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Abstract 

Nanocomposites of ultra-high molecular weight polyethylene (UHMWPE) fabrics with single-walled carbon nanotubes (SWCNT) in 
epoxy matrix were prepared in order to study their hypervelocity impact (HVI) characteristics. These nanocomposites were assessed for 
their use as bumper shields and as rear walls in Whipple shield configurations at impact velocities in the 6.5-7 km/s range. The HVI 
performances of the nanocomposites were compared against that of the epoxy/UHMWPE composites without nanotubes (or simply, neat 
composites) and aluminum (Al) sheets having areal density similar to both the composites. The results show that the nanocomposites and 
the neat composites perform better as rear walls than the Al sheets, but are lesser effective bumper shields. Comparatively, the two 
composites perform similarly to one another as rear walls and as bumper shields. For these epoxy/UHMWPE composite samples, the 
reinforcement with 0.5 wt% of SWCNT has no noticeable effect on their HVI response.  
 
© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Hypervelocity Impact Society. 
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1. Introduction 

Excellent mechanical, electrical and optical properties of Single-Walled Carbon Nanotubes (SWCNT), along with 
their ability to adhere to several chemical species or functional groups, make them ideal reinforcement material to add 
multifunctionality to a composite system. Due to this reason, researchers have vigorously investigated SWCNT as 
reinforcements in different composites, including the fiber-reinforced polymer matrix composites (PMCs) [1,2].  

Fiber-reinforced PMCs are used extensively in spacecraft structures and satellite components such as antenna 
struts, panels and low distortion frames due to their high specific strength, high stiffness and low coefficient of thermal 
expansion which result in lower launch costs in comparison to other materials with such properties [3]. The space vehicles 

roids and 
orbital debris (MMOD). As a result, spacecraft designers must be aware of the response of various spacecraft components 
and structural elements under high speed impact loading conditions [4]. A two-stage light gas gun (LGG) is a useful tool to 
undertake HVI experiments to simulate MMOD impacts on structural materials. Researchers have employed LGG to test 
HVI response of several fiber-reinforced PMCs in the past [5,6,7,8]. 

 

 
* Corresponding author. Tel.: +1-443-857-2654. 
E-mail address: suman.khatiwada@rice.edu. 

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier Ltd.
Selection and peer-review under responsibility of the Hypervelocity Impact Society

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


5 Suman Khatiwada et al.  /  Procedia Engineering   58  ( 2013 )  4 – 10 

In this project, fiber-reinforced polymer matrix nanocomposites with epoxy resin, ultra-high molecular weight 
polyethylene (UHMWPE) fiber and SWCNT were prepared. Epoxy resin is the most common class of thermosetting resin
used in a wide range of applications because of its high tensile strength, low shrinkage in curing, and good chemical and 
corrosion resistance [9]. Polyethylene is lightweight and provides good radiation resistance. In addition, UHMWPE fiber 
has excellent ballistic impact properties owing to its high strain-to-failure and specific strength [10], which makes this fiber
applicable in bullet-proof armor. Thus, with epoxy resin, UHMWPE fiber and SWCNT as its components, this composite
system has the potential to be a true multifunctional PMC. In this paper, we report results from the HVI experiments on
these nanocomposites. 

2. Experimental

2.1. Composite Fabrication

Two types of composites were prepared: (I) neat composites: epoxy/UHMWPE without nanotubes, and (II)
nanocomposites: epoxy/UHMWPE with SWCNT (grown by the high pressure carbon monoxide, HiPco, process). 4 plies of 
10.0cm by 10.0cm UHMWPE fabric (plain weave Spectra® 1000) were cut and stacked in a cross-ply (0°/90°) orientation.
0.30mg N,N-Dimethylbenzylamine (DMBA), the curing agent, was mixed with 25.0g Epon 826 resin and degassed under 
vacuum for 2 hours. Resin was introduced to the fabric plies via wet lay-up. This resin/fabric system was sandwiched by
two 14.0cm by 14.0cm PTFE (Teflon) plates (1.0mm thick) and two layers of peel-ply before inserting into an aluminum
mold. A film of silicone release was sprayed on the inside surfaces of the aluminum mold beforehand. A hot-press was used 
for compression molding of the composites. 2 MPa pressure was applied at 85°C for 16 hours. A typical composite weighed
11.0 grams, with thickness of 0.11cm, and an areal density of 1.0 kg/m2. Fabrication of nanocomposites involved an extra
step of SWCNT/fabric preparation. SWCNT were first sonicated with ethanol in an ultrasonicator probe for 30 minutes to
create a homogeneous solution. This SWCNT/ethanol solution was then uniformly sprayed onto the UHMWPE fabrics with
an air-spray gun (Paasche® VL-SET). The solvent (ethanol) was allowed to evaporate off by drying the plies for 48 hours in 
air under a fume hood. The dry SWCNT/UHMWPE fabric was then used to prepare the nanocomposites.

