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Abstract A comprehensive analysis of potential G4 DNA mo-
tifs (G4Ms) in genomic regions flanking transcription start sites
(TSS) was performed across 13 animal species. We found that
G4Ms are significantly enriched in the transcriptional regulatory
regions (TRRs) of warm-blooded animals. Further analysis of
human genes in different temporal groups reveals that the enrich-
ment is not specific to genes found only in warm-blooded species
but instead exist in a wide range of genes. Our findings therefore
suggest that the high prevalence of G4Ms in TRRs is extensively
selected in warm-blooded animals, supporting the hypothesis that
G4Ms are involved in the regulation of gene transcription.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The G-quadruplex, or G4 DNA which is formed in guanine-

rich sequences, is a stable, four-stranded DNA structure alter-

native to the conventional double-stranded conformation

[1–4]. To form G4 DNA, four guanine residues are Hoogsteen

hydrogen-bonded in a square planar array called G-quartets;

three or more quartets are then stacked on one another and

connected by three intervening loops [1–4].

Although G4 DNA has been recognized for more than 40

years, its biological function is still not well characterized

[3,5,6]. Several recent studies, however, have provided novel

insight into the potential function of G4 DNA motifs

(G4Ms) in regulating gene expression [2,6–12]. For instance,

a chair-formed intramolecular G4 DNA identified upstream

of the P1 promoter of the human c-MYC gene was shown to

considerably repress c-MYC transcription [7,11]. Conversely,

G4 DNA formed in the polymorphic G-rich mini-satellite lo-

cated upstream of the human insulin gene has been reported

to be important for its transcriptional activation [12]. Addi-
Abbreviations: G4M, G4 DNA motif; TSS, transcription start site;
TRR, transcriptional regulatory region
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tionally, a number of G4M-forming sequences have been sub-

sequently identified in the promoters of several important

cancer-related genes, including c-Kit, Bcl-2, VEGF, KRAS

and RB [13–19]. This combined evidence suggests that G4Ms

may be common elements involved in transcriptional regula-

tion. Furthermore, genomic analysis has revealed that poten-

tial G4M-forming sequences are highly prevalent in the

human genome [20,21] and more importantly, are significantly

enriched in promoters of both the human and chicken genomes

[8,10]. All of these findings support the current hypothesis that

G4Ms may be a novel type of regulatory element that contrib-

utes to gene expression regulation through a structural-medi-

ated mechanism.

Although the potential role for G4Ms in gene regulation has

been previously investigated, relatively few studies have exam-

ined this topic in depth. Therefore, in this study, we chose to

analyze and compare, in more detail, the distribution of

G4Ms in genomic regions flanking the transcription start site

(TSS) of 13 animal species. Our results suggest an extensive

selection for G4M-enrichment in transcriptional regulatory re-

gions (TRRs) of warm-blooded animals. These findings will be

helpful in furthering the understanding of the regulatory func-

tion of G4Ms in gene expression.
2. Materials and methods

2.1. Data sets
Ten kilobases of genomic sequences flanking the TSS (±5 kb) of 13

species were retrieved from UCSC genome browser[22] including
human (Homo sapiens), chimpanzee (Pan troglodytes), rat (Rattus nor-
vegicus), mouse (Mus musculus), dog (Canis familiaris), cattle (Bos Tau-
rus) , chicken (Gallus gallus), tropical clawed frog (Xenopus tropicalis),
fugu (Takifugu rubripes), water fresh pufferfish (Tetraodon nigroviridis),
Zebrafish (Danio rerio Tuebingen), fly (Drosophila melanogaster) and
nematode (Caenorhabditis elegans). General information for these
datasets were listed in Table 1.

