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Abstract 

Vermeulen, J.J.C., Proper maps of locales, Journal of Pure and Applied Algebra 92 (1994) 79-107. 

We investigate the basic properties of stably closed, or proper maps of locales, in a setting formally 
similar to that developed by A. Joyal and M. Tierney for treating the descent theory of localic open 

maps, We show that proper maps are precisely the compact (perfect) maps previously considered by 

P.T. Johnstone, and that proper surjections are stable coequalizers, effective for descent in the 

category of locales. 

Introduction 

If X is a topological space, the partially ordered set of open subsets of X is 

a complete lattice, in which the infinite distributive law 

holds for all open subsets U and collections of open subsets Y in X. We recall that 

aframe is an abstract lattice with these properties; like inverse image along a continu- 

ous mapping, a frame homomorphism is taken to preserve joins and finite meets. 

Locales are frames viewed as spaces, that is, the category of locales is dual to that of 

frames: a locale X is specified by a frame OX, its lattice of forma1 opens, and a map 

f: Y + X between locales by a frame homomorphism f- : OX + Q Y defining forma1 

inverse image along f: This is an instance of a more genera1 idea [ 11, namely that 

a Grothendieck topos-a category of sheaves of sets on a site-is a space in an 

intuitive sense. Using arguments involving, amongst other things, the forma1 proper- 

ties of open maps of Grothendieck toposes, it was shown in [13] that the mathemat- 

ical step from locales to arbitrary Grothendieck toposes is indeed one of remarkable 

conceptual simplicity: it consists in allowing for the action of a localic groupoid. 
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In this paper we state and prove the basic properties of proper, that is to say, 

stably (under pullback) closed maps of locales. A geometric morphism between 

Grothendieck toposes is proper if its localic part is (we shall not need the general 

definition here-we only mention that it is strictly weaker than that used in [16]). 

It turns out that localic proper maps behave essentially like their topological counter- 

parts [4], also known as perfect maps. In particular, proper maps share most of the 

formal properties of open maps of locales crucial to the “open” picture of toposes 

presented in [13]; although this point will not be pursued here, the notion of 

properness might conceivably constitute the backbone of a corresponding “closed” 

structure of toposes. 

The definition of properness for maps of locales and Grothendieck toposes in 

a sense equivalent to that understood here, seems to have made its first appearance 

in [8]: a map ,f: Y + X of locales is there called perfect if f is compact as locale in 

the topos of sheaves over X (with the term “proper” reserved for compact regular 

maps). Under mild separation conditions on the base, this reduces to one of the 

equivalent definitions for maps of topological spaces, that of being closed with 

compact fibers [4]. Here we retain internal compactness as one characterization 

of properness, showing that it is equivalent both to the property of being stably 

closed, and a simple lattice-theoretic condition on ,f which is to become our 

working definition. 

A core of the results presented here (stability of compactness under localic change of 

base, and effectivity of proper surjections for descent) were originally obtained using 

the direct methods of [lS, 191. However, it transpired that these results fit neatly into 

an elegant algebraic formalism based on the tensor-category of preframes [2, 121, 

analogous to that used with reference to the category of sup-lattices in [13] for dealing 

with the descent theory of open maps. Aspects of this connection, which is closely 

linked with the original technical insight of P.T. Johnstone [9] leading to a choice- 

free, and essentially constructive [18] proof of the localic Tychonoff Theorem, were 

observed in [2], and spelled out more explicitly in 1121. 

We give a brief outline of the contents. The first section deals with preliminaries 

in a fairly broad sense, and is primarily intended to smooth the way somewhat 

for the reader unfamiliar with [13]. Section 2 contains a summary of the “linear 

algebra” of %-lattices, the name used here for the order duals of preframes. It is 

based (by analogy) on [13, Chapters I and II], using the results of [12]; we thus 

refer to these for more details. In Section 3 we give, and prove the equivalence of, 

three definitions of properness; the crucial results here are Propositions 3.4 and 3.7. 

As far as we know, the latter is originally due to A. Tozzi and A. Pultr; however, 

an adaptation of their proof was necessary to make it base-independent, essential 

for our purposes. The final two sections treat basic preservation and exactness 

properties of proper maps, in the spirit of [4]. From these we shall in particular 

be able to conclude that proper surjections are effective descent morphisms in the 

category of locales [13, 17, 201. Our treatment of proper equivalence relations was 

to some extent modelled on [14]. 
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1. Notation and preliminaries 

In this section we establish terminology, and recall various needed (mostly well- 

known) facts about the localic formalism in the topos context. Our basic reference is 

[13], but see also [lo]. We shall mostly work with locales in terms of their “closeds”, 

as opposed to opens as is customary; although this switch is formally trivial, it will 

render our arguments more geometrically intuitive. 

Open- and closed maps 

Let f’: Y+ X be a map of locales. Formal inverse image f has a right adjoint 

f * : 0 Y + 0X. By simply reversing the order, we could also view X as being given in 

terms of a coframe (order-dual of a frame) %7X N OXop, the closeds of X, and f by 

a coframe homomorphism f-: %7X + %2 Y with left adjoint f!: 

The category of locales (Lot) has limits and colimits, and any f can be factored 

essentially uniquely into a surjection Y-++f[ Y] (epimorphism, corresponding to 

a coframe inclusion), followed by a sublocale inclusionf[ Y] =-+X (regular monomor- 

phism, given by a coframe surjection). Let 9X denote the complete lattice of 

sublocales of X (equivalence classes of inclusions, which form a set). The mapfinduces 

the pair 

of order-preserving mappings, wheref[-] = categorical direct image, left adjoint to 

f- = categorical inverse image (pullback). Our notation here is consistent, for we 

recall the following: 

