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A B S T R A C T

EGFR is a promising cell surface target for in vivo imaging that is highly overexpressed in hepatocellular
carcinoma (HCC), a common cancer worldwide. Peptides penetrate easily into tumors for deep imaging,
and clear rapidly from the circulation to minimize background. We aim to demonstrate use of an EGFR
specific peptide to detect HCC xenograft tumors in mice with photoacoustic imaging. Nude mice
implanted with human HCC cells that overexpress EGFR were injected intravenously with Cy5.5-labeled
EGFR and scrambled control peptides respectively. Photoacoustic images collected from 0 to 24 h.
Photoacoustic signal peaked in tumors at 3 h post-injection. Images from 0 to 1.8 cm beneath the skin
revealed increased target-to-background (T/B) ratio from tumors. The T/B ratio was significantly greater
for the EGFR versus control peptide. Clearance of signal was observed by �24 h. EGFR overexpression was
validated with immunofluorescence and immunohistochemistry. A peptide specific for EGFR delivered
systemically can detect HCC xenograft tumors in vivo with photoacoustic imaging.
ã 2016 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Worldwide, hepatocellular carcinoma (HCC) is one of the most
lethal cancers, causing �745,000 deaths annually [1]. The
prognosis for HCC is poor with a 5-year survival rate of <5%.
Surgical resection remains the primary therapy [2,3]. However, the
incidence of tumor recurrence is >50% [4]. Symptoms of HCC
typically do not appear until a late stage. Only 10–20% of HCC
tumors are diagnosed early enough for effective surgery [5–7].
Poor prognosis is due in part to a lack of effective and accurate early
diagnostic methods, limiting treatment options. Patients with
cirrhosis are at increased risk for developing HCC, and represent an
important surveillance population [8–10]. New imaging techni-
ques may improve the sensitivity and accuracy for early detection
Abbreviations: AU, arbitrary units; EGFR, epidermal growth factor receptor; HCC,
hepatocellular carcinoma; PA, photoacoustic; T/B, target-to-background.
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of HCC. Photoacoustic imaging is an emerging imaging modality
that uses the combination of light for absorption and sound for
emission. Compared with ultrasound, it offers higher resolution
and capability for targeted detection.

Targeted imaging may improve specificity for detection of HCC.
The epidermal growth factor receptor (EGFR) pathway plays an
essential role in cell proliferation, survival and migration and its
altered activity has been implicated in the development and
growth of many tumors including HCC [11–13]. In previous studies,
EGFR has been found to be overexpressed in 40–70% of HCC [14–
19], most likely contributing to aggressive growth characteristics
[20,21], metastasis formation, and resistance to therapy [17,22–
24]. The EGFR inhibitor Gefitinib has been found to significantly
reduce the incidence of HCC in an animal model [15]. EGFR is also
overexpressed by other cancers, including lung [25], breast [26],
pancreas [27], head and neck [28], and esophagus [29]. EGFR
represents an attractive target for biologics (such as peptide and
affibody [30] or antibodies in applications such as tumor-targeted
imaging and therapy.

We have previously developed a peptide specific for EGFR [31].
Peptides have small size and low molecular weight that result in
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ideal pharmacokinetic properties for deep tissue imaging. Com-
pared with bulky monoclonal antibodies, peptides provide an
attractive alternative for visualizing tissue targets that would
otherwise be difficult to penetrate or access [32]. Peptides clear
rapidly from non-target tissues, resulting in reduced background.
Peptides can be structurally altered to improve stability against
proteolytic degradation, increase circulatory half-life, and enhance
capillary permeability [33]. All of these attributes promote deep
penetration into tissue and more effective targeting. Here, we aim
to demonstrate the use of a peptide specific for EGFR to target HCC
tumors in a pre-clinical xenograft model.