2.2. Identification of putative G4 DNA motifs
The Quadparser program developed by Julian L. Huppert and co-

workers [21] was applied in this study to identify putative G4 DNA
with default parameters. To be recognized as a potential G4M-forming
site, a sequence had to comply with the following folding rule:
GP 3N1�7GP 3N1�7GP 3N1�7GP 3, where N refers to any base. Be-
cause genomic DNA is provided as a single-strand, both G- and C-pat-
terns were searched in order to identify potential G4 DNA on both
strands. The Quadparser program only assigns one count to a se-
quence, regardless of how many potential G4 DNA motifs could form
in a given G4M-forming sequence; therefore, the G4 DNA motifs men-
tioned in this study represent distinct sites, each with the potential to
form G4 DNA. Detailed instructions for using this program are fully
described elsewhere [21].
blished by Elsevier B.V. All rights reserved.
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Table 1
General information of G4 DNA motif in 13 analyzed animal genomes

Species Gene no. G4M no. Frequency Up100 frequency G4M gene Ratio (%) Source

Human 25099 99369 0.40 1.84 14347 57.2 Refseq genes
Chimpanzee 25410 85299 0.34 1.38 13481 53.1 Refseq genes
Rat 10105 24367 0.24 0.80 3764 37.2 Refseq genes
Mouse 19862 59117 0.30 1.28 9196 46.3 Refseq genes
Dog 770 4135 0.54 1.17 405 52.6 Refseq genes
Cattle 8243 26376 0.32 1.18 3661 44.4 Refseq genes
Chicken 4026 13699 0.34 1.52 2274 56.5 Refseq genes
Tropical clawed frog 6142 10293 0.17 0.30 1150 18.7 Refseq genes
Fugu 38510 44907 0.12 0.16 6986 18.1 Ensembl genes
Water fresh pufferfish 27918 38398 0.14 0.16 3466 12.4 Genoscope GAZE
Zebrafish 12038 3352 0.03 0.04 251 2.1 Refseq genes
Fruit fly 21047 10506 0.05 0.02 716 3.4 Refseq genes
Nematode 23527 4379 0.03 0.03 439 1.9 Refseq genes

Gene no., the total genes be analyzed; G4M no., the number of G4M identified in 10 kb regions (±5 kb) flanking the TSS; Frequency, the frequency
(number of G4M per kb) of G4M; Up100 frequency, the frequency of G4M in 100 bp upstream the TSS; G4M gene, the number of gene contained at
least one G4M in the transcription regulatory region (TRR, �500 to +500 bp); Ratio, the percentage of G4M gene; Source, the source of the
sequence data.
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2.3. Classification of human genes
Ortholog sets between human and other species were identified using

reciprocal BLAST [23], with an E-value threshold set to E�25. We
classified human genes into temporal groups using known phylogeny
between human and fly, fugu, frog, chicken, dog and mouse, and then
examined the presence of the genes in each of these groups. Thus, if a
gene was present in the human–fly ortholog set, it would be classified
into the oldest temporal group. Similarly, if a second gene was located
in the human–fugu ortholog set but not in the human–fly ortholog set,
the assumption was made that it was introduced at this stage in the
phylogenetic chain and was therefore placed in the second temporal
group. Nucleotide sequences (cDNA) used to construct ortholog sets
were collected from three sources: the NCBI Reference Sequence Data-
base for human, mouse and fly; the Gene Index Database for chicken
and frog; and the Ensembl Database for chimpanzee, dog and fugu.
3. Results and discussion

3.1. High frequency of G4 DNA motifs in TSS-flanking regions

of warm-blooded animals

We analyzed the frequency of potential G4Ms in TSS-flank-

ing regions (±5 kb) of 13 sequenced animal genomes, including

five mammals, one avian, one amphibian, three fish, one insect

and one nematode. As listed in Table 1, the average frequency

of G4Ms (number of G4Ms per kilobase of genomic DNA) in

TSS-flanking regions ranged from 0.24 to 0.54 in warm-

blooded animals (Note: the highest value observed in dog

might be somewhat biased due to insufficient gene number).

In contrast, the frequency was significantly lower in cold-

blooded animals than that in warm-blooded animals, from

0.03 to 0.17 (Mann–Whitney test, P < 0.0001).