Proposition 1.1. For every locale X, there is an embedding of OX into 9X-dejking the 

open sublocales of X-which preservesjkite meets and arbitrary joins, and such that for 

any f: Y + X, the square 

commutes. 0 
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Proposition 1.2. Each open sublocale U =-+X has a complement - U in YX, preserved 

under inverse image; the assignment U H - U thus gives an embedding of %?X into 

YX-de3ning the closed sublocales of X-which preservesjnite meets and arbitrary 

joins, and such that for any f: Y--f X, the square 

Y %TY-YY 

f f- 

1 I 

s- 

V 

X %TX-----+YX 

commutes. q 

An open inclusion i: U L*X and its closed complement j: C LOX may be recon- 

structed from the locales U and C by “Artin glueing” [7] along the “fringe map” 

p = j-i, : OU + OC; p preserves finite meets, and prescribes how U and C fit together 

in X at their boundaries. More precisely, the fact that U and C cover X means there is 

a surjection 

u + c:x. (1) 

The inclusion OX --tOU x OC of OX as q-saturated opens of U + C is determined as 

the fix-points of the co-closure operator q-q*; one checks that 

q-q,(P,Q)=(P,pPr\Q) forPEOU,QEOC. (2) 

Thus, P + Q E OU + OC is of the form q-U precisely when Q I pp. The relation (2) 

defines an order-preserving correspondence between images of U + C of the form 

(1)-that is, under which U remains open and disjoint from C-and finite meet- 

preserving mappings p : 0 U -+ OC. 

By Propositions 1.1 and 1.2, open sublocales (with their joins) and closed sublocales 

are preserved under inverse image. Given a closed embedding i : C c--,X, the (images 

of) closed sublocales of C in YX are of the form C A D for some D E OX, hence closed. 

Thus i [-I restricts to closed sublocales, or equivalently, closed inclusions are preser- 

ved under composition: 

More generally, a map f: Y + X of locales is closed if direct image along f, 

f C-1 : YY -+ YX, restricts to closed sublocales. It is immediate from the definition 

that the following maps are closed: inclusions of closed sublocales, in particular 

homeomorphisms (isomorphisms); the composite of two closed maps; the result of 

cancelling from a closed map an inclusion on the right or an epimorphism on the left. 
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Open maps are defined similarly; in addition to satisfying the stability properties just 

mentioned for closed maps, open surjections, hence arbitrary open maps are like open 

inclusions stable under pullback. As in topology, this is not true for arbitrary localic 

closed maps, which is the reason for introducing proper maps. 

A mapf: Y --) X factors through a sublocale S ctX if and only if for all C,D E %7X, 

S A D I C implies_/-D <f-C; this is easily seen to imply that 

This last fact forms the backbone of the following proposition: 

Proposition 1.3. 9X is a cofiiame VX’, and the coframe inclusion %?X -%7X’ inverse 

image for a stable, monomorphic surjection s : X’ --H X of locales. Moreover, for each map 

f: Y --f X, inverse image f ~: YX + Y Y is a coframe homomorphism, defining a map of 

locales f’ : Y’ --f X’. The surjection s : X’ -ttX (to which we shall refer as the splitting 

cover of X) is universal amongst maps for which the inverse images of opens-and hence 

of all sublocales of X-are closed. 0 

The fact that inverse image preserves finite joins of sublocales means the comp- 

lement - S (if it exists) of any S E 9X is stable. As a consequence, localic surjections 

are preserved on pulling back (restricting to) complemented sublocales. This leads to 

a “Frobenius reciprocity”-law: 

Proposition 1.4. For a map f: Y -+ X, complemented A E YX and any B E 9’ Y, 

f[f-A A B] = Ar\f[B]. 

Proof. The sublocale A A f [ B] vf [ B] is complemented in f [B], and the diagram 

f-Ar\B-B 

J-1 

I I 

ft 

A Af[B] -ffCBl 

a pullback. 0 

Each sublocale S of X has a closure $ the least closed sublocale of X containing S. 

In particular, J D =f[D] for D E %?Y. Thus, for U E OX and C E 92X we have 

f*-C= -f;Cand -f,U=f!- U. 
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Lemma 1.5. The following are equivalent for f: Y + X: 

(i) f is closed; 

(ii) f[-] restricts tof; on %?Y; 

(iii)f!(f-CAD)= Cr\JDfor all CE%?X, DEFY. 

Proof. That (i) is equivalent to (ii) is immediate. Given (ii), (iii) is just the Frobenius- 

identity (Proposition 1.4), hence is necessary forfto be closed; it is also sufficient, since 

it implies (for arbitrary E E %X) thatf[C] A D I E only ifJC A D I E, that is, that 

fC-1 IX. 0 

Locales over a base 

Given a locale X, the frame OX as a category may be completed under colimits, 

freely up to the preservation of existing covers (i.e. joins) in 0X, to yield the topos 

8X of “generalized opens” or sheaves on X; it is constructed in the standard way as 

the category of contravariant functors OX + Sets satisfying a patching condition 

on open covers. This extends 2-functorially to maps f: Y -+ X to yield a 2-full 

embedding (the correspondence between morphisms is an equivalence of categories 

rather than a bijection of sets) of the 2-category of locales into that of Grothendieck 

toposes: 

Here the (Yoneda-)embedding OX --t&X preserves finite limits, as does the colimit- 

extensionf* : 8X -+ &Y off-. f* has a right adjoint, restricting to that off-. One may 

therefore identify such a localic topos with the corresponding locale, that is, X is 

determined by its “topos of opens” 8X, and conversely. 

A map p: E + X of locales is said to be etale (or a local homeomorphism) if p, as 

well as the inclusion d : Y =+ Y x x Y of the diagonal into the fibered product are open. 

Given a locale X, we write 9X for the comma-category Lot/X of locales over X. 

A map f: Y + X induces the functor f * : 9X + _%‘Y (pullback or “change of base”) 

which preserves etale maps. Proposition 1.1 now extends to generalized opens, to 

read: 

Proposition 1.6. For every locale X, there is a full embedding of 8X into 9X-with 

image the etale maps into X-which preserves jinite limits and arbitrary colimits, and 
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such that for each map f: Y + X, the square 

Y dY-2zY 

f f* 

i 1 f’ 

v 
X &XMYX 

commutes up to isomorphism. 0 

The data in Proposition 1.1 is recovered from the above by restricting to (regular) 

subojects of the terminal object 1 in the respective categories. 

