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We consider a notion of embedding digraphs on orientable surfaces, applicable to
digraphs in which the indegree equals the outdegree for every vertex, i.e., Eulerian
digraphs. This idea has been considered before in the context of compatible Euler
tours or orthogonal A-trails by Andersen and by Bouchet. This prior work has
mostly been limited to embeddings of Eulerian digraphs on predetermined surfaces
and to digraphs with underlying graphs of maximum degree at most 4. In this
paper, a foundation is laid for the study of all Eulerian digraph embeddings.
Results are proved which are analogous to those fundamental to the theory of
undirected graph embeddings, such as Duke’s theorem [5], and an infinite family
of digraphs which demonstrates that the genus range for an embeddable digraph
can be any nonnegative integer given. We show that it is possible to have genus
range equal to one, with arbitrarily large minimum genus, unlike in the undirected
case. The difference between the minimum genera of a digraph and its underlying
graph is considered, as is the difference between the maximum genera. We say that
a digraph is upper-embeddable if it can be embedded with two or three regions and
prove that every regular tournament is upper-embeddable. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Graph embeddings and their generalisations have been studied by many
authors over the years. For a survey of results in topological graph theory,
the reader is referred to an article by Archdeacon [2]. Fundamental to the
subject has been the study of the maximum and minimum orientable genus
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of a graph, problems which have been proved polynomial (Furst et al. [8])
and NP-complete (Thomassen [16]), respectively.

In this paper, we consider 2-cell embeddings of loopless digraphs on
compact connected orientable two-manifolds or surfaces, as we will call
them. Research in this area has until now been restricted to embeddings
with exactly two regions; this has been explored by Kotzig [13], Las
Vergnas [14], Bouchet [4], and Andersen et al. [1]. Much of this litera-
ture focuses on digraphs with indeg(x)=outdeg(x)=2 for each vertex x,
and the 2-region embeddings are on surfaces as we have defined them. For
larger degrees, the 2-region embeddings are sometimes on pseudosurfaces,
a topic which we do not address in this work. More comparisons between
our results and previous findings are made in the section on upper-
embeddable digraphs.

We consider only Eulerian digraphs with indeg(x)=outdeg(x) \ 2 for
each vertex x. It is not necessary to consider digraphs which contain a
vertex x with indeg(x)=outdeg(x)=1, since such a vertex and its arcs can
simply be replaced by one arc from the in-neighbour of x to the out-
neighbour of x. Hence a digraph D=(V, A) is an embeddable digraph if for
every x ¥ V, indeg(x)=outdeg(x) \ 2, and the graph which underlies D is
connected. Note that our decision to exclude digraphs which contain at
least one vertex x with indeg(x)=outdeg(x)=1 results in the discussion of
some digraphs in Section 2.4 which have multigraphs as their underlying
graph. However, the theory (other than Proposition 4) does not change if
such vertices are allowed, since troublesome arcs can be split into two in
order to avoid a multigraph as the underlying graph, without changing the
embedding properties of the digraph.

By an embedding of a digraph on a surface, we mean that the arcs and
vertices of the digraph are placed on the surface, with arcs meeting only at
mutually incident vertices in such a way that the orientation of a region is
consistent with the orientation of the arcs which make up its boundary,
explaining the restriction to orientable surfaces. As with graph embeddings,
the regions of an embedding are the components of the complement of the
digraph on the surface; with 2-cell embeddings each such component is
homeomorphic to an open disk. The term ‘‘faces’’ is saved for a specific
type of region, as explained below.

Vertex rotation schemes are employed to represent embeddings. The
condition that arc directions on region boundaries be consistent forces in-
neighbours and out-neighbours to alternate in the rotation scheme for each
vertex, hence the requirement that indeg(x)=outdeg(x) for each vertex x.
Rotation schemes which do not have in-neighbours and out-neighbours
alternating in this way at every vertex will not be discussed, as they serve
no purpose in this setting. It is useful to note that a rotation scheme,
together with the orientation of the surface, yields the set of regions of an
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embedding. In the context of embeddable digraphs, each arc is on the
boundary of exactly two regions, one we call a face (this uses the arc in the
forward direction) and the other we call an antiface (each arc is traversed
against its given orientation).

Let the genus of a surface S be denoted c(S). The genus, c(D), and
maximum genus, cM(D), of an embeddable digraph D are the smallest and
largest respectively of the numbers c(S) for surfaces S on which D can
embed. The difference between these two numbers is called the genus range
of the digraph. This notation is the same as that used in the undirected
case. For a rigorous development of these underpinnings in the context of
undirected graphs, the reader is referred to the book by Gross and Tucker
[11]. The particulars which pertain to embeddable digraphs are perhaps
best illustrated with an example.