One consideration for such a discrepancy is that the high fre-

quency of G4Ms in warm-blooded animals might simply be

due to a higher elevation in GC-content. From our data,

warm-blooded animals were significantly richer in GC-regions

than cold-blooded ones (Mann–Whitney test, P < 0.0001) and

a positive correlation between GC-content and frequency of

G4Ms exists in all warm-blooded animals tested (data not

shown). However, these positive correlations disappeared

in most of the cold-blooded animals. More importantly,

differences in the frequency of G4Ms between warm- and

cold-blooded animals were still significant (F = 30.847,

P < 0.0001) when applying analysis of variance, with the

GC-content as covariate.
3.2. G4 DNA motifs are enriched in transcriptional regulatory

regions of warm-blooded animals

Recent studies have reported the enrichment of G4Ms in the

promoter regions of human and chicken genomes [8,13]. Fig. 1

(black lines) exhibits the presence of G4M-enrichment in the

transcriptional regulatory regions (TRRs; defined as 1 kb

genomic regions flanking the TSS, �500 to +500) of warm-

blooded animals. To confirm this, we compared the frequency

of G4Ms along the 10 kb TSS-flanking regions by dividing it

into five parts (�5000 to �2001; �2000 to �501; �500 to

+499; +500 to +1999; and +2000 to +5000). In warm-blooded

animals, a significant difference in G4M frequency was de-

tected among these sequence sections (Kruskal–Wallis test,

H = 292.34; df = 4; P < 0.0001) with the highest value located

in the TRR region (�500 to +499) (Mann–Whitney test,

P < 0.0001; Bonferroni-corrected). In particular, the frequency

was more remarkable when examining a narrower core pro-

moter region (�100 to the TSS) (see Table 1).

Many seemingly G4M-forming sequences do not actually

fold into stable G4 DNA [19,24]; therefore, the frequency of

potential stable G4Ms is more biologically relevant. At pres-

ent, it is difficult to predict which potential topology of G4

DNA formed in a given sequence is more stable. However, it

has been reported that (i) the presence of single-nucleotide

loops could increase the stability of the G4 DNA; and (ii) sin-

gle-nucleotide loops can adapt double-chain reversals which

drive the G4 DNA to form parallel folds [14,24,25]. We there-

fore calculated the frequency of stable G4Ms by restricting the

loop size to one in at least one of three connecting loops in the

warm-blooded animals. As shown in Fig. 1 (grey lines), stable

G4Ms also followed an enriched pattern in the TRRs.

Considering that TRRs generally tend to be GC-rich, we

next performed a randomization procedure to test whether

the high frequency of G4Ms obtained from TRRs could be di-

rectly explained by a GC-rich environment. 1000 randomized

data sets were created, where gene length and base frequency

were held constant but base position was randomly permuted.

We calculated the frequency of G4Ms for each randomized set

and, if n was the number of random data sets for which the

G4M frequency was equal to or greater than the observed

G4M frequency in the real TRR sequences, we estimated

P = (n + 1)/1001. Results show that the frequency of G4Ms
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Fig. 1. Distribution of G4Ms in TSS-flanking regions of warm-blooded animals. G4 DNA motifs are not evenly distributed along the TSS-flanking
regions but instead are clustered in the TRRs of warm-blooded animals (TSS ± 500). The black lines represent the frequency of overall potential
G4Ms in 100 bp windows, whereas the grey lines correspond to stable G4Ms. The position of the TRR is marked.
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in TRRs exceeded that in the randomized sets by about 5 times

in all warm-blooded animals (P < 0.001; data not shown).

Thus, it appears that an additional factor must be present that

contributes to the observed enrichment of G4Ms in TRRs, in

spite of high GC-content.

We also counted the number of genes that had at least one

G4 DNA in the TRR (G4M gene). As shown in Table 1,

warm-blooded animals had significantly more G4M genes

compared to cold-blooded animals (v2 = 44753.98; df = 1;

P < 0.0001). The ratio of G4M genes ranged from 37% to

57% in warm-blooded animals and 1.9% to 18.7% in cold-

blooded animals (Table 1). Thus, it is less likely that the higher

G4M frequency observed in the TRR region in warm-blooded

animals is contributed by a limited set of genes but rather as a

consequence of large-scale adoption.
Additionally, Fig. 1 clearly shows a double-peak distribution

of G4Ms in warm-blooded animals: the first peak appears in

the region �100 to the TSS; the frequency slightly decreases

along a 150 bp region downstream of the TSS. The second

peak appears in the region +150 to +300. Neither the G4M-

enriched TRRs, nor the double-peak feature, were found in

cold-blooded animals (Fig. 2).