The category 2X is the fiber over X of a fibration of categories 

cod 

Lo2 - Lot, 

a natural structure for describing the internal (categorical) logic of locales as indexing 

objects (cf. [3, 151). Briefly, a map p: E + X represents a family {E [x] (x E X} of 

locales, continuously parametrized by X. Given any f: Y + X, the family (E, p) is 

re-indexed alongf by applyingf*, that is,f* (E, p ) = {E [fb)] Iy E Y}; re-indexing 

along a (constant) point p: 1 -+ X of X produces a (constant) locale, the fiber above 

p of the corresponding map. A map in 2’X is similarly thought of as a family of localic 

maps indexed by X. A basic idea now is that a truly “internal” class of locales is 

completely defined only in terms of the collection of all (formal) locale-indexed 

families of its members; to make sense, it is clearly necessary that such a collection of 

families (as maps) be stable under re-indexing. An internal class is “small” if 

all the corresponding families may be obtained by re-indexing a single, generic family, 

of which the indexing locale is said to “classify” the (members of the) class. 

Now, as is well-known, the internal logic of a topos can support set-theoretic 

arguments provided these are constructive in the appropriate sense (see [7]). In 

particular, the notion of locale can be interpeted in any topos, as can the facts and 

arguments expressed in set-theoretic language about them given in this paper. For 

example, one shows that the unique map from a locale X to the terminal locale is etale 

precisely when X is discrete, that is, has for opens all subsets of a set; the resulting full 

embedding Set BLOC is just that of Proposition 1.6 in the case X N 1. This is 

constructive, and can be interpreted with the topos 8X in the place of Set = &‘l. It can 

be shown that the result is exactly the embedding of Proposition 1.6 for general X; 

more precisely, we have the following: 

Proposition 1.7. There is an equivalence of categories 2X N Locgx, identifying the 

inclusion of 8X as etale maps with its inclusion as discrete locales. 0 
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A locale continuously varying over X is therefore a locale in a category of sets, 

namely that of (constant) sets varying continously over X. In this way any construc- 

tive property of a locale which on interpretation in localic toposes yields a stable class 

of maps, gives rise to an internal class of locales. Thus, etale maps represent the class of 

discrete locales, inclusions that of sublocales of 1, and open inclusions the class of 

open sublocales of 1 or truth values, which is small (classified by the Sierpinski-locale 

S). More generally, there is an internal class of open locales, locales with open support; 

whereas the class of inhabited locales (locales with global support) is not internal, that 

of open inhabited locales is, since open surjections are stable. 

IZfSective descent 

Given a localic surjection s : X + Q, consider the diagram 

For any X-indexed family (E, p) to be the pullback of a family (F, 4) indexed by Q, 

it is necessary that re-indexing along the projections rcn, and rcr leads to isomorphic 

results, 4 : ~6 (E, p) ‘v ni (E, p); moreover, the X xaX-indexed family of isomor- 

phisms C$ needs to be compatible, in the sense that 

If, conversely, an arbitrary (E, p > and C#I satisfying the cocycle-conditions (3) (called 

descent data) determine such (F, q ) uniquely up to isomorphism, s is said to be an 

eflective descent morphism of locales. We shall apply the following criterion for 

effectivity of descent [17]: 

Proposition 1.8. The members of a stable class Y of localic surjections which contains 

the homeomorphisms and is closed under composition, are eflective descent morphims 

provided that 

(i) each s E Y is a coequalizer (“identi$cation map”), 

(ii) any equivalence relation 

for which LX (or equivalently /I) is in 9 has a stable coequalizer. 0 

“Stable” in (ii) means when changing base, the pullback of the coequalizer of a and 

/I remains the coequalizer of their pullbacks. 
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2. Coframes as ring objects 

By a %-lattice we shall mean a partially ordered set P which has finite joins and 

meets of filtered (i.e. down-directed) subsets, satisfying the distributive law 

x v l\F = /j{x vflf~ F} for all XEP and filtered F G P. 

%-lattice homomorphisms preserve finite joins and filtered meets. Recall that the 

category of partially ordered sets and monotone mappings (Pos) has limits and 

colimits, and is Cartesian closed under the pointwise order on its horn-sets. 

The next result is essentially contained in [12]: 

Theorem 2.1. The category Cl of VT-lattices has colimits, and is commutative monadic (in 

the strong sense) over the category of partially ordered sets. It is therefore a complete and 

cocomplete, symmetric closed Pos-category, in which coframes are the meet-semi- 

lattices. q 

We briefly explain the terms, and then the way we intend to use Theorem 2.1. Strong 

refers to the fact that the monad U = (T, q, p) involved-and thus various derived 

constructions-respects the order on maps (T is said to be a Pos-fun&or). To describe 

U, recall that the functor which assigns to a partially ordered set P its downsets 9P 

ordered by subset-inclusion, and to a monotone mapping f: P -+ Q the function which 

takes a downset of P to the down-closure of its image in Q, defines a monad. The unit 

is the embedding 1 (-): P cf 9P associating with an element of P its downsegment; 

the counit is union: g2P + 9P. Submonads are obtained by restricting to ideals 

(up-directed downsets) and finitely generated (finite unions of principal) downsets 

respectively; the latter may be followed (composed) with the order-dual of the former 

(filters replacing ideals, ordered by reverse inclusion) to give a monad having V- 

lattices as algebras. Thus, limits of g-lattices are calculated in Pos. Colimits are most 

easily constructed by “pulling down” those from the category of coframes, cf. [12]. 

