searcher at the end of step ti. If the 

cleared edge incident to x is not ei, i.e. the edge cleared during step ti, then x con- 
tains a stationary searcher during step tim Similarly, if x has degree at least three, 

then at least two edges incident to x must be cleared at the end of step ti and, con- 

sequently, at least one edge incident to x was cleared before step ti. So, again in 
this case, the vertex x contains a stationary searcher during step tie It follows that 
the only vertex to the left of the (i+ 1)st vertex that may be incident to an edge in 
N(i) and not contain a stationary searcher during step tj is a degree two vertex that 
is also incident to ei. 

Furthermore, if any vertex to the left of the (i+ 1)st vertex were incident to more 

than L+deg(G)j edges in N(i), then half of its incident edges would not be cleared 
-u the end of step ti and this would contradict the definition of the layout Ls. That 
is, all vertices up to the ith vertex in the layout Ls must have at least half of their 

incident edges cleared by the end of step tie So, each stationary searcher cor- 
responds to at most L+deg(G)] edges in the ith cut. 

There is still the possibility, of course, that a single edge in N(i) is incident to a 

vertex to the left of the (i+ 1)st vertex that does not contain a stationary searcher 
during step ti. As we have seen, this vertex must be a degree two vertex that is also 
incident to the edge ei cleared during step ti. We must look carefully at this case, 
since it would seem at first glance to upset the counting arrangement for edges in 
the ith cut. 

Let ei= {x, y} and let the searcher move from vertex y to vertex x during step ti. 

As indicated above, vertex x in this case has degree two and is also incident to a 
single edge in N(i). If the edge ei is not in the ith cut, then the edge in N(i) incident 
to vertex x can be made to correspond to the searcher moved during step ti and the 
number of edges in the ith cut are bounded in the way specified. However, if ei and 
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the edge in N(i) incident to x are both in the ith cut, then we cannot make both edges 
correspond to the searcher moved in step tie Since degree two vertices in G are only 
those that exist in self-loops, the edge in N(i) and incident to x must also connect 

vertex x with vertex y. The situation is described in Fig. 8. 
It follows that there must be a stationary searcher on vertex y during step ti, 

since recontamination must be prevented. There are two cases to consider: (a) the 
vertex y has fewer than half of its incident edges cleared after step ti and (b) vertex 

y has at least half of its incident edges cleared after step tis 

In case (a), since vertex y has fewer than half of its incident edges cleared after 
step ti, there are at most L+deg(G)J cleared edges incident to y including the edge 

ei cleared during step tis So, the edge ei can be made to correspond to the stationary 
searcher on vertex y and the edge {x,y} in N(i) can be made to correspond to the 

searcher moved in step tis 

In case (b), since y has at least half of its incident edges cleared after step ti and 

yet lies to the right of the ith vertex, it follows that fs(x) =fs(y). By the definition 
of the layout L,, at most L+deg(G)j edges incident to y are in the ith cut; other- 

wise, the vertex x would be to the right of y and not to the left of y. Consequently, 
at most L+deg(G)j - 1 edges in C(i) are incident to y. So, the edge ei can be in- 
cluded with those edges in C(i) that correspond to the stationary searcher on vertex 
y and the total number of edges corresponding to this searcher is bounded by 
L+deg(G)j . The edge (x, y} in N(i) can then be made to correspond to the searcher 

moved during step tis 

In conclusion, we have shown that for each stationary searcher during step ti 

there are at most L+deg(G)J edges in the ith cut, there is one edge in the ith cut 
corresponding to the searcher moved during step ti, and every edge in the ith cut 

corresponds to a searcher. Consequently, since there are at most k- 1 stationary 

searchers at step tip there are at most L+deg(G)J . (s(G) - 1) + 1 edges in the ith cut. 
Since the integer i was chosen arbitrarily, the result cw(G, Ls) I L+deg(G)J - 

(s(G) - 1) + 1 follows. 17 

The following result follows immediately from Lemma 3.1 and Theorem 3.2. 

i-th cut 

Fig. 8. A situation in which an edge in N(i) is incident to a degree 2 vertex. 
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Corollary 3.3. For any graph G with maximum vertex degree three, s(G) = cw(G). 

We observe that the result indicated in Theorem 3.2 is almost the best possible. 
That is, we have seen that, for all k 12, the star Sk, which has maximum vertex de- 

gree k, satisfies s(&) = 2 and cw(&) = r+kl. C onsequently, for all odd values of k, 

cw(&) = r+kl = L+kJ + 1 = L+deg(&)J . @(Sk) - 1) + 1. 