2. Methodology

2.1. Synthesis of photoacoustic imaging agents

Monomeric linear peptides QRHKPRE, hereafter QRH*, and its
scrambled control PEHKRRQ, hereafter PEH*, (molecular
weight = 1334.73 for both peptides) were synthesized with linker
GGGSK using standard Fmoc-mediated solid-phase synthesis [31].
The C-terminal lysine was incorporated as Fmoc-Lys (ivDde)- OH,
and the N-terminal amino acid was incorporated with Boc
protection to avoid unwanted Fmoc removal during deprotection
of the ivDde moiety prior to labeling. The ivDde side chain
protecting group was removed with 5% hydrazine in DMF
(3 �10 min) with continuous shaking at room temperature (RT).
QRH*-Cy5.5 and PEH*-Cy5.5 were synthesized by coupling QRH*
and PEH* with water soluble sulfo-Cy5.5- N-hydroxysuccinimide
ester (Lumiprobe LLC) respectively overnight with N,N-diisopro-
pylethylamine, followed by HPLC purification. The final purity was
confirmed by analytical C18-column. Further characterization was
performed with exact mass measurement by Q-TOF (Agilent
Technologies) mass spec with ESI (Waters Inc) detection. After
lyophilization, the peptides were stored at �80 �C and dissolved in
water at a concentration of 300 mM before injection. The
absorption spectrum was measured at 100 mM concentration with
a UV–vis spectrophotometer in the 500–900 nm range (NanoDrop
2000, Thermo Scientific). Molecular graphics and analyses of the
peptides were performed with the UCSF Chimera package (v.1.10.2,
University of California, San Francisco).

2.2. HCC xenograft tumor

Human HCC cells SK-Hep1, HepG2, and Hep3B were purchased
from the ATCC (Manassas, VA) and cultured in Eagle's Minimum
Essential Medium (EMEM). All cells were cultured at 37 �C in 5%
CO2, and supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. Western blot was performed using a
1:1000 dilution of primary polyclonal rabbit anti-EGFR antibody
(#2232S, Cell Signaling Technology) per manufacturer instruc-
tions. Loading was controlled with a 1:500 dilution of monoclonal
mouse anti-b-tubulin (#32-2600, Invitrogen). SK-Hep1 cells were
diluted in growth factor reduced (GFR) Matrigel Matrix (Corning),
and injected into one flank of female (to avoid male dominance
within a cage) nude athymic mice (nu/nu, Jackson Laboratory) at
4–6 weeks of age with weight between 20 and 25 g. �5 �106 cells
were implanted per mouse. Anesthesia was induced and main-
tained via a nose cone with inhaled isoflurane mixed with oxygen
at a concentration of 2–4% at a flow rate of �0.5 L/min for all in vivo
animal experiments.

2.3. Confocal fluorescence microscopy

�103 cells were grown on coverslips to �80% confluence,
washed once with PBS, and incubated with 5 mM QRH*-Cy5.5 and
PEH*-Cy5.5 for 10 min at RT. The cells were then washed 3X in PBS,
fixed with 4% PFA for 5 min, washed with PBS, and then mounted
on glass slides with ProLong Gold reagent containing DAPI
(Invitrogen). Confocal microscopy (Leica Inverted SP5X) was
performed using a 63X oil-immersion objective. Fluorescence
intensities from 5 cells in 2 independent images were quantified
using custom Matlab (Mathworks) software.

2.4. Ultrasound imaging

2D ultrasound (US) images were collected from each xenograft
tumor using a portable ultrasound scanner (SonixTablet, Ultra-
sonix, Analogic Corp.) designed for small animal imaging. During
image acquisition, the mice were placed on a heated stage.
Anesthesia was induced and maintained with 2% isofluorane
(Fluriso; MWI Veterinary Supply Co.). Warmed (37 �C) ultrasound
gel (Aquasonic 100, Parker Laboratories) was applied to the tumors.
The ultrasound transducer (40 MHz) was used in B-mode, and
translated along the length and width of the tumor. 3 images were
taken in each direction to calculate tumor volume. Each image had
a 12 � 12 mm2

field of view with an in-plane pixel resolution of
50 � 50 mm2 [34].

Ellipsoid volumes were estimated using pabc/6, where a, b, and
c are dimensions measured from the US images. a is defined by the
largest dimension in the sagittal plane, while b is the value
perpendicular to a. c is the parameter orthogonal to both a and b in
the transverse plane. Each measurement was performed 3 times
[35].