For partially ordered sets P and Q, the exponential transposes of the identity 

id:PxQ+ PxQ and T:Pos(Q,PxQ) --) Pos ( TQ, T(P x Q)) induce the map 

PxTQ=% Pos(Q,PxQ)xTQAT(PxQ), 

natural in P and Q. The term commutative in Theorem 2.1 refers to the fact that the 

diagram (with the obvious maps) 
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TPxTQ vT(PxTQ) 

I I 
T( TPxQ)- T2(PxQ) 

commutes. Explicitly, it says all g-lattice operations commute, that is, filtered meets 

and finite joins with themselves and each other. Given that Cl has equalizers and 

coequalizers, it is a purely formal consequence of commutativity that the symmetric 

closed structure of Pos lifts to V-lattices. That is, for @‘-lattices M and N, Cl (M, N) 
becomes an object of Cl and the Cartesian product of partially ordered sets can be 

modified to a symmetric tensor product (@), with unit (I), such that there is a natural, 

order-preserving bijection 

Cl(M@N, L) ‘v Cl(M,Cl(N,L)). (4) 

Explicitly, elements of the right-hand side in (4) correspond bijectively to monotone 

mappings M x N + L which preserve the q-lattice operations in each variable 

separately; these may be represented by a universal such bi-homomorphism 

M x N + M 0 N. The unit is the free object on one generator. It follows that there is 

a forgetful functor 

Commutative monoids in Cl -+ Commutative monoids in Pos, 

with the commutative monoids of Cl-or %-lattice rings-appearing in Pos as those 

having a multiplication which preserves the g-lattice operations in each variable 

separately. The description of coframes in Theorem 2.1 follows by considering meet- 

semilattices as commutative monoids of partially ordered sets. 

Limits and filtered colimits of rings are calculated in Cl. The initial ring is the 

tensor-unit I, and the coproduct of two rings R and S their tensor product: 

ReR@I ido3! -R@Sc--- !@jd Z@S N S. (5) 

These constructions restrict to coframes; in particular, the unit, and the tensor product 

of two coframes are coframes. We shall not here need to consider coequalizers of 

general %-lattice rings. 

The generalities of “linear algebra” can be developed in Cl, similar to the way it is 

done in the category of abelian groups (see [13] for details of the corresponding 

theory for sup-lattices). Thus, any ring R in Cl defines a strong commutative monad 

C H R @ C on Cl; commutativity is just that of the monoid R. The algebras are 

actions of R in Cl, or R-modules; we refer to the morphisms as R-linear mappings. 
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R-modules are also the coalgebras for the corresponding comonad C H Cl(R, -); 

thus, both limits and colimits of R-modules exist, and are calculated in Cl. As before, 

the closed structure of Cl lifts to R-modules: the relative tensor product (OR) has 

R for its unit, with an R-linear map M BRN -+ L corresponding to a monotone 

mapping M x N -+ L which is R-linear in each variable separately. We refer to rings of 

R-modules as R-algebras; these correspond to ring homomorphisms h : R -+ S, each 

inducing a functor 

h, 
S-modules --+ R-modules 

(“restriction of base” along h). h, has a left adjoint M ++ S OR M (“extension of base” 

along h); the unit of the adjunction at (an R-module) M is 

M N hORid:RORM + SORM. 

The construction of limits and coproducts of rings “relativize” to R-algebras. We shall 

have frequent use for the following lemma: 

Lemma 2.2. A commutative diagram 

RI’M 

h 

I I 

k 

(/ 
S-N 

of cofiiames is a pushout tfand only if g is the extension off along h, with h and k unitsfor 

the adjunction. 

Proof. The diagram above is a pushout of coframes iff a coproduct in the category of 

rings under R, that is, of R-algebras; the latter is given by the (relative) tensor product 

as in (5). Cl 

We note that the constructions above are all internal to the category of partially 

ordered sets, that is, the functors and adjunctions mentioned respect the pointwise 

order of maps. 

Proposition 2.3. Let R be a V-lattice ring, M an R-module, and D : I + Cl\ M a (small) 

filtered diagram in the category of R-modules under M. Then, if each of the vertices of 

D (R-linear maps from M) has an R-linear left adjoint, then so has the colimit of D; 

moreover, the latter is an injective mapping given that all the vertices are. 
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Proof. Let i0 be a fixed object of the filtered category I, and consider the commutative 

diagram 

where CI varies over the morphisms of I, where d, : (h, Ni) + (5, Nj) stands for 

Dcr : Di + Dj, andfis the colimit of D, with ci: (fi, Ni) + (f, N) the canonical maps. 

The top triangles define a colimit of R-modules, from whichfis obtained asf= cio& 

(connected colimits of R-modules under A4 are calculated in the category of R- 

modules). For i E ObZ, let A!: Ni + M be the left adjoint of A, and put 

4i = A{fk!dyly:i + k in I}. Then (bi is R-linear, being a filtered meet of such; 

moreover, given any c( : i -+ j in I, 

@i= A\(fk!ds,li 5 j 5 k in Z} (using the filteredness of I) 

= A{fk!dslj z k in l}od, 

= +jd,. (f-5) 

By (6) and the colimit property of the maps ci, there exists a unique R-linear map 

5 : N + M such that $i =f;ci for all i E Ob I. Also, 

Xf=.Aci~.,& 

=~{Ifk!dyfioIiO L kinI} 

I .&!fi, I id, (7) 

while for all i E Ob I, 

giving id <ff;.. It follows that J_lf, that is, f has an R-linear left adjoint. Finally, if 

each f;, i E Ob Z is injective, we have equality in (7) so that f is injective. 0 
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3. Definitions of properness 

Recall that a locale Y is compact if any open cover of Y contains a finite subcover; 

equivalently, the left adjoint to inverse image of closeds along the unique p : Y + 1 

preserves filtered infima. We sayf: Y + X is compact if it is compact as a locale in the 

topos 8X of sets over X. This section will be devoted to showing the following 

theorem: 

Theorem 3.1. The following are equivalent for f: Y + X: 

(i) f is compact; 

(ii) f is a closed map, and J preserves filtered infima; 

(iii) f is stably closed. 

A map f: Y + X will be called proper if it satisfies any of these equivalent conditions. 