Example 1. Figure 1 shows an embeddable digraph (in fact, a regular
tournament) and a rotation scheme. Notice that the rotation at any vertex
is an alternating list of in-neighbours and out-neighbours of the vertex. The
seven faces and seven antifaces listed beside the figure are dictated by the
given rotation scheme. Euler’s formula (|V|− |A|+|R|=2−2g) shows that
the given embedding is on the surface of genus 1, the torus.

We make use of some informal language in order to make the paper
more readable. For example, we say that a region visit or touches vertex x if
x is on the boundary of the region; we might also say that x is on the
region. The regions about a vertex x are those regions which have x on their
boundaries. A corner of a region consists of two consecutive arcs of the
region’s boundary. If a region visits a particular vertex more than once, we
are sometimes interested in the distance between two particular consecutive
occurrences of the vertex on the boundary of the region; by this we mean
the number of consecutive arcs on the boundary of the region between the
two occurrences of the vertex. If the vertex is on the region exactly twice,
then we use the shorter of the two distances. In the tournament section, we

FIG. 1. The given rotation scheme yields an embedding on the torus with the listed faces
and antifaces.
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are concerned with the number of antifaces which have a particular vertex
on their boundary and call the vertex a two-antiface vertex (for example) if
this number is two. Any other informal language used is self-explanatory or
explained in context.

The paper is organised as follows. In Section 2, we prove several basic
results on digraph embeddings which are analogous to results from the
undirected case. The focus of Section 3 is a special class of embeddable
digraphs, namely regular tournaments, and we prove that all regular tour-
naments are upper-embeddable. Finally, in Section 4 we mention some of
the directions which further research on this topic might follow.

2. EMBEDDING DIGRAPHS

In this section we present some fundamental results on digraph embed-
dings which parallel work done in the undirected case and whose justifica-
tions use similar proof techniques. In addition, some natural questions are
raised which are particular to the directed case. We offer them here for the
sake of completeness.

2.1. Parity

The following proposition is justified by Euler’s formula for graph
embeddings (|V|− |E|+|R|=2−2g), since an embedding of an embeddable
digraph is an embedding of the underlying graph.

Proposition 2.1. If D=(VA) is an embeddable digraph, then for any
rotation scheme s of D

|V|− |A|+|R|=2−2g,

where |R| is the number of regions of the embedding and g is the genus of the
embedding surface.

It follows from Proposition 1 that the numbers of regions in two distinct
embeddings of an embeddable digraph have the same parity.

2.2. Adjacent Embeddings: New Rotation Schemes via Minimum Change

Given the rotation scheme s1 for an embeddable digraph D, we can find
another embedding of D by creating the rotation scheme s2 as follows.
Choose one vertex v of D, and switch the position of exactly two in-neigh-
bours or exactly two out-neighbours of v in the row corresponding to v of
s1; the resulting rotation scheme is s2. If one rotation scheme can be

4 BONNINGTON ET AL.



obtained from another in this manner, then the two corresponding embed-
dings are said to be adjacent.

Proposition 2.2. Suppose the rotation scheme s1 for an embeddable
digraph D yields an embedding with f regions. If the rotation scheme s2
yields (in adjacent embedding, then the latter embedding has f, f+2, or
f−2 regions.

Proof. Suppose the two rotation schemes differ only at vertex x, and
assume without loss of generality that two outarcs at x have been switched.
Assume that the number of regions at x in the original embedding s1 is m,
and recall that indeg(x)=outdeg(x) \ 2. Fig. 2 shows the (without loss of
generality) three possibilities for the number of regions which involve arcs
(x, b) and (x, e). The top row of the figure shows the arrangements of faces
and antifaces around vertex x before switching these two outarcs, while the
bottom row of the figure shows the corresponding arrangements of faces
and antifaces about x after the switch.

In the first scenario, arcs (x, b) and (x, e) are on exactly one face (W)
and one antiface (A). After switching these two outarcs, arcs(x, b) and
(x, e) are on exactly two distinct faces (W1 and W2) and two distinct anti-
faces (A1 and A2), and it follows that the number of regions which visit
vertex x in the new embedding is m+2.

Next we consider the possibility that arcs (x, b) and (x, e) are on exactly
two faces (B and C) and one antiface (A). In this case, faces labeled B and
C before the switch become one face (BC) after the switch, while the anti-
face labeled A splits into two antifaces (A1 and A2). This gives a new
embedding in which the number of regions at vertex x is m.