2.5. MRI imaging

Tumor size was confirmed with MRI images collected with a 7T
horizontal bore small animal MRI system (SGRAD 205/120/HD/S,
Agilent Technologies) using a volume-based transmit/receive
quadrature radio frequency coil with an inner diameter of
3.5 cm. The animals were given an intra-peritoneal (i.p.) injection
of macrocyclic gadolinium chelate (Gadoteridol, ProHance) at a
dose of 2.5 mmol Gd/kg body weight. Body temperature was
maintained at 37 �C by blowing hot air into the magnet through a
feedback control system. �12–15 min after injection of gadolinium,
transverse T1-weighted sections were acquired with a scout
sequence in 3 orthogonal axes to identify tumor location. A
256 � 128 matrix was obtained in 5 min by conventional spin-echo
multi-slice pulse sequence using repetition time (TR) = 8.5 ms,
echo time (TE) = 2.6 ms, average = 2, in-plane field of view (FOV) =
35 � 35 mm2, 25-mm slab thickness of 1 mm thick interleaved
slices with no gap in between. Tumor volume was assessed with
the freehand region of interest (ROI) function of NIH Image J
software. Areas were measured on each MRI slice (1 mm thickness)
and added together to reconstruct the 3D tumor volume.

2.6. Photoacoustic images of HCC xenograft tumor in vivo

We used a photoacoustic tomography system (Nexus128, Endra
Inc.) that provides laser excitation at 7 ns pulses, 20 Hz repetition
rate, 25 mJ/pulse, and wavelength range 680–950 nm. Ultrasound
is collected by 128 unfocused 3 mm diameter transducers with
5 MHz center frequency arranged in a helical pattern in a
hemispherical bowl filled with water, Fig. 1A. A transparent
imaging tray located above the transducers was used to contain
anesthetized animals. The console also includes data acquisition/
reconstruction software, servo motors to rotate the bowl, and a
temperature monitor. We optimized the imaging protocol to
collect 120 views with 10 pulses/view, covering an imaging volume
of 25 � 25 � 25 mm3 with a voxel size of 280 mm3. Each dataset
required �2 min for acquisition. The animals were administered
QRH*-Cy5.5 at 300 mM in 250 mL (75 nmol), and placed inside the



Fig. 1. Schematic of imaging system. (A) Laser pulses at l = 680 nm (green) are absorbed by the tumor to produce acoustic waves that are detected by 128 ultrasound
transducers arranged in a helical pattern. Water between the imaging tray and transducer array provides acoustic coupling. (B) Photograph of live animal under anesthesia
with tumor positioned inside a dimple in the center of the tray. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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tray with the subcutaneous tumor positioned inside a water-filled
dimple to couple the ultrasound signal, Fig.1B. We acquired images
with lex = 680 nm at 0, 1, 3, 6, 12, and 24 h. A preliminary study was
performed to determine wash out time after injecting either
peptide (target or control), and whether the order of injection
affected the photoacoustic signal level.

The 3D image was reconstructed after completion of imaging
using data acquired from all 128 transducers at each view with a
back-projection algorithm [36]. This algorithm corrects for pulse to
Fig. 2. Photoacoustic contrast agent specific for EGFR. (A) Chemical structure of QRHKP
QRH*-Cy5.5. (B) Scrambled control peptide PEHKRRQ, hereafter PEH*-Cy5.5. (C) QRH*-Cy
spectra of Cy5.5-labeled peptides shows peak at lex = 677 nm. (For interpretation of the r
this article.)
pulse variations in laser intensity and small changes in tempera-
ture that affect the velocity of acoustic waves in water. The
reconstructed raw data was analyzed using Osirix 6.5.2 software
(Pixmeo) to generate a maximum intensity projection (MIP) image,
which was converted to a color map using Matlab (R2013a, ver 8.1,
Mathworks) software. Imaging was repeated with PEH*-Cy5.5 and
Cy5.5 alone (dye without peptide) 48 h later in the same animals
after the target peptide had cleared. 3D visualization of the
reconstructed photoacoustic signals was performed using Amira
RE peptide (black) with GGGSK linker (blue) and Cy5.5 fluorophore (red), hereafter
5.5 was found on the structural model (1IVO) to bind EGFR domain 2. (D) Absorbance
eferences to colour in this figure legend, the reader is referred to the web version of
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software (ver 5.4.3, FEI Corporation), including volume rendering
technique (VRT) with specular shading and color map for physics.
The alpha value was set at 0.7 in order to reveal blood vessel
structures underneath the tissue surface.

