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We investigate the interplay between the ZNc symmetry and the emergence of the quarkyonic phase,
adding the flavor-dependent complex chemical potentials μ f = μ + iT θ f with (θ f ) = (0, θ,−θ) to the
Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model. When θ = 0, the PNJL model with the μ f

agrees with the standard PNJL model with the real chemical potential μ. When θ = 2π/3, meanwhile,
the PNJL model with the μ f has the ZNc symmetry exactly for any real μ, so that the quarkyonic phase
exists at small T and large μ. Once θ varies from 2π/3, the quarkyonic phase exists only on a line of
T = 0 and μ larger than the dynamical quark mass, and the region at small T and large μ is dominated
by the quarkyonic-like phase in which the Polyakov loop is small but finite.

© 2012 Elsevier B.V. Open access under CC BY license.
Understanding of the confinement mechanism is one of the
most important subjects in hadron physics. Lattice QCD (LQCD)
shows numerically that QCD is in the confinement and chiral sym-
metry breaking phase at low temperature (T ) and in the decon-
finement and chiral symmetry restoration phase at high T . In the
limit of infinite current quark mass, the Polyakov loop is an ex-
act order parameter for the deconfinement transition, since the
ZNc symmetry is exact there. The chiral condensate is, meanwhile,
an exact order parameter for the chiral restoration in the limit of
zero current quark mass. In the real world where u and d quarks
have small current masses, the chiral condensate is considered to
be a good order parameter for the chiral restoration, but there is
no guarantee that the Polyakov loop is a good order parameter for
the deconfinement transition.

In the previous paper [1], we have proposed a QCD-like theory
with the ZNc symmetry. Let us start with the SU(Nc) gauge the-
ory with N f degenerate flavors to construct the QCD-like theory.
The partition function Z of the SU(Nc) gauge theory is obtained in
Euclidean space–time by

Z =
∫

DqDq̄D A exp[−S0] (1)

with the action

S0 =
∫

d4x

[∑
f

q̄ f (γν Dν + m f )q f + 1

4g2
F 2
μν

]
, (2)
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where q f is the quark field with flavor f and current quark mass
m f , Dν = ∂ν − i Aν is the covariant derivative with the gauge field
Aν , g is the gauge coupling and Fμν = ∂μ Aν − ∂ν Aμ − i[Aμ, Aν ].
The temporal boundary condition for quark is

q f (x, β = 1/T ) = −q f (x,0). (3)

The fermion boundary condition is changed by the ZNc transfor-
mation as [2,3]

q f (x, β) = −exp (−i2πk/Nc)q f (x,0) (4)

for integer k, while the action S0 keeps the form of (2) in virtue
of the fact that the ZNc symmetry is the center symmetry of the
gauge symmetry [2]. The ZNc symmetry thus breaks down through
the fermion boundary condition (3) in QCD.

Now we consider the SU(N) gauge theory with N degenerate
flavors, i.e. N = Nc = N f , and assume the twisted boundary condi-
tion (TBC) in the temporal direction [1]:

q f (x, β) = −exp(−iθ f )q f (x,0) (5)

with the twisted angles

θ f = 2π( f − 1)/N + θ1 (6)

for flavors f labeled by integers from 1 to N , where θ1 is an ar-
bitrary real number in a range of 0 � θ1 < 2π . The action S0 with
the TBC is a QCD-like theory proposed in Ref. [1]. In fact, the QCD-
like theory has the ZNc symmetry, since f is changed into f +k by
the ZN transformation but f +k can be relabeled by f . In the QCD-
like theory, the Polyakov loop becomes an exact order parameter of
the deconfinement transition. The QCD-like theory then becomes a
quite useful theory to understand the confinement mechanism.
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When the fermion field q f is transformed by

q f → exp (−iθ f T τ )q f (7)

with the twisted angle θ f and the Euclidean time τ , the action S0
is changed into

S(θ f ) =
∫

d4x

[∑
f

q̄ f (γν Dν − iθ f Tγ4 + m f )q f

+ 1

4g2
F 2
μν

]
(8)

with the imaginary chemical potential μ f = iT θ f , while the TBC
returns to the standard one (3). The action S0 with the TBC is thus
identical with the action S(θ f ) with the standard one (3). In the
limit of T = 0, the action S(θ f ) comes back to the QCD action S0
with the standard boundary condition (3) kept. The QCD-like the-
ory thus agrees with QCD at T = 0 where the Polyakov loop Φ is
zero. One can then expect that in the QCD-like theory Φ is zero up
to some temperature Tc and becomes finite above Tc , i.e., that the
ZNc symmetry is exactly preserved below Tc but spontaneously
broken above Tc . Actually, this behavior is confirmed by imposing
the TBC on the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
model [3–21]. The PNJL model with the TBC [1] is referred to as
the TBC model in this Letter. In the TBC model, the flavor sym-
metry is explicitly broken by the flavor-dependent TBC (5), but the
flavor-symmetry breaking is recovered at T < Tc . The TBC model
is thus a model proper to understand the confinement mecha-
nism.