FIG. 2. The three possible arrangements of faces and antifaces about x before and after
switching arcs (x, b) and (x, e).
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Last, if the two arcs are on two distinct faces (A and B) and two distinct
antifaces (W and C) before the switch, then they are each on just one face
(AB) and one antiface (WC) after the switch, giving m−2 regions at vertex
x after the switch.

The three cases yield adjacent embeddings of D with f+2, f, and f−2
as the number of regions, respectively. L

2.3. An Analogue to Duke’s Theorem [5]
Let {i, i−1−1, ... , i+j} be the set of genera of the orientable surfaces

on which a particular embeddable digraph D embeds; we call this the genus
list of D and denote it GL(D).

Proposition 2.3. Let D be an embeddable digraph. Then the genus list
GL(D) is an unbroken interval of integers.

Proof. Let s1 and s2 be two rotation schemes for D. We know from
Proposition 2.2 and basic knowledge of permutations that s1 can be
obtained from s2 by a sequence of switches of pairs of outarcs and switches
of pairs of inarcs at the vertices of D. Hence there exists a sequence of
adjacent embeddings of D beginning with one on the surface of genus c(D)
and ending with one on the surface of genus cM(D). By Proposition 2.2, the
numbers of regions in two adjacent embeddings of D differ by two or zero,
so adjacent embedding surfaces differ by at most one in genus. The result
follows. L

2.4. Upper-Embeddable Digraphs
It is impossible to embed with 1-region any embeddable digraph, since

each arc must be on one face and one antiface. If an embeddable digraph D
has an embedding with exactly two regions on the surface of genus p, then
cM(D)=p. Two Euler circuits in an embeddable digraph are said to be
compatible if they have no pair of consecutive arcs in common. We give a
necessary and sufficient condition for a 2-region embedding to exist if
indeg(x)=outdeg(x)=2 for all vertices x. The condition is closely related
to work done by Andersen et al. [1] on orthogonal A-trails (which are
defined in relation to a particular embedding) and perhaps explains their
interest in the underlying graph having valency 4. See Fig. 3 for an example
of two compatible Euler circuits in a digraph.

Proposition 2.4. Let D be an embeddable digraph D with indeg(x)=
outdeg(x)=2 for every vertex x. D is embeddable with exactly two regions if
and only if D has a pair of compatible Euler circuits.

Proof. If D has a two-region embedding, then the two regions are an
Euler antiface and an Euler face. Since every vertex of D has indegree 2,
these two regions do not have any corners made up of the same two arcs.
Hence the two Euler circuits are compatible.
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FIG. 3. A two-region embedding means the digraph has two compatible Euler circuits,
but the converse is not necessarily true.

For sufficiency, let one of the Euler circuits determine the rotation
scheme for the digraph. In the resulting embedding, the two Euler circuits
enclose the two regions. L

Note that irrespective of the degrees of the vertices of an embeddable
digraph D, the existence of a pair of compatible Euler circuits is a necessary
condition for the existence of a 2-region embedding in a surface, but it is
not a sufficient condition. A counterexample is the rotational tournament
on nine vertices in which each vertex vi has outset {vi+1, vi+2, vi+3, vi+4}
(with addition modulo 9). The number of regions in an embedding of this
tournament has to be odd, yet the tournament does have a pair of compa-
tible Euler circuits. These are given by the following sequences of
subscripts:

1234567801357024681471582503604837261

1247813460235680370150457258361482671.

As a result, in the general case (with larger degrees), finding compatible
Euler circuits does not help with the embedding problem. This is unfortu-
nate, since a substantial body of research exists on the problem of finding
sets of pairwise compatible Euler circuits (see for example Fleischner et al.
[6], Fleischner and Jackson [7], and Jackson [12]). Instead, it is necessary
to find pairs of Euler circuits which have the added property that the two
circuits can arise as face and antiface of a 2-region embedding of the
digraph.

We say an embeddable digraph is upper-embeddable if it can be
embedded with two regions or with three regions. It is not true that every
embeddable digraph is upper-embeddable. A counterexample is the bracelet
digraph with an even number of beads or the even bracelet digraph. A
bracelet digraph is a directed cycle with the reversal of each arc added; we
are interested in those bracelet digraphs which have an even number of
vertices (and, hence an even number of 2-cycles, or beads). Since there are
just two distinct rotation schemes at each vertex, colouring the vertices
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FIG. 4. The bracelet digraph on six vertices.

black and white is an easy way to indicate which rotation scheme is in use
at each vertex for a given embedding. If a vertex is coloured black we use
an anticlockwise rule, while at white vertices we use a clockwise rule.
Figure 4 shows a drawing of the bracelet digraph on six vertices, with a
listing of the arcs of the regions dictated by the given rotation scheme.