Taken together, these findings suggest that overall G4Ms,

along with the stable forms, are widely adopted in the TRRs

of warm-blooded animals. This supports the hypothesis that

G4 DNA might be a novel type of element associated

with transcriptional regulation. However, the double-peak dis-

tribution feature observed here in our data implies that G4Ms

may be an unfavorable element at the transcription initiation

site.
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Fig. 2. Distribution of G4Ms in the TSS-flanking region of cold-blooded animals. Compared to warm-blooded animals, neither the TRR-enriched
pattern of G4Ms nor the double-peak feature is detected in cold-blooded animals. Only the frequency of overall G4Ms is presented (black lines)
because of the low frequency of G4Ms.
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3.3. Enrichment of G4Ms is not specific to warm-blooded genes

The enrichment of the G4M gene in warm-blooded ani-

mals also raises the question as to whether or not the

G4M gene is specific to warm-blooded animals. To address

this, we classified the best-annotated human genes into six

temporal groups (hereafter referred to as TG; see Section

2). The number of human genes classified into each temporal

group (TG1 to TG6, from old to young) was 319, 3870,

2453, 3632, 7414 and 1088, respectively (Fig. 3A). The

assumption was made that warm-blooded genes would be

largely present in younger temporal groups. We analyzed

the frequency of both overall, as well as stable G4Ms, along

10 kb TSS-flanking regions of human genes in each TG and,

in addition, the corresponding orthologs in two selected

lower species (fly and fugu).

As shown in Fig. 3B, both the TRR-enriched pattern of

G4Ms and the double-peak feature were detected in the human

genes of all the TGs. It was surprising that older human genes

showed G4Ms richer than younger ones, when considering

both the frequency of G4Ms and the ratio of the G4M gene

(Fig. 3A and B), which was opposite to the expectation that

the G4M gene was specific to warm-blooded animals. The ra-

tio of the G4M gene in the two older temporal groups (TG1

and TG2) was 70.9% and 71.8%, whereas this decreased to

53.4% and 48.7% in the two younger TGs (TG5 and TG6).

It therefore appears that the selection for enrichment of

G4Ms in the TRRs is not specific to warm-blooded genes, as
G4Ms would have been adopted in the regulatory region of

higher animals in a continuous manner. Indeed, orthologs of

many older, G4M-negative or G4M-poor genes in cold-

blooded animals (Figs. 2 and 3C) are becoming G4M-positive

or G4M-rich in the human genome, and they are now even

more G4M-rich than newly created ones (Fig. 3B). It should

be noted, however, that although we provide evidence here

that suggests selection for G4Ms is not warm-blood gene-spe-

cific, we do not preclude the possibility that different types of

genes are under this kind of selection of different strengths.

A recent example of functional preference of G4Ms is that pro-

to-oncogenes and tumor repressors tend to have a very high

and low frequency of G4Ms, respectively, in transcribed re-

gions [26].

In summary, we have characterized the frequency distribu-

tion of putative G4Ms in the TSS-flanking regions across 13

animal genomes. We discovered two significant findings: (i) a

systematic elevation of G4Ms exists in a wide range of genes

in warm-blooded animals and (ii) overall G4Ms, as well as

stable G4Ms are constitutively enriched in the TRRs of

warm-blooded animals. In a living cell, most genomic DNA

is maintained as a duplex and further packaged into chroma-

tin, making the formation of G4 DNA more difficult than

in vitro [2,6]. However, during the process of transcription, sin-

gle-stranded DNA is generated locally, providing an opportu-

nity for the formation of G4 DNA in the TRRs. Our findings

support the hypothesis that G4Ms are involved in transcrip-
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tional regulation and also suggest that G4Ms are a novel type

of regulatory motif that may contribute to the complexity of

gene transcription in warm-blooded animals. At the same time,

our results are also consistent with the notion that regulatory

elements are also preferred by selection like gene coding re-

gions [27,28].
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