In [lo] it was shown that, for any graph G, s(G) I b(G) + 1, where b(G) denotes 
the bandwidth of the graph G. (The bandwidth of a graph G under a linear layout 

L is max(IL(x)-L(y)1 I Cx,u> is an edge in G). It is denoted by b(G, L). The band- 
width of G is min{b(G,L) 1 L is a linear layout of G).) Combining this with 
Theorem 3.2, we have the following result. 

Corollary 3.4. For any graph G, cw(G) s L+deg(G)J - b(G) + 1, where deg(G) 
denotes the maximum degree of any vertex in G. 

The result indicated ill Corollary 3.4 is also almost the best possible. That is, for 

each d, m,n 2 1, there is a graph R:‘,., such that, for sufficiently large n and all 

m L d, 

(1) deg(R$,A=2d+ 1, 
(2) b(R$ J=m, and 
(3) cw(R,!,),,)=m+ 1 and, for all d> 1, cw(R$,)=d.m. 

Thus, cw(R$,) 2 Ltdeg(R$,,)J - W%,,). 
Let R$, be the m x n rectangle graph with vertex degree 2d + 1, whose vertices 

are those in the set {(i, j) 1 1 5 ic m, 1 r j 5 n} and whose edges are those in the 
following sets: 

(1) {((j,i),(k,i+ 1)) 1 j-d+1 <kr j} for all i (1 Si<t;), 
(2) {((j,i),(k,i)) 1 j<d, k>m-d+l} for all i(l<iln), 
(3) {(2j- 1,2i- 1),(2j,2i- 1)} for all i (1 li< L+n]) and all j (15 j I L+mJ), 

(4) ((2j,2i),(2j+ 1,2i)} for all i (1 <is L+nJ) and all j (1~ j< L+mJ), 

(5) ({(j, l),(j+ 1, 1)) I 1s.i -cm>, and 

(6) CiCitn),(j+ Ln) 1 1 sj <ml. 

For example, the rectangle graph R& is shown in Fig. 9. 

That b(R$,) = m, for sufficiently large n, follows from the fact that Rt,,, can be 
laid out column-by-column with bandwidth m. That is, all edges in this graph con- 
nect vertices in adjacent columns or in the same column and there are m vertices 
per column. (The bandwidth cannot be smaller than m without contradicting the 
result of Corollary 3.4, since cw(R$,)=d. m, as we shall show.) The fact that 

cw(Rf,,,) = m + 1 was shown in [lo]. A similar argument suffices to show that 
cw(R$,) =d. m. That is, a column-by-column layout has cutwidth d. m and an 
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Fig. 9. The rectangle graph R&. 

argument based on the number of edge disjoint paths connecting sets of vertices 
shows that cw(Rd,,,) I d. m. 

4. An improved dynamic programming algorithm 

In [6] Gurari and Sudborough described an algorithm which, for an arbitrary 
graph G, and for any fixed value k, decides whether cw(G) I k in O(nk) steps, 
where n is the number of vertices in G. In this section it is shown that the earlier 
algorithm can be improved to yield an O(nk- r) step process for determining if 
cw(G) I k, for each k 12. Thus, for example, there is a linear time algorithm for 
testing cutwidth 2. A linear time algorithm has been described earlier by Garey, 
Graham, Johnson and Knuth [4] for testing bandwidth 2. 

The basic idea in the improvement is to consider reduced graphs. We show that 
when the graph G is reduced, except that degree two vertices are reinserted into any 
resulting self loops, one only needs to consider partial layouts with at most k- 1 
“active” vertices. 

A partial /ayout of a graph G = (V, E) is a one-to-one function L mapping some sub- 
set V’ of the set of vertices I/to the set of positive integers { 1, . . . ,I I/’ I> . The cutwidth 
of thepartial layout L, denoted by cw(G, L), is max{ ICUTL(i) 1 1 15 i < 1 V’ / }, where 
CUT,(i) is the set of all edges in the ith cut (an edge e = (x, y) is in the ith cut in 
this context, when L(x) is defined and L(y) is not defined or when L(x) s i and 
L(y) > i). An edge e = (x, y) is dangling from thepartial layout L, or simply dangling 
when the partial layout is understood, if L(x) is defined and L(y) is not defined. 
A vertex x is active in the partial Zayout L, or simply active when the partial layout 
is understood, if x is incident to one of the dangling edges of L. The set of dangling 
edges and the set of active vertices of a partial layout L are denoted by dangling(L) 
and active(L), respectively. 