Proposition 2.5. The bracelet digraph on 2k vertices has maximum
genus 1.

Proof. Consider the bracelet digraph on 2k vertices drawn in the stan-
dard way (see Fig. 4), with black vertices indicating anticlockwise schemes
and white indicating clockwise schemes. If all vertices are white, then the
embedding is in the plane, as given. The same is true if all vertices are
black. Assume there is at least one vertex of each colour. Then the number
of faces is equal to the number of black vertices and the number of anti-
faces is equal to the number of white vertices. Hence the total number of
regions equals 2k, and by Euler’s formula, the genus of such an embedding
is 1. L

It is interesting to note that the argument in the proof above indicates
that the embedding distribution of the bracelet digraph on 2k vertices
consists of two embeddings of genus 0 and 22k−2 embeddings of genus 1.

2.5. Genus Range
The following family of embeddable digraphs shows that the genus
range, or difference between maximum genus and minimum genus, for an
embeddable digraph can be arbitrarily large. We call the family of digraphs
directed antiprisms and denote the directed antiprism on 2k vertices (k \ 3)
as DAk. The digraph DAk on vertices labeled 0, 1, ... , 2k−1 consists of two
directed k-cycles, 0, 2, 4, ... , 2k−2, 0 and 1, 3, 5, ... , 2k−1, 1, with the
additional arcs (i, i+1) for all even i and (i, i−3) for all odd i, with
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FIG. 5. The directed antiprism DA6.

subtraction modulo 2k. Consequently, DAk has 4k arcs. A planar drawing
of the directed antiprism DA6 is shown in Fig. 5 (the rotation scheme at
each vertex is anticlockwise).

Proposition 2.6. The directed antiprism DAk has minimum genus 0 and
maximum genus k.

Proof. It is obvious that DAk embeds on the plane. In order to prove
that it embeds on the surface of genus k and no surface with greater genus,
we give a 2-region embedding of the digraph. The two regions of such an
embedding are enclosed by two compatible Euler circuits. We achieve this
with the following two Euler circuits of DAk:

0, 2, 4, ... , 2k−2, 2k−1, 2k−4, 2k−3, 2k−6, ... , 3, 0, 1, 3, 5, ... ,

2k−1, 1, 2k−2, 0, 2

and

0, 2, 3, 5, 2, 4, 5, 7, 4, 6, 7, ... , 2k−4, 2k−2, 0, 1, 2k−2, 2k−1, 1, 3, 0, 2.

Using this construction and Proposition 2.4, we see that the directed
antiprism graph DAk has a 2-region embedding, since we can always find
two compatible Euler circuits. It remains to calculate the genus g of such
an embedding. For this we use the Euler formula |V|− |A|+|R|=2−2g
and find that g=k. L

Payan and Xuong [15] proved that the genus range of a graph exceeds
one whenever the genus exceeds one. It is natural to wonder if the same
result (or something similar) is true for embeddable digraphs. The answer is
no. Each member of the next family of digraphs we discuss has genus range
one, while the genus is at least two. Further, this family shows that there is
no analogous special minimum genus in the directed case, since the
minimum genus of one of these digraphs can be arbitrarily large, with
embedding range remaining one.
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FIG. 6. The spoke digraph on 11 vertices.

We direct the edges of a particular family of circulant graphs to obtain
the aforementioned embeddable digraphs, which we will call spoke-digaphs.
For each digraph, the number n \ 5 of vertices is odd, and the vertices are
labeled with the integers 0 through n−1=2k. For each vertex i, there is an
arc from i to i+1 and from i to i+n+12 , with addition modulo n. Conse-
quently there are 2n arcs and the shortest directed circuits have length n+1

2 .
The spoke digraph on 11 vertices is shown in Fig. 6.

Proposition 2.7. The spoke digraph on n=2k+1 vertices has maximum
genus k and minimum genus k−1.

Proof. Euler’s formula, together with the fact that the genus list is an
unbroken interval of integers (Proposition 2.3), convinces us that it is
sufficient to show that each spoke digraph has a 3-region embedding, a
5-region embedding, and no 7-region embedding.

We begin by showing that the spoke digraph on n vertices does not have
a 7-region embedding. To this end, suppose that it does have a 7-region
embedding; this embedding has at least four faces or four antifaces.
Suppose without loss of generality that the embedding has at least four
faces. The digraph has 2n arcs, each of which is counted exactly once in the
sum of the face lengths. Hence the average face length is at most 2n4=

n
2 .