2.2. Hypervelocity Impact Experiments

A two-stage LGG at Rice University was used for hypervelocity impact (HVI) experiments as demonstrated in
Fig. 1. 

Fig. 1. Schematic of the two-stage light gas gun at Rice University. The inset shows the projectile launch phenomenon. Burning of powder charge propels
the piston in the pump tube. This compresses hydrogen gas and forces it through launch tube via high-pressure-coupling. The red arrow shows the direction
of hydrogen gas flow. Projectile at the breech of the launch tube is then launched at hypervelocity. Figure is not drawn to scale.
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Fig. 2. Schematic of the target configuration for the HVI experiments. In set A experiments, Al plates were used as bumpers and witness plates, with
composites as rear walls. In set B, the composites were used as bumpers, with Al plates as rear walls and witness plates.

Projectiles were launched in the velocity range of 6.5 to 7 km/s to impact targets at normal incidence (90°). The 
HVI characteristics of the composites (both the nanocomposites and the neat composites) were studied with two sets of 
experiments. In set A, the composites were used as rear walls in a Whipple shield configuration so as to impact them with
debris clouds upon HVI of Al projectiles onto Al plates. In set B, the composites were used as bumper shields so as to
impact them directly with Al projectiles travelling at hypervelocity. A schematic of the target configuration for the HVI
experiments is shown in Fig. 2. 0.05cm thick 6061 Al plates were used as bumpers in set A. 0.10cm thick 2024 Al plates
were used as rear walls in set B, and as witness plates in all the experiments. The HVI performances of the composites were
compared to that of Al sheets (6061 Al; 0.040cm thick) with areal density similar to that of the composites (~1.0 kg/m2). Al 
spheres (2017 Al) of varying sizes were used as projectiles. The images of the HVI events were captured using Imacon 468,
an ultra-high speed camera.

3. Results and Discussion

3.1. Set A: Evaluation of Composites as Rear Wall

Table 1.Experiments for evaluation of the composites as rear wall

material shot# projectile
diameter 

(cm)

impact velocity 
(km/s)

                     rear wall                            .
failure?  # of layers delamination

damaged       area (cm2)

nanocomposite 0487 0.318 6.50 Yes 4 56.7

0453 0.318 6.54 Yes 4 63.6

Al 0477 0.318 6.47 Yes N/A N/A

nanocomposite 0472 0.238 6.87 No 1 40.7

neat composite 0454 0.238 6.84 No 1 43.0

Al 0476 0.238 6.84 Yes N/A N/A

nanocomposite 0492 0.159 7.01(estimated) No 0 0

neat composite 0452 0.159 7.03 No 0 0

Al 0475 0.159 7.07 No N/A N/A
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Fig. 3. Ultra-high speed camera image of debris cloud development from hypervelocity impact by 0.238cm Al projectile on 0.05cm thick 6061 Al plate;
Rice shot#0472. The image has two frames, 3μs apart. The debris cloud goes onto impact the nanocomposite rear wall.

Fig. 4. Post-mortem photographs of rear walls from set A experiments. All images are front-faces of the rear walls, except for the central image (#0454) 
which is the back-face of the rear wall illustrating nonff -failure (i.e. no perforations) of the neat composite. The front-face of that rear wall looks similar to
that of #0472. The back-face of rear wall from #0472 looks similar to #0454 (i.e. it also has no perforations). Scale on the left of each photograph is in 
centimeters.
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Spherical Al projectiles of diameters 0.318cm, 0.238cm and 0.159cm were launched onto Al bumpers to create
debris clouds to impact the composites and the similar-areal-density Al sheets. The set A experiments and their results are
summarized in Table 1. Fig. 3 captures the development of a debris cloud during one such experiment (Rice shot#0472).  In
the figure, there are two frames, 3μs apart, illustrating the growth of debris cloud from one instant to the other, right before 
impacting the rear wall (a nanocomposite sample in this case). To summarize the set A experiments, with 0.318cm 
projectiles, all 3 samples (nanocomposite, neat composite and Al) failed (i.e. complete penetration) from the debris cloud 
impacts. With 0.238cm projectiles, the nanocomposite and the neat composite did not fail, whereas the Al sheet failed. With
0.159cm projectiles, all 3 samples did not fail from the debris cloud impacts. Figure 4 is the collage of post-impact 
photographs of the rear walls from set A experiments. These results show that both the nanocomposites and the neat 
composites make better rear wall materials than the similar-areal-density Al sheets. Comparatively, the nanocomposites and 
the neat composites have similar performance, with comparable delamination area upon impact by the debris clouds (Table
1). With 0.5 wt% of SWCNT, the HVI performance of the epoxy/UHMWPE composite as rear wall does not show
noticeable change.