Stable closedness is trivially preserved under pullback. It will therefore follow from 

Theorem 3.1 that compactness is stable under change of base, and that proper maps 

have compact fibers. Thus, compactness is an “internal” notion. For brevity we refer 

to property (ii) as lattice-compactness off; it will yield a purely lattice-theoretic 

characterization of properness (see Lemma 3.3). Theorem 3.1 will be proved by 

showing that (i) *(ii) + (iii) j(i). 

Compact maps are lattice-compact 

We need an explicit description of compactness in a localic topos. 

Lemma 3.2. f: Y --) X is compact ifffor each mapping j: COY -+ OX which satisfies 

(JO) f*(p+Q) <j(Q) -j(P), 

(Jl) X IjO, 

(52) j(p) AAQ) SAP v Q), 

for all P,Q E OY, the relation 

f*V{P Af~j(P)IPE~Y) <j(Y) 

holds. 

Proof. We use the representation of sheaves as OX-sets, see [S]; recall that the 

frame-sheaf of opens off: Y + X considered as locale in 8X is determined by its 

global elements, which is 0 Y. f: Y + X is compact in 8X precisely when f, preserves 
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suprema indexed by (global) internal ideals of COY. Such an ideal $ is described by 

a mapping j (the characteristic map of 9 on global opens of Y over X) as above, in 

terms of which (8) expresses the internal inclusion f, v$ I Vf* [f]. 0 

Now, suppose f: Y -+ X is compact. Given any Ii E 0X and V E 0 Y, define 

j : 0 Y -+ OX by P H U v,f, (P -+ V). Then it is straightforward to check that j satisfies 

(JO)-(52) while (8) reduces to f,(f-U v V) < U v f, V; this shows that f is closed. 

Next, suppose f E 0 Y is an (ordinary) ideal of 0 Y, and now define j : 0 Y + OX by 

P t--+ V {f;, (P + V) 1 V E 9 }. Then it is again easy to see that j satisfies (JOHJ2), while 

(8) reduces tof, V2 I Vf* [B]; this shows thatf, preserves suprema over ideals of 

0 Y, or, equivalently, that X preserves infima over filters of %?Y. Thus, ,f is lattice- 

compact. 

In particular, if Y is compact, the unique p: Y + 1 is closed. We may show this 

directly: given c E %l and D E %?Y, p!(p-c A D) = p!(AF) and c A p!D = l\p,[F], 

where 9 is the filtered set {F E @YI (* E - c and F = 0) or F = D}. We could 

alternatively have deduced the general case from this by observing that closedness of 

a map is independent of a reference base, i.e. if 

commutes, fis (stably) closed ifff: ( Y, q) -+ (X, p) is (stably) closed in dB. 

Lattice-compact maps are stable 

Our arguments involving lattice-compactness will lean heavily on the following 

observation: 

Lemma 3.3. f: Y--t X is lattice-compact precisely when 5 : %‘Y + $?X is %?X-linear. 

Proof. By definitionf: Y + X is lattice-compact when A preserves filtered infima and 

fis closed. The former saysf; is a map of V-lattices, since as a left adjoint,fi preserves all 

joins; using Lemma 1.5 the latter saysf! preserves the action of %?X. 0 

The “extremal” instances of lattice-compact maps are closed embeddings i : C c----t X 
(i! preserves any infimum taken over an inhabited subset of %‘C) and p: Y + 1 with 

Y compact-each satisfies part of the definition trivially. 
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Proposition 3.4. In a pullback square 

P k *Y 

h 

I I 

f 

z g *x 

tff is lattice-compact, so is h, and g-J = h! km. 

Proof. In the diagram 

h- is the base-extension off- along g- (Lemma 2.2), with g- and km unit maps for the 

adjunction. If f! is %X-linear, it has itself an extension h! to a V?Z-linear map, the 

unique such making the top square commutative. But since base-extension preserves 

the order on maps, it preserves in particular the adjointness-relationJ-(f-, that is, 

h!{h-. 0 

Proposition 3.4 implies that a lattice-compact map is stably closed. In particular, we 

have the following 

Corollary 3.5. Suppose Y is compact. Then for any Z the projection rc: Z x Y + Z is 

closed. 0 

Stably closed maps are compact 

We first obtain the converse of Corollary 3.5. 

Lemma 3.6. Let X be a locale, and % a filter of opens in X. Then there is an open 

inclusion of X into a locale X + 9 CO in which the closed complement of X is a point 

CC having {F v { CC } 1 F E %} as filter of neighbourhoods. 

Proof. The characteristic function x9 : OX + 01 of % preserves finite meets, hence 

defines a fringe map for glueing a closed point to X, to give a locale X + 9 cc. By 

construction, cc E WE 0(X + 9 co ) precisely when X A WE %. 0 
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Proposition 3.7 (After A. Tozzi and A. Pultr). A locale Y for which the projection 

71: Z x Y --f Z is closed for arbitrary Z is compact. 

Proof. Let s : S++ Y be the splitting cover of Y. Then, given an open directed cover 

9 of Y, the set of open complements {S - s-D 1 D E 9} is a base for a filter in OS. Let 

Z be the locale obtained by glueing to S a closed point cc having the set 

{Z-S~D~DE~} as base of open neighbourhoods; explicitly, there is an open 

inclusion i : S =+Z, with { co } = Z - S, and such that a E U E BZ only if there exists 

some DEB such that Z-S-DC U. Now let A=V{(Z-.T-D)xDIDE~}E 

O(Z x Y). Then 

(9 covers Y) 

But n is closed, giving (x, A) v S = n,(A v (S x Y)) = n(Z x Y) = Y; it follows that 

cc ETC*A, so that there exists D E 9 for which S - s-D G rc*A, i.e. 

(S - S-D) x Y c A. Pulling back along (i, s):S -Z x Y now gives 

i.e. S-D = S = sm Y; since s covers, this means D = Y, and so YE 9. 0 

The proof of Proposition 3.7 is constructive. Since stable closedness is independent 

of a reference base, we conclude that any stably closed map is compact. This completes 

the proof of Theorem 3.1. 

4. Stability properties 

Composition and pullback 

Closed localic inclusions, and thus in particular homeomorphisms are proper. 