2.7. Validation of EGFR binding ex vivo with immunohistochemistry

Resected tumor and normal liver were fixed in 10% buffered
formalin and paraffin embedded. 10 mm thick serial sections were
cut and deparaffinized. Briefly, sections were incubated in xylene
3X for 3 min, washed with 100% ethanol 2X for 2 min, and washed
with 95% ethanol 2X for 2 min. Rehydration was performed by
washing the sections twice in dH2O for 5 min. Antigen unmasking
was performed using Protease XXV (#AP-9006-002, Thermo
Scientific) at 1 mg/mL in PBS buffer with pH 7.4 and digested for
15 min at 37 �C. The sections were washed 3X in dH2O for 3 min,
and then incubated in 3% H2O2 in H2O for 10 min. The sections were
washed 3X in dH2O for 2 min and in PBST for 5 min. Blocking was
performed with DAKO protein blocking agent (X0909, DAKO) for
1 h at RT. We used 1:250 dilution of monoclonal mouse anti-EGFR
antibody (clone 111.6, Thermo Scientific). The sections were
incubated overnight in primary antibody at 4 �C and then washed
in PBS 3X for 5 min. A 1:200 dilution of secondary antibody (goat
Fig. 3. Specific peptide binding to EGFR overexpressed in HCC cells. On confocal microsc
(C) HepG2 cells that have different levels of EGFR expression after incubation with QRH*-
measurements show that QRH*-Cy5.5 has significantly greater intensities than PEH*-Cy5
and 1.05 �10�5, respectively). A non-significant difference was found for HepG2 cells (1
Hep1 and Hep3B were significantly greater than that for HepG2 (5.63 and 6.46 fold-chan
with terms for 3 cell lines, 2 peptides, and their interactions to log-transformed data. Me
(H) Western blot shows EGFR expression levels for HCC cells.
anti-mouse) was added to each section and incubated for 30 min at
RT. The secondary antibody solution was removed by washing 3X
with PBS for 5 min. Premixed Elite Vectastain ABC reagent (Vector
Labs) was added to each section and incubated for 30 min at RT. The
sections were washed 3X in PBST for 5 min, and developed with
3,30-diaminobenzidine substrate. The reaction was monitored for
1 min, and then quenched by immersing the slides in dH2O.
Hematoxylin was added as a counterstain for �20 s, and the
sections were dehydrated in increasing concentrations of ethyl
alcohol (70%, 80%, 2X at 95%, 2X at 100%). Coverslips were attached
using permount mounting medium (#SP15-100, Fisher) in xylene.
Serial sections were processed for histology (H&E). Controls were
prepared using secondary antibody, Elite Vectastain ABC reagent,
Vector Labs and 3,30-diaminobenzidine (without primary anti-
EGFR antibody).

2.8. Validation of EGFR binding ex vivo with immunofluorescence

Resected tumor and normal liver (n = 24 mice) were formalin-
fixed, paraffin embedded and cut in 10 mm thick sections.
Deparaffinization, rehydration and antigen unmasking was per-
formed, as described previously. Blocking was performed with
DAKO protein blocking agent (X0909, DAKO) for 1 h at RT.
opy, we observed fluorescence at the surface (arrow) of (A) SK-Hep1, (B) Hep3B, and
Cy5.5. (D–F) Minimal signal is observed with PEH*-Cy5.5 for all cells. (G) Quantified
.5 on binding to SK-Hep1 and Hep3B cells (5.72 and 6.57 fold-change, P = 1.63 �10�5

.02 fold-change, P = 0.91). Differences between QRH*-Cy5.5 and PEH*-Cy5.5 for SK-
ge, P = 1.25 �10�4 and 8.12 � 10�5, respectively). We fitted two-way ANOVA models
asurements are an average of 5 randomly chosen cells on 2 slides for each condition.
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Sections were then incubated with 5 mM QRH*-Cy5.5 in 2% BSA for
10 min at RT. The sections were washed 3X with PBS and mounted
with Prolong Gold reagent containing DAPI (Invitrogen). Confocal
microscopy was performed using lex = 670 and 405 nm for
Cy5.5 and DAPI, respectively, at 63X magnification. Fluorescence
intensities were measured from 3 randomly positioned boxes with
dimensions of 20 � 20 mm2. Regions that showed intensity
saturation were avoided.

2.9. Image analysis

The mean photoacoustic intensity in the target region was
measured using the circular ROI function on 2D MIP photoacoustic
images in Osirix 6.5.2 software with tumor dimensions measured
using US (diameter of circle provided by arithmetic mean of
dimensions a and c). The mean background was measured from the
adjacent annulus with equal area. The target-to-background (T/B)
ratio was calculated. Prism software (v6.02, GraphPad) was used to
plot all data.