A current topic related to the confinement is the quarkyonic
phase [10,11,13,20,22]. It is a confined (color-singlet) phase with
finite quark-number density n, that is, a phase with Φ = 0 and
n �= 0. The n-generation induces the chiral restoration; in fact,
the two phenomena occur almost simultaneously in the PNJL
model [21]. This fact indicates that the quarkyonic phase can be
regarded as a chirally-symmetric and confined phase. It was sug-
gested in Refs. [23,24] that the chirally-broken phase is enlarged
toward lager μ by the chiral density wave. In this Letter, for sim-
plicity, we ignore inhomogeneous condensates such as the chiral
density wave. Effects of the inhomogeneous condensate on the
quarkyonic phase and the interplay between the effects and the
ZNc symmetry are interesting as a future work. The concept of
the quarkyonic phase was constructed in large Nc QCD. In fact,
the phase was first found at small T and large real quark-number
chemical potential μ in large Nc QCD. Recently, the PNJL model
showed that a quarkyonic-like phase with Φ < 0.5 and n �= 0 ex-
ists at small T and large μ for the case of Nc = 3 [13,20]. This
result may stem from the fact that the deconfinement transition
is crossover for Nc = 3. This suggests that the quarkyonic phase
can survive even at Nc = 3 in the QCD-like theory with the ZNc

symmetry.
In this Letter, we consider the PNJL model of N ≡ Nc = N f = 3

with the flavor-independent real chemical potential μ and the
flavor-dependent quark boundary condition (5) with

(θ f ) = (0, θ,−θ) (9)

instead of (6); see Fig. 1 for the boundary condition. The present
system is the same as that with the standard boundary condi-
tion (3) and the flavor-dependent complex chemical potentials
μ f = μ+ iT θ f with (9). The present model with the μ f is reduced
to the standard PNJL model with the flavor-independent real chem-
ical potential μ when θ = 0 and to the TBC model with the ZNc

symmetry when θ = 2π/3. Varying θ , one can see how the phase
diagram is changed between the exact color-confinement in the
Fig. 1. Location of exp[iθ f ] in the complex plane; here, (θ f ) = (0, θ,−θ).

TBC model and the approximate one in the standard PNJL model.
The aim of this Letter is to see this behavior. Our particular inter-
est is the location of the quarkyonic and the quarkyonic-like phase
in the μ–T plane.

In general, there is no guarantee that the QCD partition function
with complex chemical potential is real. It is, however, possible to
prove that the QCD partition function Z0(μ f ) with μ f = μ+ iT θ f
is real. The fermion determinant detM(μ f ) satisfies the relation

[
detM(μ f )

]∗ = detM
(−μ∗

f

)
=

∏
f

det
[

D − (μ − iθ f T )γ4 + m f
]

=
∏

f

det
[

D − (μ + iθ f T )γ4 + m f
]

= detM(−μ f ), (10)

where the third equality is obtained by the relabeling of the f .
The present system thus has the sign problem, but the partition
function is real, since

Z0(μ f )
∗ = Z0(−μ f ) = Z0(μ f ), (11)

where the first equality is obtained by (10) and the second one by
the charge conjugation. Also in the PNJL model with the μ f , the
partition function is real, as shown later.

The three-flavor PNJL Lagrangian is defined in Euclidean space–
time as

L = q̄(γν Dν + m̂ − μγ4)q − GS

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λaq)2]

+ GD

[
det

i j
q̄i(1 + γ5)q j + h.c.