Further, we have the following: 
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Proposition 4.1 (see also [S]). In a commutatiue diagram 

z h *x 

\/ 
9 f 

Y 

(i) f and g proper = h proper, 

(ii) h proper and f a sublocale inclusion * g proper, 

(iii) h proper and g a surjection 3 fproper. 

Proof. (i) and (ii) follow from the corresponding facts for closed maps. Property (iii) is 

just the interpretation in 8X of the fact that the image of a compact locale is 

compact. 0 

Concerning change of base, we record the following: 

Proposition 4.2. In a pullback square 

h f 
v Y V 
z-x 

iff is proper (resp. a proper surjection), so is h. 

Proof. If f is lattice-compact, so is h, and g-5 = h,k- by Proposition 3.4. Thus, 

iffis also surjective, then 

h[P]=h,P=h&Y=g-AY=g-f[Yl=g-X=Z, 

that is, h is surjective. 0 

Using Proposition 4.1, the so-called Beck-Chevalley condition g-J = h!k- may 

conversely be deduced from the pullback-stability of proper surjections: consider 
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the diagram 

in which f is proper, D is closed in Y and the top-, bottom- and side squares are 

pullbacks. 

The basic stability properties above may be combined to produce some classically 

familiar facts about proper maps. For example, we have the following: 

Corollary 4.3. Proper maps preserve compactness of sublocales under pre-image. 

Proof. Consider the diagram 

f-K-K -1 

I 1’ f 
Y-X 

in which the horizontal maps are proper. 0 

A locale X is Hausdorff if its diagonal A : X itX x X is closed. The following fact 

produces a wealth of proper maps: 

Corollary 4.4. Any map f: Y + X from a compact to a HausdorfS locale is proper. In 

particular, a compact sublocale of a Hausdo@‘locale is closed. 

Proof. If X is Hausdorff, the graph (id, f) : Y ~1 Y x X off is closed; if Y is compact, 

the projection rc: Y x X + X is proper. Since f = ~0 (id, f ), the result follows from 

Proposition 4.1(i). 0 

Note that Hausdorffness is again a stable, that is, “internal” property. It follows that 

compact Hausdorff maps, which by the results of [19] are exactly the compact regular 

maps (the proper maps of [S]) are stable. 

Inverse limits 

Proper maps of locales are stable under filtered (inverse) limits. To be precise, we 

have the following: 
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Theorem 4.5. Let X be a locale, and D: I”* -+ 2X a (small inversely)filtered diagram 

for which the objects are proper maps (resp. proper surjections). Then the limit of D is 

proper (resp. a proper surjection). 

Proof. A filtered limit over X corresponds to a filtered colimit of coframes under %?X, 

calculated in the category of %X-modules under %?X. By Lemma 3.3, the result 

therefore follows through an application of Proposition 2.3. 0 

Theorem 4.5 has an obvious counterpart involving “parallel” limits (taken in the 

category Loc2), which is equivalent to Theorem 4.5 via Proposition 4.2. Although the 

transition maps d, in Theorem 4.5 were not required to be proper (resp. proper 

surjective), we obtain the following: 

Corollary 4.6. Let D : Iop + Lot be a$ltered diagram of locales and proper maps (resp. 

proper surjections). Then the canonical projections li : lim D + Di, i E Ob I, are proper 
+ 

(resp. proper surjections). 

Proof. Fix i E I. Since I is filtered, li is the limit of the induced filtered diagram 

(Z/i)op + LocJDi sending y : i + k to Dy : Dk + Di. 0 

Now, let f: Y -+ X and g : Z + X be proper maps with common codomain, and 

form the pullback 

Yx.Z-z 

I I 

9 

f 
Y-X 

Then the composite Y x xZ + X, that is, the product off and g in 9X, is proper, 

using Proposition 4.2 and Proposition 4.1 (i). Further, the projections are proper, and 

are surjective if both f and g are. By a standard argument, this extends to arbitrary 

products using Theorem 4.5: 

Theorem 4.7. Let X be a locale. Then the product (that is, common pullback) in .YX of 

proper maps (resp. proper surjections) with codomain X is proper, with proper (resp. 

proper surjective) projections. 

Proof. The statement is true for finite products by the preceeding remarks, and the 

fact that homeomorphisms are proper. An arbitrary product may be constructed as 

a filtered limit of finite products; in particular, each projection is a filtered limit of 

projections from finite sub-products, and these are proper (resp. proper surjective). 

The result therefore follows from Theorem 4.5. 0 
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Taking X = 1, we recover the localic Tychonoff Theorem [9, 12, 181: a product of 

compact locales is compact. 

Colimits 

Proposition 4.8. The coproduct in Loc2 of a family of proper maps is proper. 

PrOOf. Let {h 1 Yi + Xi 1 i E Z} be a family of proper maps, with parallel coproduct 

f: Y + X. Then f! is the product (as monotone mapping) of the family 

{fi!:%Yi+ WXiliEl}, and in a canonical way inherits linearity over VX from 

linearity of each fi! over %?Xi. 0 

For coproducts of proper maps taken over a common codomain X we have to 

restrict to finite families. Formally, the empty coproduct 0 ctX is proper as a closed 

embedding; also, in the diagram 

[L g] is proper if and only if bothfand g are, since 

is a sum in the category of %X-modules. In particular, the coproduct-embeddings rr, 

vZ are proper, i.e. closed. Using Proposition 4.l(iii), we obtain the following: 

Proposition 4.9. A map of locales is proper as soon as it is proper on (i.e. after 

pre-composition with each member of) a jinite cover. 0 

Thus, a finite colimit in 3X of proper maps is proper (or a finite colimit of compact 

locales is compact). This of course does not mean that the coequalizer of a pair of 

proper maps is proper: for a rather trivial (discrete) counter-example, consider 

id 

2.id 

Strong co-density and weakly fitted sublocales 

We end this section by introducing an auxilliary concept with which reference to 

proper maps plays a role analogous to that of strong density [l l] for open maps. 
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Let B be any (base) locale. A map 
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f 
Y-X 

\/ 

4 P 

B 

in 2’B is strongly co-dense (over B) if q! f- = p! (in general, q! f- I p!). 