3. Results

3.1. Photoacoustic contrast agent specific for EGFR

QRHKPRE (black) was labeled on the C-terminus with Cy5.5
(red) via a GGGSK linker (blue), Fig. 2A. Using a structural model,
Fig. 4. Monitoring of tumor growth. Representative images of subcutaneous HCC tumor (
(T1 weighted contrast-enhanced). (C) Mean (�SD) dimensions for n = 8 tumors from US a
of R = 0.98 was found for tumor size measured with US and MRI.
we found a binding energy of Et = �554.81 kcal/mol for docking to
EGFR (1IVO) [31]. By comparison, we found Et = �535.37 kcal/mol
for the scrambled (control) peptide, PEH*-Cy5.5, Fig. 2B. In the
model, QRH*-Cy5.5 binds to amino acids 230–310 of EGFR
(domain 2), Fig. 2C. The absorption spectra of QRH*-Cy5.5 and
PEH*-Cy5.5 at 100 mM concentration in water shows a peak at
labs = 677 nm, Fig. 2D. We purified the Cy5.5-labeled peptides to
>95% on HPLC. This result was confirmed on mass spectrometry.
We found a molecular weight of 2232.88 g/mol, which agrees
with the expected value, Fig. S1A,B. 3D surface structures of
labeled targeting and scrambled control peptides are shown in
Fig. S2A,B.

3.2. Specific binding to EGFR overexpressed in HCC cells

On confocal microscopy, we assessed binding of QRH*-Cy5.5
and PEH*-Cy5.5 to human HCC cells SK-Hep1, Hep3B, and
HepG2 cells that express different levels of EGFR, respectively.
For QRH*-Cy5.5, we observed different strengths of binding to the
cell surface (arrows), Fig. 3A–C. Minimal binding was observed for
PEH*-Cy5.5 (control) to all cells, Fig. 3D–F. We measured
significantly greater fluorescence intensity from QRH*-
Cy5.5 compared to PEH*-Cy5.5 for SK-Hep1 and Hep3B cells but
not for HepG2, Fig. 3G. Also, the QRH*-Cy5.5 versus PEH*-
Cy5.5 differences were significantly larger for SK-Hep1 and Hep3B
than for HepG2. Western blot of cells is shown, Fig. 3H.
arrow) at 6 weeks post-inoculation are shown with (A) ultrasound (US) and (B) MRI
nd MRI images from post inoculation weeks 1–12 are shown. (D) Positive correlation
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3.3. Ultrasound and MRI monitoring of tumor growth

SK-Hep1 cells were inoculated subcutaneously in n = 8 nude
mice at 4–6 weeks of age. Tumor size was monitored weekly for
12 weeks. Representative images are shown with ultrasound (US),
Fig. 4A, and MRI, Fig. 4B. A peak tumor volume (�SD) of
761 �160 and 936 � 148 mm3 was found on US and MRI,
respectively, Fig. 4C. A correlation of R = 0.98 was found between
tumor size on US and MRI, Fig. 4D.

3.4. Photoacoustic images of HCC xenograft tumor in vivo

At 6 weeks post inoculation, representative photoacoustic
images collected with lex = 680 nm at 0, 1, 3, 6, 12, and 24 h after
injection of 300 mM in 250 mL of QRH*-Cy5.5 i.v. are shown as
maximum intensity projection (MIP) images at a mean (�SD)
depth of 8.1 �1.3 mm with range 0–1.8 cm below the skin surface.
At this time, the tumors had reached a mean (�SD) size of
100 � 23 mm3 by US. The tumors showed increased signal in a
heterogeneous pattern with visible blood vessels, Fig. 5A–F.
Preliminary study (data not shown) confirmed wash out of either
QRH-Cy5.5 or PEH-Cy5.5 from the animals’ system occurred by
24 h post injection and no difference in signal intensity or pattern
were associated to injection order. After 48 h when signal was no
longer observed from the EGFR peptide, the PEH*-Cy5.5 control
peptide was administered in the same animal, Fig. 5G–L. For
additional control, images from HCC with Cy5.5 alone, Fig. 5M–R,
and from adjacent normal tissue with QRH*-Cy5.5, Fig. 5S, are
Fig. 5. Photoacoustic images of HCC tumor in vivo. Representative MIP images at depth o
and (G–L) PEH*-Cy5.5 are shown. In panel (C), inner circle represents regions-of-interest
used to measure background. (M–R) Images of tumor with injection of Cy5.5 alone (no
injection. (T) 3D reconstruction of tumor images.
shown. A volume rendered image of the tumor at 3 h post injection
is shown (Video 1), Fig. 5T.