Two partial layouts LI and L2 are cutwidth equivalent if: 

(a) (active(L ,),dangling(L r)) = (active(Lz),dangling(L,)), and 
(b) cw(G, L 1) = cw(G, L,). 

In [6] Gurari and Sudborough showed that, if L1 and Lz are cutwidth equivalent 
partial layouts of a graph G, then L1 and L2 must be defined on the same set of 
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vertices of G and either both L, and L2 can be extended to cutwidth k layouts or 
the entire graph G or neither can be extended to such a complete cutwidth k layout. 

The dynamic programming algorithm works with equivalence classes of partial 
layouts defined by this equivalence relation. 

Clearly, no partial layout L can be extended to a complete cutwidth k layout if 

dangling(L) contains more than k edges. In fact, we show that it is not necessary 
to consider partial layouts with more than k- 1 active vertices. Clearly, a partial 

layout with k active vertices can be produced only by adding another vertex to a par- 

tial layout with k- 1 active vertices. So, let L be any partial layout with k- I active 
vertices and at most k dangling edges. There are two cases: (1) L has k dangling 
edges and (2) L has k- 1 dangling edges. 

Case 1: L has k dangling edges. Whatever vertex is assigned next must be incident 
to one of the dangling edges, since there are no isolated vertices (G is connected) 
and the number of dangling edges can never be greater than k. If the next vertex 

assigned has degree one, then the next partial layout has k- 1 dangling edges and 
then either there are fewer than k- 1 active vertices or case 2 applies. If the next 
vertex assigned has degree at least three or it has degree two and hence has two par- 
allel edges connecting it to another vertex, then at least two of its edges are dangling 

from L; otherwise, the next partial layout would have more than k dangling edges. 
So, the number of active vertices does not increase. That is, at least one vertex that 
was active in L is no longer active. Thus, in this case, we do not produce a partial 

layout with more than k active vertices. 
Case 2: L has k - 1 dangling edges. In this case, each active vertex, is incident to 

exactly one of the dangling edges. If the next vertex is incident to one of these 
dangling edges, then the number of active vertices does not increase by adding this 
vertex. So, assume the next vertex x is incident to one new edge. Assigning x pro- 
duces a partial layout L’ with k active vertices. However, this partial layout need 

not be explicitly considered. That is, consider the next vertex, say y, that is assigned 
after vertex x. If y has one incident edge, which must be one of the dangling edges 
from L’ or there would be more than k dangling edges after assigning y, then we 
can switch the positions of x and y. That is, x, y cannot be an edge, since x and y 
both have degree one and the graph is connected. So, y is connected to one of the 

vertices to the left of x and, consequently, the layout with the positions of x and 
y switched does not have larger cutwidth. So, L’ need not be considered. The next 
vertex y cannot have degree 2, since it must be incident to one of the dangling edges 
and degree 2 vertices are only incident to parallel edges. 

If y has degree 3, then y must be incident to at least two of the dangling edges. 
If the dangling edges incident toy do not include the one incident to x, then the posi- 
tion of x and y can be switched without increasing the cutwidth, as before. Again, 
this means that the partial layout L’ need not be considered. If, on the other hand, 

one of the dangling edges incident to y is incident to x, then the number of active 

vertices in the partial layout L”, when y is assigned, is at most k - 1. That is, at least 
two formerly active vertices now become inactive. So, one simply proceeds directly 



On minimizing width in linear layouts 261 

from the partial layout L. with k- 3 active vertices and k- 1 dangling edges to this 
new partial layout L”. L” has at most k- 1 active vertices. Moreover, there is not 
much choice for the vertices x and y. The vertex y must be incident to one of the 
dangling edges of the original partial layout L and the vertex x must be connected 
to y. Thus, only a constant number of successive partial layouts L” need be con- 
sidered. 