]
+ U

(
Φ[A],Φ∗[A], T

)
, (12)

where Dν = ∂ν − iδν4 A4, λa is the Gell-Mann matrices and m̂ =
diag(m1,m2,m3). GS and GD are coupling constants of the scalar-
type four-quark and the Kobayashi–Maskawa–’t Hooft (KMT) inter-
action [25,26], respectively. The KMT interaction breaks the UA(1)

symmetry explicitly. The Polyakov loop Φ and its conjugate Φ∗ are
defined by

Φ = 1

3
trc(L), Φ∗ = 1

3
trc(L̄), (13)

with L = exp(i A4/T ) in the Polyakov gauge. We take the Polyakov
potential of Ref. [8]:

U = T 4
[
−a(T )

2
Φ∗Φ + b(T ) ln

(
1 − 6ΦΦ∗ + 4

(
Φ3 + Φ∗3)

− 3
(
ΦΦ∗)2)]

, (14)

a(T ) = a0 + a1

(
T0

)
+ a2

(
T0

)2

, b(T ) = b3

(
T0

)3

. (15)

T T T
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Fig. 2. (a) The Polyakov loop Φ and (b) the chiral condensate σ1 in the θ–T plane at μ = 0 MeV.
Table 1
Summary of the parameter set in the Polyakov-potential sec-
tor determined in Ref. [8]. All parameters are dimensionless.

a0 a1 a2 b3

3.51 −2.47 15.2 −1.75

Parameters of U are fitted to LQCD data at finite T in the pure
gauge limit. The parameters except T0 are summarized in Table 1.
The Polyakov potential yields the first-order deconfinement phase
transition at T = T0 in the pure gauge theory [27,28]. The original
value of T0 is 270 MeV determined from the pure gauge LQCD
data, but the PNJL model with this value yields a larger value of
the pseudocritical temperature Tc at zero chemical potential than
Tc ≈ 160 MeV predicted by full LQCD [29–31]. We then rescale T0
to 195 MeV so as to reproduce Tc = 160 MeV [19].

Now we consider the flavor-dependent complex chemical po-
tential μ f = μ + iθ f T . The thermodynamic potential (per volume)
is obtained by the mean-field approximation as [16]

Ω = ΩQ(σ f ,Φ, T ,μ f ) + UM(σ f ) + U(Φ, T ) (16)

with

ΩQ = −2
3∑

f =1

∫
d3p

(2π)3
trc

[
E f + 1

β
ln

(
1 + Le−βE−

f
)

+ 1

β
ln

(
1 + Le−βE+

f
)]

, (17)

where σ f = 〈q̄ f q f 〉, E±
f = E f ±μ f and E f =

√
p2 + M f

2. Here the
three-dimensional cutoff is taken for the momentum integration in
the vacuum term [16]. Obviously, Ω is real. The dynamical quark
masses M f and the mesonic potential UM are defined by

M f = m f − 4GSσ f + 2GD|ε f gh|σgσh, (18)

UM =
∑

f

2GSσ
2
f − 4GDσ1σ2σ3, (19)

where ε f gh is the antisymmetric symbol.
The PNJL model has six parameters (GS, GD, m1, m2, m3, Λ).

A typical set of the parameters is obtained in Ref. [32] for the
2 + 1 flavor system with m1 = m2 ≡ ml < m3. The parameter set
is fitted to empirical values of η′-meson mass and π -meson mass
and π -meson decay constant at vacuum. In the present Letter, we
set m0 ≡ ml = m3 in the parameter set of Ref. [32]. The parameter
set thus determined is shown in Table 2.
Table 2
Summary of the parameter set in the NJL sector. All the pa-
rameters except m0 are the same as in Ref. [32].

m0 (MeV) Λ (MeV) GSΛ
2 GDΛ5

5.5 602.3 1.835 12.36

Taking the color summation in (16) leads to

Ω = −2
∑

f

∫
d3p

(2π)3

[
3E f + 1

β
(lnF f + lnF f̄ )

]

+ UM(σ f ) + U(Φ, T ), (20)

where

F f = 1 + 3Φe−βE−
f + 3Φ∗e−2βE−

f + e−3βE−
f , (21)

F f̄ = 1 + 3Φ∗e−βE+
f + 3Φe−2βE+

f + e−3βE+
f . (22)

Note that F2 (F2̄) is the complex conjugate to F3 (F3̄), indicating
that Ω is real.

In the case of θ = 2π/3, particularly, Ω is invariant under the
Z3 transformation,

Φ → e−i2πk/3Φ, Φ∗ → ei2πk/3Φ∗. (23)

Namely, Ω possesses the Z3 symmetry. When the exact color-
confinement with Φ = 0 occurs, Ω is invariant for any interchange
among E±

1 , E±
2 and E±

3 . Namely, Ω has the flavor symmetry in the
exact color-confinement phase.