3.5. Target-background (T/B) ratio of HCC on photoacoustic images

The photoacoustic intensity from the tumor (target) was
measured using a circular ROI with diameter determined from
US, and an adjacent annulus with area equal to that of the target
ROI was used to measure background (white circles in Fig. 5C). HCC
tumors showed a higher T/B ratio for the EGFR peptide compared
with that of the control peptide at each time point up to 24 h.
Tumor uptake of QRH*-Cy5.5 increased steadily after injection to a
peak value at 3 h, Fig. 6A. The T/B ratio then decreased over time to
near baseline by 24 h. Meanwhile, non-tumor exhibited minimal
uptake. The HCC image with Cy5.5 alone (no peptide) showed a
small effect of tumor permeability and retention [37,38]. Injection
of Cy5.5 dye alone produced a peak T/B ratio of 1.30 � 0.14 at 1 h
post injection at tumor site. We measured a T/B ratio of
1.22 � 0.14 at the tumor site and 1.05 � 0.13 from adjacent normal
tissue at 3 h respectively. Peak T/B ratios for the EGFR and control
peptides at 3 h are shown, Fig. 6B. The T/B ratios at each time point
for individual mice are shown, Fig. S3.

3.6. Validation of EGFR peptide binding ex vivo

On immunohistochemistry (IHC), we observed strong staining
of EGFR in HCC tumors Fig. 7A. On immunofluorescence (IF), strong
signal from QRH*-Cy5.5 is seen on the surface of tumor cells,
f 1.8 cm were collected at 0, 1, 3, 6, 12 and 24 h after injection with (A–F) QRH*-Cy5.5
 (ROI) used to measure signal from tumor, and adjacent annulus with equal area was

 peptide) at 0–24 h post injection. (S) Image of normal area at 3 h after QRH-Cy5.5



Fig. 6. Target-background (T/B) ratio of HCC on photoacoustic images. (A) Images collected over time show peak tumor QRH*-Cy5.5 uptake at 3 h after i.v. injection. T/B ratio
of 2.25 � 0.25 was significantly greater than 1.31 �0.36 for PEH*-Cy5.5, P = 1.2 � 10�3 by paired t-test. Injection of Cy5.5 dye alone produced peak T/B ratio, 1.30 � 0.14, at 1 h
post injection at tumor site. T/B ratio of 1.22 � 0.14 at tumor site and 1.05 � 0.13 at adjacent normal tissue were observed at 3 h respectively. Wash out of probe was observed
within 24 h. (B) Individual data points for T/B ratios at 3 h are shown.
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Fig. 7B. In normal mouse liver, a few lightly stained hepatocytes
(arrow) can be seen surrounding the central vein (arrowhead) with
IHC, Fig. 7D. Minimal signal from QRH*-Cy5.5 was seen in normal
Fig. 7. Ex vivo validation of EGFR binding. (A) Immunohistochemistry (IHC) with anti-E
irregular round nuclei (arrows) and infiltrating blood vessels lined with flattened end
Cy5.5 shows binding to surface of HCC cells. Fluorescence intensities were measured from
histology (H&E) of tumor. (D) IHC of normal mouse hepatocytes show few lightly stained 

shows minimal signal. (F) Histology of normal mouse liver shows lobule with central vein
fluorescence intensities for HCC (n = 24 tumors) are significantly higher than that for norm
test. (H) ROC curve shows 92% sensitivity and 96% specificity with area under curve (A
liver with IF, Fig. 7E. Corresponding histology (H&E) of tumor and
normal is shown, Fig. 7C and F. We found the mean fluorescence
intensity from HCC to be significantly greater than that of normal
GFR antibody shows increased reactivity to HCC. A nest of tumor cells with large
othelial cells (arrowhead) can be seen. (B) Immunofluorescence (IF) with QRH*-

 sets of 3 (dashed white) boxes with dimensions of 20 � 20 mm2. (C) Corresponding
cells (arrows) surrounding the central vein (arrowhead). (E) IF of normal mouse liver

 (arrowhead) surrounded by radially aligned plates of hepatocytes. (G) Mean (�SD)
al liver (n = 24), 27.8 � 11.5 versus 7.37 � 3.80 by 3.77-fold, P = 3.4 �10�10 by paired t-
UC) of 0.97 for distinguishing HCC from normal liver using QRH*-Cy5.5.
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by 3.8-fold, Fig. 7G. The corresponding ROC curve shows 92%
sensitivity and 96% specificity for distinguishing HCC from normal
liver with an area under curve of AUC = 0.97.