A pair p = (A, D), consisting of a set of vertices A and a set of edges D, is called 
a cutwidth-k-plausible pair, if A contains at most k- 1 vertices and D contains at 

procedure CUTWIDTHkfG) 

/ A dynamic programming algorithm to test whether a graph G has cutwidth at most k. It is assumed 

that the input graph G is reduced, except that a degree 2 vertex has been re-inserted into any resulting 

self loops. / 
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begin add the pair (0.0) to 0; 

while Q is not empty do 

begin delete a pair p= L4.D) from Q; 

if A is a set of k- 1 vertices 

then 

begin 

for all unassigned vertices z incident to an edge in D do 
begin p’+ Successor(p,r); I let p’ = (A’,D’) 1 

if D’ =0 then stop and return “G has cutwidth at most K’; 
if p’ is cutwidth-k-plausible and Tfp’l is false then 

begin TIp’l + true; add p’ to Q end 

for all unassigned vertices w adjacent to z do 

begin 

p”+ Successor(p,w); 

p’+ Successorfp”,z); / let p’ = (A’,D’) / 
if D’ = 0 then stop and return “G has cutwidth at most K’; 
if p’ is cutwidth-k-plausible and Tip’1 is false then 

begin Tip’1 + true; add p’ to Q end 

end 

end 

end 

else I in this case A contains fewer than k- 1 vertices I 

begin V+ Unassigned(A,D); 

for all vertices s in V do 
begin p’+ Successor(p,s); / let p’=(A’,D’l / 

if D’=0 then stop and return “G has cutwidth at most K’ 
if p’ is cutwidth-k-plausible and TIp’l is false then 

begin Tip’1 + true; add p’ to Q end 
end 

end 
end 

stop and return “G has cutwidth larger than K’ 
end 

Fig. 10. An algorithm to decide if a given graph G has cutwidth at most k. 
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most k edges. The algorithm uses two data structures: (1) a queue Q whose elements 
are cutwidth-k-plausible pairs and (2) an array T with one entry for each cut- 
width-k-plausible pair. The element T[p] is true iff the pair p = (A, 0) represents an 
equivalence class of partial layouts that has already been considered before; other- 
wise, T[p] is false. At the start of the algorithm T[p] is false for all pairs p. 

Our improved algorithm also uses two separate procedures that were described 
by Gurari and Sudborough [6]. We include these procedures here for completeness. 
They are given in Figs. 11 and 12. Unassigned(A,D) computes the set of vertices that 
are unassigned in any partial layout L such that (active(L),dangling(L)) = (A,D). 
This procedure requires at most O(n) steps, where n is the number of vertices in the 
graph. Successor(p,z) computes, for a given pair p=(A,D) and a given vertex z, 
the pair p’ = (A ‘, D’) that denotes the equivalence class containing all partial layouts 
that result from those in the equivalence class denoted by the pair p=(A,D) when 
the vertex z is assigned. That is, A’ is the new set of active vertices and D’ is the 
new set of dangling edges after the vertex z is assigned to the next available integer. 
The procedure Successor(p, z) works in O(l), i.e. constant, time. 

procedure UNASSIGNED(A,D) 

begin 

V-0; / V is a set variable that will contain the set of unassigned vertices / 

Q’+0; I Q’ is a queue whose elements are certain edges of the given graph I 

if D=0 then return {x 1 x is a vertex of G}; 

for all edges e in D do 

begin 
DG[e] +- true; / the boolean element DG[el is true if and only if the edge e has been added 

to the queue 0’ I 

add e to 0’ 

end 

for all vertices v in A do 

p[v] +- true; / the boolean element P[vl is true if and only if the vertex has been placed in V 

or does not belong in V I 

while Q’ is not empty do 

begin 

delete an edge e = {x, y) from 0’; 

if /J[vl = false or PI yl = false then 

begin 

if P [xl = false then z + x else z + y; 

PM+ true; 

v+ vu (2); 

for each edge e incident to z do 

if DG[el = false 

then begin add e to Q’; DGfel +-true end 

end 

end 

return V 

end 

Fig. Il. The procedure UNASSIGNED. 
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procedure SUCCESSOR(p,s) 

begin / let p be the pair (A,D) / 

for each edge e in the set D do 

if e is incident to s then delete e from D; 

for each edge e incident to s do 

if e is not incident to a vertex in A then add e to D; 

for each vertex v in the set A do 

if v is not incident to any edge in D then delete v from A; 

if s is incident to an edge in D then add s to A; 

return the pair p’ = (A,D); 

end 

Fig. 12. The procedure SUCCESSOR. 