Lemma 4.10. f: ( Y, q) + (X, p) is strongly co-dense ifs for all E E %B and 

CE%?Y, 

f-C I q-E 5 C <p-E. 

Proof. If q! f = p!, then f -C I q-E iff p!C = q! f -C I C iff C I p-E. Conversely, if 

f-C I q-E * C I p-E for arbitrary C, E, then in particular since f- 5 q-q! f-, 

id I p-q! f -, i.e. p! I q! f -. 0 

The following properties are straightforward to verify: 

Proposition 4.11. For (2, r) 5 (Y, q) 2 (X, p) in LZB, 

(i) f and g strongly co-dense 3 fg strongly co-dense, 

(ii) fg strongly co-dense 3 f strongly co-dense, 

(iii) f and g strongly co-dense, with f a sublocale inclusion * g strongly co-dense, 

(iv) f strongly co-dense * p surjective iff q surjectioe. 0 

We may call a sublocale A =+X : B over B weakly$tted if it is an intersection of 

sublocales of the form U v pm E, U E OX and E E %‘B, that is, if A is fixed by the closure 

operator 

AH/\{UV~-EIAIUV~~E,UE~X,EE~B}. (9) 

The weakly fitted sublocales of (X, p) are stable under pullback, and of course 

include the fitted sublocales, the name given in [6] to intersections of opens. By 

Lemma 4.10, the weakly fitted hull (9) of A is the least sublocale of X in which A is 

strongly co-dense over B. It is possible for all sublocales of (X, p) to be weakly fitted, 

as happens for example over any base when X is regular. 

Strong co-density behaves well under pullback along proper maps: 
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Proposition 4.12. Let f: ( Y, q) + (X, p) be a map in 2B. Then: 

(i) If f is strongly co-dense, so is any pullback off along a proper map. 

(ii) If q is proper and f is strongly co-dense, then p is proper, and this situation is 

preserved under change of base. 

Proof. (i) In a pullback 

k 
P-Y 

h I I I 

Y z-x 

with g proper, the condition f -g! = k! h- gives (qk)!h- = q,(k,h-) = (q! f -)g!, which is 

equal to (pg)! = p!g! when f is strongly co-dense. 

(ii) Suppose q is proper, with f strongly co-dense. Then p! = q! f holds as an 

equation of %?B-linear maps, preserved under extension of base. El 

5. Proper surjections and equivalence relations 

IdentiJication under proper equivalence relations 

Consider a diagram of locales 

a 

R- -xAQ, 
B 

(10) 

where qa = q/3. We say (10) is left exact if tl, fi are the kernel pair of q and right exact if 

q is the coequalizer of c( and /?. 

Lemma 5.1. (10) is right exact precisely when q is surjective, and (the closure operator) 

q-q! the least among monotone operations j:%?X -+ %7X satisfying 

id I j, a! pm j, P! a-j 5 j. (11) 

Proof. First note that for any map h : X + Z, ha = h/3 iff the closure operator h-h, 

satisfies the second part of (1 l), and, given that q is surjective, factors through q iff 

q-q! I h-h!. It therefore only remains to show that if q is the coequalizer of a and /3, 

q-q! I j for any order-preserving j satisfying (11). But for such j, given any D E %?X, 

D I jD E q-[%?Q]-it follows that q-q!0 = A { C E q-[%‘Q] )D I C} 5 jD. 0 
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It is not hard to see that when a relation 

R2X 

is reflexive, id 5 arp-, &cc- follows, and that when it is symmetric, ~!fl- = fira-. These 

are in particular the case for an equivalence relation, which we shall call proper 

if CI (and then also /I) is proper. 

Lemma 5.2. For a proper equivalence relation 

czlfi- = fl!am is a closure operator. 

Proof. By the preceeding remarks, we only need to show that ~!fl~ is idempotent. 

Form the pullback 

RxXRAR 

Then P-CC! = a!b-, since a is proper. Let t : R xx R -+ R be the transitivity of R, unique 

with the property that at = aa and fit = fib. Then 

We have the following lemma: 

Lemma 5.3. Suppose 

R2X 

X is a proper equivalence relation. Then (10) is right exact precisely when q is surjective 

and satisfies q-q! = cl,/?- = p!a-. 

Proof. The fact (Lemma 5.2) that a& = &cc- is a closure operator is easily seen to 

imply that it is the least monotone operation on %‘X satisfying (11); the statement thus 

follows from Lemma 5.1. 0 

We are now able to state the following: 
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Proposition 5.4. Proper surjections are coequalizers. 

Proof. Suppose (10) is left exact and q a proper surjection. Then (I, p) is an 

equivalence relation, which by Proposition 3.4 is proper, while q-q! = x!/I-. Now use 

Lemma 5.3. 0 

Proposition 5.5. The coequalizer of any proper equivalence relation is proper, and stable 

under change of base. 

Proof. Lemma 5.3 again applies. Since q-, a! and fl- all preserve filtered infima and 

commute with the action of +ZQ, and since q-is an embedding, the fact that q-q! = CG$ 

implies that q! is a morphism of %YQ-modules; all this data is preserved under 

base-extension. 0 

Combining the last two results with Proposition 4.1, we obtain, using Proposition 

1.8, the following theorem: 

Theorem 5.6. Proper surjections are eflective descent morphisms in the category of 

locales. 0 

Descent of properties down proper surjections 

The fact that proper surjections are effective descent morphisms leads one to 

consider properties of locales (as maps) which descend. That is, if 

h 
E-F 

P 

I 1 

4 

XL Q 

(12) 

is a pullback with s proper surjective, we consider properties of p transferred to q. For 

example, surjectivity trivially descends down any surjective map. But in this case we 

also have the following: 

Proposition 5.7. Inclusions, hence homeomorphisms descend down proper surjections. 