4. Discussion

Here, we demonstrate use of photoacoustic imaging to visualize
HCC xenograft tumors in living mice with a peptide specific for
EGFR. This peptide was used previously to collect fluorescence
images endoscopically from mouse colonic adenomas with topical
administration [31]. We now show that specific binding to EGFR
can also occur with systemic administration. We used Cy5.5, a NIR
fluorophore, to achieve good photoacoustic signal at a depth down
to 1.8 cm with low background. We found peak uptake at 3 h post
injection and clearance by �24 h. This time frame is significantly
faster than most antibodies, which can take hours to home to the
tumor and even longer to clear [39,40].

Previous photoacoustic imaging studies have used endogenous
contrast from hemoglobin and melanin [41], and others have relied
on the enhanced permeability and retention (EPR) effect [42,43].
These strategies are based on non-specific detection mechanisms.
By comparison, use of a targeting moiety can improve tumor
homing, increase signal, and improve contrast by tuning absorp-
tion to specific wavelengths [44]. The EPR effect can be variable and
produce false positives in highly vascular tissues [37]. Photo-
acoustic imaging has been used with other molecular probes for
targeted detection. An enzyme sensitive oligomer labeled with
Atto-740 was used to detect furin-like activity [45]. DMSO was
needed to improve solubility, and the oligomers were found to
aggregate and form nanostructures that trapped the reporter
molecule inside the cells. RGD peptides have been used to target
integrins in tumor-associated blood vessels that arise from
angiogenesis and metastasis, a finding that occurs at a late stage
of tumor development [46–49]. Antibodies labeled with gold
nanoparticles have been used to image molecular targets, such as
Her-2, EGFR, CXCR4 and LYVE-1 [50–54]. Antibodies are large in
size, high in molecular weight, and have long circulatory half-lives
[55]. They also have limited ability to extravasate from the
vasculature, diffuse within tumors, penetrate deeply, and clear
from interstitial space [55,56]. All of these properties increase
imaging background. Antibodies are also prone to immunogenicity
that limits repetitive use [57].

Epidermal growth factor receptor (EGFR) is overexpressed in
many cancers and promotes solid tumor growth [58]. Previous
studies have targeted EGFR to improve imaging specificity, and
have used metallic nanoparticles [52,54,59] and organic dyes [60–
62] to generate contrast. Gold nanospheres [54], gold nanrods [63],
silica-coated gold nanorods [64], and silver nanoplates [65] have
been labeled with monoclonal EGFR antibodies to image cells
overexpressing EGFR [66] with photoacoustic imaging. Targeted
nanoparticles can be used as sensors to detect molecular
interactions. EGFR-targeted gold nanospheres aggregate in endo-
somes after undergoing receptor-mediated endocytosis [67]. This
results in plasmon coupling and a red shift in the absorption
spectrum, which is detectable with photoacoustic imaging.
Therefore, nanoparticles in the endosomes of cells overexpressing
EGFR can be detected and distinguished from free nanoparticles in
the tumor, which may have accumulated via the EPR effect [54].
The high cost and long circulatory time of antibodies as targeting
moiety in imaging could potentially inhibit acceptance for clinical
translation as a diagnostic tool. This motivates our present study to
explore feasibility for use of a cost-efficient and fast acting EGFR
targeting peptide.

Photoacoustic imaging is an emerging imaging modality that
provides greater depth than optical methods and better resolution
than ultrasound. We were able to visualize a large fraction of the
volume of HCC tumors, and may be able to improve imaging depth
with use of stronger labels, such as nanoparticles [68]. This method
may be useful for evaluating the effect of drugs under development
for tumor therapy. Previous studies has reported the ability of
hybrid plasmonic contrast agent gold nanotube (GNT) to achieve
picomolar sensitivity compared to nanomolar levels for conven-
tional agents [36]. Moreover indocyanine green labeled with single
walled carbon nanotubes (SWNT-ICG) can improve photoacoustic
contrast by �300-fold [47]. This technique using non-ionizing
radiation, and can be more cost-effective and easier to use than
MRI, PET, and SPECT. The photoacoustic images were collected with
a spatial resolution of 280 mm in all dimensions. By comparison,
ultrasound at the same central frequency of 5 MHz without 3D data
acquisition and image reconstruction can achieve 470 mm axial
and �1–5 mm lateral resolution [69]. However, high-frequency
linear-array-based micro-ultrasound platforms operating at fre-
quencies of 30–70 MHz (compared to frequencies of 3–15 MHz for
clinical ultrasound systems) can allow spatial resolution as high as
30-mm [70]. Nuclear imaging methods (PET and SPECT) have
spatial resolution in the �1–2 mm range [44,71]. Our in vivo
images required long image acquisition and reconstruction times
(�2 min). Faster lasers and more efficient algorithms may enable
real time image-guided surgery with a photoacoustic endoscope.