Since n is odd, there are no faces of this length, so there must be at least
one of length less than or equal to n−1

2 . This is a contradiction, since the
shortest directed circuit in a spoke digraph on n vertices is of length n+1

2 .
If the digraph is drawn in standard form, as is the one on 11 vertices in

the figure, we have a 5-region embedding of the digraph if vertices 0, n−12 ,
and n+1

2 are coloured black (anticlockwise), and all others are coloured
white (clockwise). For a 3-region embedding, colour vertices 0 through n−1

2

black and all remaining vertices white. L
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FIG. 7. The cartesian product of the directed cycle C4 with itself, C4×C4. (Note: partial
arcs ‘‘connect in the back’’ as expected; also inarcs do not alternate with outarcs in this
drawing, so is does not represent an embedding of the digraph.)

2.6. Embeddings of the Underlying Graph

It is an interesting pursuit to compare the genus and maximum genus of an
embeddable digraph D with the genus and maximum genus respectively of the
graph G which underlies D. Certainly c(G)[ c(D)[ cM(D)[ cM(G). It is
natural to wonder how big the difference can be between c(G) and c(D) or
between cM(D) and cM(G). In this section we give families of embeddable
digraphs which demonstrate that these two differences can be arbitrarily large.

The cartesian product of the directed cycle Cn with itself (see Fig. 7 for
C4×C4) gives a family of embeddable digraphs which demonstrates that
the difference between c(G) and c(D) can be arbitrarily large. In this case,
the undirected graph has genus 1, while the genus of the directed graph
grows without bound as n grows.

Proposition 2.8. The cartesian product D=Cn×Cn of the directed
cycle Cn with itself has genus equal to (n2−3n+2)/2.

Proof. If we use the rotation scheme which is illustrated in Fig. 8 (for
C4×C4) on Cn×Cn, then the faces are 2n directed cycles of length n, while
the antifaces are n directed cycles of length 2n. To see that this embedding
is a minimum-genus embedding, note that it makes optimal use of the
shortest directed circuits in the digraph. The digraph has exactly 2n
directed circuits of length n, and these are the shortest in the digraph. The
second shortest directed circuit length is 2n, confirming that the embedding
is a minimum genus embedding. Since the embedding has n+2n=3n
regions total, Euler’s formula (|V|− |A|+|R|=2−2g) convinces us that the
genus of Cn×Cn is (n2−3n+2)/2. L

The even bracelet digraphs of Section 2.4 provide the needed evidence
that the difference between cM(D) and cM(G) can be arbitrarily large. We
proved in Proposition 2.5 that the maximum genus of the bracelet digraph
on 2k vertices is 1. However, the maximum genus of the underlying mul-
tigraph is k. To see this, use the generalisation of the embedding scheme
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FIG. 8. The rotation scheme depicted yields a minimum genus embedding of C4×C4, if a
clockwise rule is used at every vertex.

shown in Fig. 9 for the bracelet graph on six vertices. This scheme yields a
2-face embedding of the graph, and Euler’s formula gives the desired result.

3. EMBEDDING TOURNAMENTS

We have found that every regular tournament is upper-embeddable and
present these results here. Note that a regular tournament has an odd
number of vertices. The question of minimum genus of a regular tourna-
ment on n vertices is one worthy of further study and is closely related (for
relevant congruence classes of n (mod 12)) to face-2-colourable triangular
embeddings of the complete graph on n vertices, Kn, which have been
studied by Grannell et al. [9] and Bonnington et al. [3]). The latter work
yields an exponential family of regular tournaments T with c(T)=
c(K|V(T)|). The question of the maximum genus of a regular tournament is
answered in Theorem 3.1.

FIG. 9. The undirected bracelet graph on six vertices has a two-face embedding.
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Theorem 3.1. Every regular tournament is upper-embeddable.

A computer check shows that regular tournaments on five and seven
vertices are upper-embeddable, so we restrict our discussion to the regular
tournaments on nine or more vertices. We prove four technical lemmas
before proving Theorem 3.1.

Lemma 3.1. If T is a regular tournament on n \ 9 vertices, then there
exists an embedding of T which has each vertex on one face and at most two
antifaces.

Proof. Let E be an Euler circuit of T and s a rotation scheme induced
by E. The following describes how to perform a series of switches to s to
create a rotation scheme sŒ which preserves E as one face of the embedding
and has every vertex on at most three regions total. Note that E is incident
with each vertex n−12 times, alternating with antifaces.

Given the rotation scheme (T, s), consider a vertex v which is on face E
and m antifaces, where m \ 3. If corners of three antifaces A, B, and C
occur consecutively around vertex v in the embedding (alternating with
corners of face E), as shown in Fig. 10, then simultaneously switching b
with d and c with e in the rotation scheme at v yields an embedding with
two fewer antifaces, since A, B, and C become one antiface.