The improved algorithm is described in Fig. 10. It begins, as shown in line [l], 
by placing the pair (0,0) in the queue Q. In general, while the queue Q is not emnty, 
the procedure works by taking off a pair p = (A, 0) from the queue Q and then 
dividing its computation according to whether the set of active vertices A contains 
k- 1 elements or some smaller number of vertices. 

If A contains k- 1 vertices, as shown in line [4], then the procedure tries to extend 
the class of partial layouts in two separate ways. The first is by trying all possible 
vertices that are incident to one of the dangling edges in D as the next vertex in an 
extended partial layout, as shown in lines [8]-[l l]. The second is by trying pairs of 
vertices, w and y, in that order, for the next two vertices in an extended partial 
layout, where y is incident to one of the dangling edges in D and w is a neighboring 
vertex toy that has not yet been assigned, as shown in lines [12]-[17]. These are the 
only types of extended partial layouts that need to be considered, as we have seen 
already in our earlier discussion. 

If A contains less than k- 1 vertices, then the procedure tries all unassigned ver- 
tices as the next vertex in an extended partial layout. That is, it looks at all 
equivalence classes corresponding to a pair Successor(p,s), where p is the current 
pair taken from the queue Q and s is an unassigned vertex. 

In each of these cases the strategy is the same. The procedure determines first if 
the new partial layout is, in fact, a complete layout of the given graph. This is true 
if and only if the set of dangling edges in the new class of layouts is empty, as shown 
in lines [9], [15], and [25] of the procedure. If there is a complete layout of the given 
graph that is obtained from a cutwidth-k-plausible pair in the queue Q, then it 
follows easily that this layout has cutwidth at most k and, consequently, the pro- 
cedure returns the appropriate answer and terminates. On the other hand, if the new 
partial layout is not a complete layout of the given graph, then a decision is made 
about adding the corresponding new pair p’ = (A ‘,D’) to the queue Q. It is added 
to the queue if and only if it has not been considered before, i.e. T[p’] is false, and 
it is cutwidth-k-plausible, as shown in lines [lo], [16], and [26]. It follows, of course, 
that the only pairs added to the queue Q are cutwidth-k-plausible pairs and each 
such cutwidth-k-plausible pair is added at most one time to : he queue Q. (The last 
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observation follows from the fact that we set the value T[p’] to true when p’ is 

added to the queue Q.) 
The correctness of the algorithm follows from the earlier discussion that shows 

that the search for a cutwidth k layout of the entire given graph can be limited to 

the type of partial layouts with k - 1 active vertices and that shows that the only par- 
tial layouts that need to be considered to extend a partial layout with k- 1 active 

vertices are, in fact, those that the procedure considers. 

We turn now to the analysis of the running time of this procedure. Observe first 
that there are O(n”-‘) pairs of the form p = (A,D) with A a set of k- 1 vertices and 

that there are O(nks2) pairs of the form p= (A,@ with A a set of less than k- 1 
vertices. For each of the pairs p = (A,D) that is cutwidth-k-plausible, there is the 
possibility that the main loop of the procedure, namely lines [2]-1301, will be ex- 
ecuted. Furthermore, in each such execution of the main loop either the lines 
[6]-[20] or the Iines [22]-[29] will be executed, depending upon whether there are 

k- 1 active vertices or less, respectively. Observe that each execution of lines 
[6]-[20] takes O(1) steps, since there are at most k vertices incident to edges in D 

and, for each such vertex, there are at most 2k neighbors. Also each execution of 
lines [22]-[29] requires at most O(n) steps, since there may be O(n) vertices that are 
yet unassigned and the procedure UNASSIGNED requires at most O(n) steps to 

enumerate them. Consequently, the total number of steps is bounded by the number 

of times that lines [6]-[20] can be executed times the number of steps needed to ex- 
ecute these lines plus the number of times lines [22]-[29] can be executed times the 

number of steps needed to execute these lines. As we have seen, this is bounded by 
O(nk-‘). O(1) + 0(nke2). O(n). Consequently, the number of steps needed to ex- 
ecute the complete procedure is bounded by a function in O(nk- ‘). This result is 
expressed in the following theorem. 

Theorem 4.1. For each k 2 2, the problem of deciding, for a given graph G, if 
cw(G) I k or not can be solved in O(nk-‘) steps. 

Clearly, as a corollary, we have that graphs with cutwidth 2 can be recognized 
in linear time. Although the result does not follow from the approach given here, 
we recall that the results of Section 2 strongly suggest that there is a linear time 

algorithm to recognize graphs with cutwidth three as well. 
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