Fig. 2 shows T dependence of (a) the Polyakov loop Φ and
(b) the chiral condensate σ1 at μ = 0. The solid, dashed and dotted
curves represent three cases of θ = 0, 8π/15 and 2π/3, respec-
tively. For θ = 0 corresponding to the standard boundary condi-
tion, the chiral and deconfinement transitions are both crossover.
For θ = 2π/3 corresponding to the TBC, the first-order decon-
finement transition occurs at T = Tc = 203 MeV and the exact
color-confinement phase appears below Tc . The first-order tran-
sition of Φ at T = Tc propagates to σ f as a discontinuity. For
θ �= 2π/3, the deconfinement transition is no longer exact. As θ

decreases from 2π/3 to zero, T dependence of Φ becomes slower,
and near θ = π/2 the order of the deconfinement transition is
changed from the first-order to crossover.

Fig. 3 shows the phase diagram in the T –μ plane. Panels (a)–(c)
correspond to three cases of θ = 0, 8π/15 and 2π/3, respectively.
The thick (thin) solid curve represents the first-order deconfine-
ment (chiral) phase transition line, while the thick (thin) dashed
curve corresponds to the deconfinement (chiral) crossover line de-
fined by the peak of dΦ/dT (dσ f /dT ). For θ = 0, the chiral and
deconfinement transitions are both crossover at smaller μ, but
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Fig. 3. Phase diagram in the T –μ plane. Panels (a)–(c) correspond to three cases of θ = 0, 8π/15 and 2π/3, respectively. The thick (thin) solid curve means the first-order
deconfinement (chiral) phase transition line, while the thick (thin) dashed curve does the deconfinement (chiral) crossover line. The closed circles stand for the endpoints of
the first-order deconfinement and chiral phase transition lines. In panels (a) and (b), the thick solid line at T = 0 and μ� M f = 323 MeV represents the quarkyonic phase.
the former becomes the first-order at larger μ. For θ = 2π/3,
the deconfinement transition is the first-order at any μ, whereas
the first-order chiral transition line appears only at μ ≈ M f =
323 MeV. The region labeled by “Qy” at μ � M f and small T is
the quarkyonic phase, since Φ = 0 and n �= 0 there. The region la-
beled by “Had” is the hadron phase, because the chiral symmetry
is broken there and thereby the equation of state is dominated by
the pion gas [21]. The region labeled by “QGP” corresponds to the
quark gluon plasma (QGP) phase, although the flavor symmetry is
broken there by the TBC. As θ decreases from 2π/3 to zero, the
first-order chiral transition line declines toward smaller μ and the
critical endpoint moves to smaller μ. Once θ varies from 2π/3,
the quarkyonic phase defined by Φ = 0 and n �= 0 shrinks on a line
with T = 0 and μ � M f and a region at small T and μ � M f be-
comes a quarkyonic-like phase with small but finite Φ and n �= 0;
the latter region is labeled by “Qy-like”.

For small θ far from 2π/3, the deconfinement transition line
declines as μ increases, but for θ = 2π/3 the line is almost hor-
izontal at small μ and rises at intermediate μ, as seen in Fig. 3.
The rising of the deconfinement transition line is a consequence of
the Z3 symmetry, as shown below. The quark one-loop part of Ω ,
which is defined by ΩQ in (17), can be expanded into a Maclaurin
series

ΩQ = ΩQ
(
Φ = 0,Φ∗ = 0

) + c10Φ + c01Φ
∗ + c20Φ

2

+ c11ΦΦ∗ + c02Φ
∗2 + · · · . (24)

The coefficients cnm are explicitly obtained as

c10 = −18

β

∑
f

∫
d3p

(2π)3

(
e−βE−

f

1 + e−3βE−
f

+ e−2βE+
f

1 + e−3βE+
f

)

< 0, (25)
c01 = −18

β

∑
f

∫
d3p

(2π)3

(
e−2βE−

f

1 + e−3βE−
f

+ e−βE+
f

1 + e−3βE+
f

)

< 0, (26)

c20 = 9

β

∑
f

∫
d3p

(2π)3

(
e−2βE−

f

(1 + e−3βE−
f )2

+ e−4βE+
f

(1 + e−3βE+
f )2

)

> 0, (27)

c11 = 18

β

∑
f

∫
d3p

(2π)3

(
e−3βE−

f

(1 + e−3βE−
f )2

+ e−3βE+
f

(1 + e−3βE+
f )2

)

> 0, (28)

c02 = 9

β

∑
f

∫
d3p

(2π)3

(
e−4βE−

f

(1 + e−3βE−
f )2

+ e−2βE+
f

(1 + e−3βE+
f )2

)

> 0. (29)