Repeat the above process until there are no three distinct antifaces which
occur consecutively at v.

Let A, B, and C be three distinct antifaces, each of which has vertex v on
its boundary. We choose a pair of corners of E at vertex v which have all
three antifaces A, B, and C as neighbouring antifaces. There are three
possibilities (see Fig. 11), all of which can be rearranged so that the three
distinct antifaces become one, while the Euler face E is preserved.

In the first two cases shown above, switching the vertex b with f and c
with g in the rotation at v yields an embedding with two fewer antifaces. In
the third case, the aforementioned switches would yield an embedding with
the same number of antifaces as the given rotation, so a different switch is
required to reduce the total number of antifaces at vertex v. In this case
note the following: the vertices y and z which immediately precede a in the
clockwise rotation scheme for vertex v are distinct from g and h respectively

FIG. 10. The corners of three antifaces A, B, and C occur consecutively around vertex v
in the embedding, alternating with corners of face E.

DIGRAPHS ON ORIENTABLE SURFACES 13



FIG. 11. The three possibilities for three distinct antifaces and two corners of face E at
vertex v.

(otherwise three distinct antifaces occur consecutively at v). The clockwise
rotation scheme for v contains the triple yza. Together the arcs (v, y) and
(z, v) form a corner of either antiface A or B (not C, since this gives three
distinct consecutive antifaces at vertex v), and in either case we have one of
the first two scenarios of the figure above. Hence by switching y with g and
z with g in the rotation scheme for vertex v, we reduce the number of
antifaces at vertex v by two.

By employing the above techniques at every vertex, we construct an
embedding of T in which each vertex appears only on face E and on at
most two antifaces. L

We must reduce the total number of regions in the embedding. To this
end, Lemma 3.2 convinces us of the existence of a special antiface, and
Lemma 3.3 shows that there are two special vertices on that antiface.
Finally, Lemma 3.4 gives a method for making use of these two vertices to
reduce the total number of regions in the embedding.

Lemma 3.2. Let T be a regular tournament on n \ 9 vertices with rota-
tion scheme s. If every vertex is on at most three regions (one Euler face and
at most two antifaces) and there are four or more antifaces in all, then there
exists an antiface which visits every vertex at least three times.

Proof. Suppose we have distinct antifaces A, B, C, and D. Assume
there exists a vertex which is on both antiface A and antiface B; we call
such a vertex an AB vertex and say that AB is its type. Existence of an AB
vertex implies there are no CD vertices, since the digraph is a tournament.
Since antiface C exists, we must have a vertex of type either AC or BC.

Case 1. Suppose there exists a vertex of type AC. Then there are no
vertices of type BD. Since D is an antiface, there must be vertices of type
AD and therefore no vertices of type BC. Hence the only vertex types are
AB, AC, and AD (moreover, there are at least three vertices of each type),
plus possibly type A vertices (which are only on one antiface, A). Antiface
A visits every vertex at least once.
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Case 2. Suppose there exists a vertex of type BC. Then arguments
similar to those in Case 1 lead us to conclude that antiface B visits every
vertex at least once.

Without loss of generality, suppose antiface A visits every vertex at least
once, so that the only possible vertex types for vertices on two antifaces are
AB, AC, and AD. Let x be a vertex of type AB. Since T is a tournament,
the neighbourhood of x (consisting of both in-neighbours and out-neigh-
bours) contains at least three vertices of type AC and at least three vertices
of type AD. We consider the number of times antiface A visits vertex x.
The worst case scenario is that the three guaranteed neighbours of x which
are of type AC and the three guaranteed neighbours of x which are of type
AD occur consecutively (in any order) in the rotation scheme for x as
shown in Fig. 12, in which case we see that antiface A visits vertex x at
least three times. L

Lemma 3.3. Let T be a regular tournament on n \ 9 vertices with rota-
tion scheme s. If every vertex is on at most three regions (one Euler face and
at most two antifaces) and there exist four or more antifaces in total, then
there exists a pair of vertices a and b which are on distinct antifaces and are
interlaced on the boundary of a third antiface which visits each vertex of the
tournament at least three times.

Proof. Choose a vertex a which is on two distinct antifaces, such that
between some two occurrences of a on the boundary of antiface A lies a
vertex b of a type different from a. Hence b is on the boundary of an anti-
face which does not touch vertex a. Further conditions for the choice of a
are that the distance between the two occurrences of a on the portion of the
boundary of antiface A which contains b is minimised.