Proof. Ifp in (12) is an inclusion, h,p- = q-s! is surjective, which means q-is surjective, 

that is, q is an inclusion. 0 

It follows immediately from the stability of proper surjections that empty inclusions 

descend. Therefore, we have the following proposition: 

Proposition 5.8. Complemented inclusions descend down proper surjections. 0 

We turn to open and proper maps. 
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Lemma 5.9. Suppose in a pullback 
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k 
P-Y 

h f 

v Y V 

z-x 

that f is proper, g surjective, and the image of k open. Then k is surjective. 

Proof. Let C be the closed complement of the image of k. Then k-C = 0, and so 

g-h C = h! k-C = 0. Since g is surjective, J C = 0, i.e. C I f-0 = 0. Cl 

Proposition 5.10. Openness and compactness descend down proper surjections. (Entirely 

similarly, compactness and openness descend down open surjections.) 

Proof. We refer to (12). If p is proper, qh = sp is proper; cancelling q leaves h proper 

Proposition 4.1. So compactness descends. In particular closed, hence by Proposition 

5.8, open inclusions descend. Now, if p is an arbitrary open map, then given any open 

U c--, F we consider the diagram 

with front-, back- and side squares pullbacks and the vertical arrows proper surjec- 

tions. Applying Lemma 5.9 to the left-hand pullback gives s-q [U] = p [h-U], which 

is open. But then, since open inclusions descend, q [U] is open. 0 

Corollary 5.11. Discreteness and compact HausdorfSness descend down proper surjec- 

tions. 0 

Effectivity of proper equivalence relations 

Let X be a locale, and consider an inclusion of proper equivalence relations, 

S’ 

(13) 
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We say i : S c--f R is strongly co-dense over X if y! i- = a- (or equivalently 6! i- = p-). 

Recall that an equivalence relation is said to be effective if it is a kernel pair. The 

following is essentially a reformulation of Lemma 5.3. 

Proposition 5.12. Suppose that in (13) ( CI, p) is the kernel pair of q : X + Q. Then q is 

the coequalizer of y and 6 precisely when it is a proper surjection, and i: S ct R is 

strongly co-dense over X. 

Proof. If q is the coequalizer of y and 6, q is proper by Proposition 5.5, and 

y! i-b- = y!K = q-q! by Lemma 5.3. But then, since y!i- is %X-linear, it is the module 

extension of q! , which is CI! : 

C(Xx,X) 8- %,X 

Conversely, if y!i- = SI! and q is a proper surjection, then y!6- = y!i-p- = y!& = q-q!, 

and right-exactness follows from Lemma 5.3. 0 

Corollary 5.13. The equivalence relations (13) have the same quotient ifs i : S w R is 

strongly co-dense over X. 0 

Corollary 5.14. A proper equivalence relation on X which is weakly fitted in X x X 

over X (by either projection) is efective. In particular, open equivalence relations with 

proper projections are effective. 0 

The pullback-stability of coequalizers of proper equivalence relations (Proposi- 

tion 5.5) may also be explained in terms of Proposition 5.12, by observing that 

kernel pairs, proper surjections (Proposition 3.4) and strongly co-dense inclu- 

sions in compact objects Proposition 4.12(ii) are all preserved under change 

of base. 

Lemma 5.15. In (13), put s = y!S- = &y-, and let F 5 ES be a (down-)$ltered set of 

which the members have the form a-C v p-0, with C, D E %X. Then 

/p-SS =G- A{cr-SC v P-D/a-C v p-0~9) I S. 
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Proof. Complete the diagram 

c 

f 
idxxi *Sx,R 

-I 
Sx,S’ LS, 
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Y 

where all rectangles are pullbacks, Let g = b 0 i x ,id be the proper, surjective pull- 

back of 6 along a. By the transitivity of R and S there are maps t : R x .R + R and 

u : S x,S + S (unique) with the property that cct = aa, /It = fib and yu = yc, 

6u = 6d. Moreover, by the symmetry of R and S, each corresponding commutative 

square is a pullback. Thus, since t 0 i x xi = io u, all rectangles in the diagram 

c 

sxLsc idxxi -I 
*Sx,RAS 

ix,id 

I I 

i 

u Rx,RAR Y 

t a 

v 
< 

*I ,_I 

sd 
Y 

are pullbacks. Let h = t 0 i x x id. Then 

h-S _N g-S _N S x,S -S x,R. 

Also, given any C, D E WX, 

N-SC v P-D = c1-Sty-C v P-D 

(14) 

= g,u-y-C v p-0 (since 6 is proper) 
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= g!(u-y-C v g-p-0) (since g is surjective) 

= g$(ct-C v b-0) (15) 

Suppose now A 9 I S. Then 

~{u~sCvp~Dlu-CvP~D~~-$ 

= l\{g&(x~C v pm D)jcr-CvB-D~9} (by(U)) 

= g&&F (since g is proper) 

I g[h-S] (by assumption) 

= g[g-S] = S. (by (14)). 0 

Theorem 5.16. Let 

be an inclusion of’proper equivalence relations, with i closed. Then, ifR and S have the 

same quotient, i is an isomorphism. 

Proof. Let q: X -+ Q be the common quotient of R and S. By Lemma 5.3, 

s = y,S- = q-q!. Now, suppose S _< a-C v b-0 with C,D E V?X. Then, if e: X + R is 

the cdmmon splitting of (c(, fi), 

X = e-S < e-u-C v e-b-D = C v D. 

It follows that 

~-SC v ~-SD = r-q-q,C v ~~q~q!D = cc-q-q,C v u-q-q! D 

But then, since 

s= 

2 

2 

= u~q~q! (C v D) = z-q-q! X 2 u-X = R. 

S is closed, 

AIM-C v p-DjS < ~CV~~~D,C,DE%?‘X} 

/j {~-SC v B-SD 1 S < a-C v b-0, C, D E %‘X) 

(by applying Lemma 5.15 twice) 

R. Cl 
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Corollary 5.17. Closed proper equivalence relations (in particular closed equivalence 
relations on a compact locale) are efective. 0 
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