The cnm are positive for even n + m but negative for odd n + m.
The absolute values of the cnm increase as μ increases, unless μ
is quite large. For simplicity, we fix M f to a constant to focus our
attention on Φ dependence of Ω . In this assumption, UM and the
zeroth-order term ΩQ(Φ = 0,Φ∗ = 0) in the Maclaurin series are
just constants and thereby become irrelevant to the present discus-
sion. So we neglect these terms. We also assume that Φ = Φ∗ . This
is true for μ = 0 and well satisfied for small and intermediate μ
of our interest. In the pure gauge limit where ΩQ = 0, the ther-
modynamic potential Ω agrees with the Polyakov potential U(Φ)

and hence has no μ dependence. The potential has a global mini-
mum at Φ = 0 and a local one at Φ = Φm > 0 for small T : namely,
U(Φ = 0) < U(Φ = Φm). For the case of θ = 2π/3, the system has
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Fig. 4. T dependence of Φ for μ = 0.1,0.3 GeV in the lowest order approximation. Panel (a) corresponds to the case of θ = 0 and panel (b) does to the case of θ = 2π/3.
the Z3 symmetry. Up to the second-order of the Maclaurin series,
only the c11ΦΦ∗ term appears because of the symmetry. When
the term is added to U , the resultant potential keeps the same
value as U(Φ) at Φ = 0, but increases from U(Φ) at Φ > 0. This
property makes the deconfinement transition more difficult. The
coefficient c11 as a function of μ little increases for μ 
 M f , but
the increase becomes sizable for μ > M f . Therefore the rising of
the deconfinement transition line with respect to increasing μ is
tiny at small μ but becomes sizable at intermediate μ. The poten-
tial c11ΦΦ∗ + U keeps a positive curvature at Φ = 0 because of
c11 > 0, so that the deconfinement transition is first-order for any
positive value of c11. For the case of θ �= 2π/3, meanwhile, the
first-order term c10Φ + c01Φ

∗ is not prohibited by the Z3 symme-
try and thereby dominates ΩQ particularly for small θ far from
2π/3. Since c10 and c01 are negative, the situation for small θ

becomes opposite to that for θ = 2π/3. Eventually, the deconfine-
ment transition line slopes down as μ increases for the case of
small θ .

Fig. 4 shows T dependence of Φ for μ = 0.1,0.3 GeV. We con-
sider the case of θ = 0 in panel (a) and that of θ = 2π/3 in
panel (b) by assuming Ω = c10Φ + c01Φ

∗ + U in panel (a) and
Ω = c11ΦΦ∗ + U in panel (b). Note that M f is fixed to 323 MeV
and T dependence of Φ is determined from the Ω with the min-
imum condition. As μ increases, the transition temperature de-
creases for θ = 0, but increases for θ = 2π/3. The transition is
first-order for the case of θ = 2π/3. These results are consistent
with the qualitative discussion mentioned above.

In summary, we have investigated the interplay between the
ZNc symmetry and the emergence of the quarkyonic phase, adding
the complex chemical potentials μ f = μ + iT θ f with (θ f ) =
(0, θ,−θ) to the PNJL model. When θ = 0, the PNJL model with
the μ f is reduced to the PNJL model with real μ. This situation
corresponds to QCD at real μ. When θ = 2π/3, meanwhile, the
PNJL model with the μ f is reduced to the TBC model with the
ZNc symmetry. This situation corresponds to the QCD-like theory
with the ZNc symmetry at real μ. When θ = 2π/3, the quarky-
onic phase defined by Φ = 0 and n > 0 really exists at small T
and large μ. Once θ varies from 2π/3 to zero, the ZNc sym-
metry is broken. As a consequence of this property, the quarky-
onic phase exists only on a line of T = 0 and μ � M f , and the
region at small T and large μ is dominated by the quarkyonic-
like phase characterized by small but finite Φ and n > 0. The
ZNc symmetry thus plays an essential role on the emergence
and the location of the quarkyonic phase in the μ–T plane, and
the quarkyonic-like phase at θ = 0 is a remnant of the quarky-
onic phase at θ = 2π/3. Since the ZNc symmetry is explicitly
broken at θ = 0, it is then natural to expand the concept of
the quarkyonic phase and redefine it by a phase with small Φ

and finite n. For this reason, the quarkyonic-like phase is often
called the quarkyonic phase. The gross structure of the phase di-
agram thus has no qualitative difference between θ = 2π/3 and
zero, if the concept of the quarkyonic phase is properly expanded.
In this sense, the ZNc symmetry is a good approximate con-
cept for the case of θ = 0, even if the current quark mass is
small.
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