Suppose a is of type AB and b is of type AC. There are at least two
more occurrences of vertex b on the boundary of antiface A, since A visits
each vertex at least three times. If one of them occurs outside of the two
previously identified occurrences of a, then we have an interlacing
...a ...b ...a ...b ... as desired. If not, then all copies of b on the boundary
of antiface A occur between the two described occurrences of a. Consider
the two extreme b’s in the listing, i.e., the two which are closest to the two
a’s. Because of our choice of this pair of a’s we know that all vertices listed
between the two extreme b’s are of the same type (AC) as b or are on just
one antiface A. Hence, there are at most two arcs of the boundary of anti-
face A which have b on one end and a two-antiface vertex of a different
type on the other end. This contradicts the fact that b has at least six two-
antiface neighbours whose types are not AC. We conclude that a and b
must be interlaced on the boundary of antiface A. L
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Lemma 3.4. Every regular tournament T can be embedded with four or
fewer regions.

Proof. We have confirmed that the one regular tournament on five
vertices and the three regular tournaments on seven vertices are upper-
embeddable, so we restrict our discussion to regular tournaments on n \ 9
vertices.

We begin with an embedding of T which satisfies the hypotheses of
Lemmas 3.2 and 3.3. That is, the embedding has one Euler face, at least
four antifaces, and at most two antifaces at each vertex. Let a and b be a
pair of vertices of distinct type interlaced on the boundary of antiface A,
which visits each vertex at least three times. The existence of antiface A is
guaranteed by Lemma 3.2, and the existence of a and b is guaranteed by
Lemma 3.3. Suppose that a is a type AB vertex and b is a type AC vertex.
Then the listings for the boundaries of antifaces A, B, and C look as
follows:

A: ...aab...cbd...eaf...gbh...
B: ...paq...
C: ...rbs ... .

Without loss of generality, we may assume that in the rotation scheme
for a, vertex a is followed by b, vertex e is followed by f, and vertex p is
followed by q. Similarly, in the rotation scheme for vertex b, vertex c is
followed by d, vertex g is followed by h, and vertex r is followed by s.

Change the rotation scheme at vertex a so that vertex a is followed by f,
vertex e is followed by q, and vertex p is followed by b, while keeping each
of these six vertices with its Euler partner at a from the original rotation
scheme dictated by E. Similarly, arrange the rotation scheme at b so that
vertex c is followed by h, vertex g is followed by s, and vertex r is followed
by d, again keeping each of the six with its original Euler partner at b.

The result is a new antiface, ABC, consisting of all of the pieces of anti-
faces A, B, and C. The listing for the boundary of this antiface is:

ABC: ...aaf...gbs ...rbd...eaq...pab...cbh... .

Notice that this technique works even when, for example, the vertex b
listed in the rotation scheme at vertex a is the Euler partner at a of the
vertex p. Consideration of the possible cases is left to the reader.

Given an embedding of T with one Euler face and at least four antifaces,
having each vertex on at most three regions total, we can use the tech-
niques presented here to find an embedding with two fewer antifaces. The
resulting embedding has one Euler face (the same Euler face as before), and
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each vertex is still on at most three regions in total. Therefore it is possible
to repeat the process as long as the resulting embedding has at least four
antifaces. The process must stop when an embedding with four or fewer
regions is achieved. L

We make use of the rotation switch just described in the proof of
Theorem 3.1. Note that if such a pair of interlaced vertices exists on the
boundary of some antiface, then the described switch can be applied,
reducing the total number of antifaces by 2. The maximum genus for Kn is
N(1−n+n(n−1)2 )/2M (Xuong [17]), a fact which is useful in the proof.

Proof. (of Theorem 3.1) If n — 1 (mod 4), then the number of regions in
any embedding of the tournament is odd, and the process described in the
proof of Lemma 3.4 ends with an embedding of the tournament with
exactly one face and two antifaces. Hence, if the number of vertices is
equivalent to 1 (mod 4), then the tournament is upper-embeddable.

The case with n — 3 (mod 4) requires more work, since the process
described in the proof of Lemma 3.4 results in an embedding of the tour-
nament with one Euler face and at most three antifaces; also, there may be
times when the process cannot be implemented at all, due to an early
shortage of antifaces (i.e., three antifaces from the beginning).

Suppose we have an embedding of T with exactly one Euler face E and
three antifaces A, B, and C. We can assume that each vertex is on at most
two antifaces by Lemma 3.1. Then the six possible vertex types are: AB,
AC, BC, A, B, and C.