In this study, we used a version of Cy5.5 that has four additional
hydrophilic ��SO3H groups (Fig. 1A) to improve water solubility.
With the previous fluorophore, we used a concentration of
100 mM, which was adequate for topical administration to detect
pre-malignant disease in mouse colon [31]. In this study, we
achieved a �3-fold greater concentration, and used systemic
administration to deliver the peptide to a solid tumor. The higher
dye solubility allowed for use of a volume that is tolerated by the
animal. Because the peak absorption of Cy5.5 occurs below
700 nm, the imaging depth can be improved with organic dyes,
such as ICG and Licor IRDye800 [49,72], that absorb at longer
wavelengths and avoids hemoglobin absorbance and minimizes
tissue scattering. Moreover, nanoparticles have 3–10 times higher
extinction coefficient than organic dyes [73], and can absorb more
energy from light per mass density. Example of nanoparticles that
can be used to label peptides for increased signal include iron oxide
[46], gold nanorods [50], CuS [74], nanospheres [54,75], carbon
nanotubes [47,76] and polymer nanoparticles [77–80]. Metallic
nanoparticles have very strong absorption that can also be used for
photothermal therapy after tumor delivery [48,81]. Carbon nano-
tubes are considered more bio-compatible [82], absorb over a
broad spectrum [66], and possess superior photoacoustic signal
strengths compared to metallic NPs. Polymer NPs can be more
photostable than gold nanorods and photoacoustically brighter
than carbon nanotubes with pulsed laser irradiation. Despite these
advantages, nanoparticles are foreign bodies that can cause
inflammation in liver [83,84] and increase circulation time [85].
While prolonged circulation time of conventional nanoprobes may
enhance targeted drug delivery [86,87], peptides may offer
advantages for improved deep tumor penetration and accumula-
tion with reduced biodistribution to non-target tissues [88,89].
Among nanomaterial-based agents already approved by the FDA
[90], all but one of these agents are therapeutics [91]. On the other
hand, nanoparticles have not received FDA approval for clinical
imaging [92]. A smart or activatable nanoparticles with improved
pharmacokinetic, tumor targeting and organ clearance properties,
based on the use of natural, biodegradable polymers (dextran and
heparin), is desired. Organic dyes have a benign toxicity profile [93]
and pharmacokinetic characteristics are compatible with clinical
translation.

The typical shape of tumor xenografts in this study was oblate
ellipsoid with almost equal dimensions parallel to skin surface but
much shorter in depth beneath the skin (i.e. b < a � c). Thus
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approximation of tumor area with circular ROI was adopted in PA
signal intensity measurement for 2D MIP images. 3D volumetric
quantification of PA images could potentially give a more accurate
intensity measurement if an algorithm capable of defining
arbitrary oblate ellipsoid as ROI and taking into account the
illumination attenuation along tissue depth were available.

We used human SK-Hep1 cells that overexpress EGFR to
introduce HCC xenograft tumors. This technique may produce
higher levels of EGFR expression and less heterogeneity than that
found in sporadic human HCC [94]. In the future, we will use
patient derived xenograft (PDX) models that include stroma and
better reflect clinically relevant EGFR expression levels [95] and
tumor microenvironment [96]. PDX models can also be effective
for evaluating new drugs [97–99]. Both subcutaneous [96,100,101]
and orthotopic [102] PDX models of HCC have been developed by
other groups. Also, detection of multiple targets simultaneously
may be needed to address the genetic diversity of HCC. Our
imaging system can use a broad range of wavelengths (680–
950 nm). This spectrum covers the absorption peaks of many NIR
dyes (Cy5.5, ICG, IRDye800) and nanoparticles (Au, SWNT and Co
[50,68,76]). A panel of peptides labeled in spectrally distinct
regions may be needed to achieve high detection sensitivity in the
clinic. Adapting functionalized nanoparticles for excitation at
different wavelengths would allow for multiplexed imaging to be
performed [103].
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