3.2. Set B: Evaluation of Composites as Bumper Shields

Table 2. Experiments for evaluation of the composites as bumper

material shot# projectile .
diameter    impact

(cm)      velocity
(km/s)

bumper
impact 
hole 

diameter 
(cm)

rear wall

failure?    damage
area
(cm2)

witness plate

failure?    damage
area

(cm2)

nanocomposite 0473 0.318 6.45 6.11 Yes 12.6 No 50.3

neat composite 0455 0.318 6.46 6.21 Yes 9.6 No 44.2

Al 0486 0.318 6.49 4.97 Yes 28.3 No 15.6

nanocomposite 0489 0.238 6.87 5.60 Yes 15.9 No 19.6

neat composite 0456 0.238 7.03 5.72 Yes 19.6 No 23.8

Al 0488 0.238 6.85 4.23 No 41.3 No None

Fig. 5. Ultra-high speed ca
debris cloud
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Fig. 6. Post-mortem photographs of rear walls from set B experiments. The scale in each photograph is in centimeters.

Spherical Al projectiles of diameters 0.318cm and 0.238cm were launched directly onto the composites and the
similar-areal-density Al sheets. The set B experiments and their results are summarized in Table 2. Fig. 5 illustrates the
debris cloud characteristics of the nanocomposite (A), the neat composite (B), and the Al sheet (C) from HVI by Al
projectiles. From the figure, it is evident that the characteristics of the debris clouds from the HVI on the nanocomposite and 
the neat composite are noticeably different from that of Al sheet. In comparison to HVIs of Al projectiles onto the 
composites, HVIs of Al projectiles onto Al sheets inflict smaller impact holes on the bumpers and produce debris clouds
that are more expansive (larger in surface area) and have a characteristic shape with a defined dense leading front. This
difference is important because a larger debris cloud deposits its energy over a larger area on the rear wall, thus increasing
the likelihood of the rear wall resisting the impact without failure. The post-impact photographs of the rear walls (Fig. 6) 
show that, in addition to having smaller damage area, the debris clouds from the composite bumpers inflict holes that are
significantly larger than the damage craters by the debris clouds from Al bumpers. This means that the debris clouds from
composite bumpers contain larger particulates than the debris clouds from Al bumpers. The small area and large particulates
of these debris clouds from the composite bumpers are undesired of a bumper shield. In addition, it should be noted that
total mass of debris clouds falls monotonically with increasing density of bumper material when equal bumper areal
densities are maintained (after Hopkins and Swift [11]). This means that the mass of debris cloud from Al bumper is smaller
than that from the composite bumpers owing to higher density of Al. To summarize the debris cloud properties, the debris
clouds from the composites have smaller area and carry more mass with larger particulate sizes than the debris clouds from
Al bumper. This is the reason for the non-failure of the rear wall in shot#0488 (Al sheet as bumper) from the debris cloud 
impact, and the failure of the rear walls in shot#0489 (nanocomposite as bumper) and shot#0456 (neat composite as 
bumper). Hence, the similar-areal-density Al sheet performs better than both types of composites as a bumper shield 
material. These results are consistent with the results obtained by Christiansen [12] and Schonberg [n 13] on graphite/epoxy
composite bumpers.

Comparatively, the nanocomposites and the neat composites perform similarly to each other. For similar HVIff
experiments, the impact-hole size on the bumper, the damage type and damage area on the rear wall and witness plates are
all similar to one another. The debris cloud images have similar characteristics (Fig. 5). From the observations, it is 
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concluded that with 0.5 wt% of SWCNT in the nanocomposite, the presence of SWCNT does not change the HVI response 
of the epoxy/UHMWPE composite bumper.  

4. Conclusion 

Composites of UHMWPE fabrics with epoxy matrix and SWCNT (0.5 wt% of the fabric) were prepared to study their HVI 
characteristics at impact velocities in the 6.5 to 7 km/s range. In one set of experiments, these nanocomposites were 
impacted with debris clouds from HVI penetration of spherical Al projectiles on Al plates in order to assess their HVI 
response as a rear wall in a Whipple shield configuration. In another set of experiments, the nanocomposites were impacted 
directly with spherical Al projectiles at hypervelocities to assess their HVI response as a bumper shield. Similar experiments 
were carried out with epoxy/UHMWPE without nanotubes (or, neat composites) and with Al sheets having areal density 
similar to that of both the composites. The results show that nanocomposite and the neat composite perform better as rear 
walls than the Al sheets, but are lesser effective bumper shields. Comparatively, the two composites perform similarly to 
one another as rear walls and as bumper shields. In this preliminary work, SWCNT were not functionalized and no special 
efforts were made to improve the dispersion of SWCNT in the polymer resin. For these epoxy/UHMWPE composite 
samples, the results show that reinforcement with 0.5 wt% of non-functionalized SWCNT has no noticeable effect on their 
HVI response.  
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