Suppose one of AB, AC, BC is not a vertex type, say BC. Then there are
vertices of type AB (at least three), AC (at least three), and possibly A.
Since an AB vertex x has at least three AC neighbours, antiface A visits x
at least twice. Similarly, antiface A visits each AC vertex and each A vertex
at least twice. Using the techniques of Lemma 3.3, we find an interlaced
pair of 2-antiface vertices of distinct type on the boundary of antiface A. If
we switch their rotation schemes as described in the proof of Lemma 3.4,
then the resulting embedding has exactly two regions.

If two of AB, AC, BC are not vertex types, say AC and BC, then there
are vertices of type AB and C only, a contradiction.

Suppose we have at least one vertex of each type, AB, AC, BC. Then we
have no vertices of type A, B, or C. We claim that there exists a pair P, Q
from the set {AB, AC, BC} such that |P| > 2 and |Q| > 3. To see this,
suppose not. Assume for all pairs P, Q from the set {AB, AC, BC} either
|P| < 2 or |Q| < 3. Consider the pair AB, AC; one of these is of size less
than 3. Suppose |AB| < 3. Consider the pair BC, AC; one of these is of size
less than 3. Suppose |AC| < 3.
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• If |AB|=|AC|=1 then antiface A has only two vertices, a contra-
diction.

• If |AB|=1 and |AC|=2, then since n \ 9, |BC| \ 6 and the sets AC
and BC are the P and Q we seek respectively.

• If |AB|=|AC|=2 then |BC| \ 5, and the desired P and Q do exist.

It remains to show that there exists an interlaced pair of vertices of dis-
tinct types on the boundary of some antiface. Suppose |AB| \ 2 and
|AC| > 3. Let {x, z} ı AB, {y, a, b} ı AC, and {xŒ} ı BC.

Since T is a tournament, there is an arc between x and y. This arc must
be on the boundary of antiface A. We consider it to be the first arc in the
boundary listing of antiface A.

A : xy...

Suppose the boundary of antiface A has no interlaced pairs of vertices of
distinct types. Then all appearances of y in the listing for the boundary of
antiface A must be before the second appearance of x.

A : xy... (all other copies of y)...x

Since y is adjacent to every vertex of AB, and each resulting arc is on the
boundary of antiface A, all vertices of AB except possibly one, say z, must
be listed between the first and last y in the boundary listing for antiface A.

A : xy... (all other copies of y and elements of AB

−{x, z})...yz...x

Suppose AB−{x, z} is nonempty; let v ¥ AB−{x, z}. Since there are no
interlaced pairs on the boundary of antiface A, all copies of v must be
between two consecutive y’s (otherwise we interlace v and y). Hence
vertices a and b appear between these two consecutive y’s, since v is adjacent
to both a and b on the boundary of antiface A. Also, a and b appear to the
right of the rightmost y, since they are both adjacent to x. So we have
an interlacing of x and a or of x and b on the boundary of antiface A,
a contradiction.

If AB−{a, z} is empty, then |AB|=2. There are three cases to consider.

• If both a and b are listed between the first and last y’s on the
boundary of antiface A, then vertex x is interlaced with one of them. This is
because x is listed with each of them to the right of the rightmost y.

• If neither a nor b is listed between the first and last y’s, then both
arcs between y and {a, b} are on the boundary of antiface C. In this case,
we can argue as above, but with sets AC and BC (recall xŒ ¥ BC), and find
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an interlacing on the boundary of antiface C of vertices xŒ and a or of
vertices xŒ and b.

• Suppose just one of a and b, say a, appears on the boundary of face
A between the first and last y’s.

A : xy...ya...yz...x

Since vertex a is adjacent to x and to z on the boundary of antiface A,
vertices x and a are listed together to the right of the rightmost y. Also, z
and a are listed together to the right of the rightmost y (otherwise y and z
are interlaced on the boundary of antiface A). Every possibility for the
arrangements of a with x and a with z to the right of the rightmost y yields
an interlacing either of x with a, of a with z, or of z with b.

We conclude that there exists an interlaced pair of vertices of distinct
types on the boundary of some antiface. Using the rotation switch
described in the proof of Lemma 3.4, we produce an embedding of T with
exactly two regions. L

We note that the proof of Theorem 3.1 and the preceeding lemmas imply
a polynomial-time algorithm that constructs an upper-embedding of a
tournament (given any starting Eulerian trail.)

4. FUTURE WORK

Some of the open problems which have arisen from this research are
listed below.

• Which tournaments on n vertices have genus K(n−3) (n−4)12 L, the genus
of Kn?

• Characterise those embeddable digraphs which are upper-embed-
dable. Is there an analogue to the splitting tree result used to classify upper-
embeddable graphs?

• Is the embedding distribution of an embeddable digraph always
(strongly) unimodal, as is conjectured to be the case in the study of
undirected graphs by Gross et al. [10]?
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