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1 .  I N T R O D U C T I O N  

In this paper ,  we are concerned with the global existence and asymptot ic  stabil i ty of  the evolu- 
t ionary  sys tem 

u 1" - AUl + a(Ul - u2) = 0, in f~ x R+,  

u~ - Au2 + a ( u 2 -  ul )  = 0, in ~ x R+,  

U l = 0 ,  u 2 = 0 ,  o n F 0 x R + ,  

Ou2 
Ul = 0, -~v -k au2 q- g(u~2) = O, on Fx x R+,  

U l ( 0 )  = U l0 ,  u ~ ( 0 )  = u11 ,  u 2 ( 0 )  = u20 ,  u S ( 0 )  = ~21 ,  

(1.1) 

(1.2) 

(1.3) 

(1.4) 

in a ,  (1.5) 

where ~ is a bounded  domain in R N, {F0, F1} is a par t i t ion of  its bounda ry  F, u is the ou tward  
uni t  normal  vector  to F, R+ = [0 ,+oo) ,  and a : ~ -* R+,  a : F1 --* R+,  g : R --~ R are some 

given functions.  Under  suitable assumptions,  we shall prove tha t  system (1.1)-(1.5) is well posed, 
dissipative, and s t rongly  stable. 

This  problem is mot ivated  by an analogous problem in ordinary  differential equat ions  for 
coupled oscillators and has potent ial  application in isolation of objects  f rom outside disturbances.  

As an example in engineering, rubber  and rubber-like materials  are used to absorb vibra t ion or 
shield s t ructures  from vibration.  Modeling of  s t ructures  such as beams,  or plates sandwiched 
wi th  rubber  or similar materials,  will lead to  equat ions similar to  those of (1.1) and (1.2). 

W h e n  ul  satisfies the  same equat ion as u2 on F1 x R+,  this problem was s tudied by Komorn ik  
and Rao  [1] by using two different approaches.  The  first one is based on the  appl icat ion of a 
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compact perturbation theorem of Gibson [2], which has been applied successively in the s tudy of 
the SCOLE model [3] and the Rayleigh beam equation [4]. This method allows them to establish 
the uniform decay rate of energy in the linear case for arbitrary nonnegative bounded measurable 
function a. The second one is a direct adaptation of the usual multiplier method [5]. This method 
leads to decay rate estimates both in the linear and nonlinear case, under the assumption that  a 
is constant. The results of Komornik and Rao [1] were improved by the author in [6]. 

In this paper, as there is no damping acting on Ul on F1, we will see that  there is a price 
paid for weakening this hypothesis compared with the one assumed by Komornik and Rao [1] 
and Aassila [6]. Only strong asymptotic stability will be proved, and in general, there is no 
exponential decay even if g is linear. System (1.1)-(1.5) is called a compactly coupled system 
since if we s e t  B(Ul,U2, Vl,V2) : :  ( 0 , 0 ,  a ( U 2  - -  U l ) , O ~ ( U l  - -  U 2 ) )  with D ( B )  := 7-/ = H~(fl) x 
H~o (f~) x L2(f~) x L2(f~), then thanks to Rellich's Theorem, B is a compact linear operator in/-/. 

Throughout the paper, we shall make the following assumptions. 

(H1) The domain ~t is of class C 2. 
(H2) The partition of F satisfies the condition F0 N Pl = 0. 
(H3) There exists a point x0 E ~I n such that,  putting re(x)  = x - xo, we have 

m . ~ < 0 ,  onE0, and i n f m . u > 0 ,  onE1. 
F1 

(H4) The coefficient a is nonnegative and belongs to CI(F1). Moreover, either F0 ~ 0 or 
infr~ a > 0. 

(H5) The function a is nonnegative and belongs to L°~(~). 
(H6) The function g is continuous, nondecreasing g(0) = 0, and there exists a constant c > 0 

such that  
[g(x)[ < 1 + c[x[, Y x  E •. (1.6) 

Setting H~o(~t ) = {v e HI(~)  [ v = 0 on F0}, our main results are as follows. 

THEOREM 1. (Wel l -posedness  and regularity.)  Given ( u o l , u n , u 2 1 , u 2 2 )  G H~(f~) × L2(f~) x 

//rio (f2) x L2(f~) arbitrarily, problem (1.1)-(1.5)  has a unique weak  solut ion sa t i s fy ing  

u l e  C (R+, H~(gt)) N C1 (Sl+,L2(gt)) , 

u2 e C (R+, H}o(f~)) A C '  (R+,n2(f~)),  

and i ts  energy  defined by 

] ff~ ,2 : "2 + l ~ U 2  -[-OL(Ul--U2)2dx+-~F, E(t):=5 +tW I-' I 1 

is nonincreasing.  

Fur thermore ,  i f  g is globally L ipschi t z  cont inuous and 

(?.tO1 , 1 i l l  , ?-t21 , l/,22 ) e ( g  2 r', H01) A H01 x ( g  2 A grlo) x g~o 

are such tha t  
0u2o 

0--7- + au2o + g(u2i)  = O, on F1, 

then the  solut ion is more  regular and we have 

?~1 e L °° (R+, H2(~) N Hol (~t)) A W 1'°° (R+, H01 (f~)) A W 2'~ (R+, L2(f~)), 

u2 e n ~  (R+,gU(f~) ~ H~o(~)) ~ W ~'°~ (R+,H~o(~)) ~ W 2'°~ (R+,L2(f~)). 

THEOREM 2. (S trong a s y m p t o t i c  stabil i ty.)  A s s u m e  that  c~ = cons tant  = 1 and g (x )  = x ,  then 

We have 
E ( t ) -~ O, as t -~ + ~ , 

e H (a) × × × L U a ) .  
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THEOREM 3. (Nonuniform stability.) I f  fl is an open bounded interval (N  = 1), g(x) = x, and 
a = (1 /2 ) (n  2 - m2)Tr 2, then (1.1)-(1.5) has an eigenvalue A = inzr, and hence, the sys t em is not 
uniformly exponentially stable (n and m are  positive integers). 

T h e  p a p e r  is organized as follows. In  Section 2, we will prove T h e o r e m  1. In Sect ion 3, 
T h e o r e m  2, and  in Section 4, T h e o r e m  3. 

2 .  W E L L - P O S E D N E S S  

We will app ly  the  s t anda rd  theory  of nonlinear semigroups  [7]. Let  us in t roduce the  two 
following Hi lber t  spaces H -- L2(f~) x L2(~)  and V -- H I ( ~ )  x H l o ( ~  ) endowed wi th  the  norms  

I](Ul, U2)]l 2 = f U21 "~- 1£ 2 dx 
3fl 

and f f 
I t (u"  u2)1]2 ---- L IVul]2 + ]Vu212 + a(Ul  - u2) 2 dx + L au2 d% 

JF  1 

One can easily verify t h a t  I[" Jig and ]1" [Iv are norms,  and then  we have V C H C V' with  dense 
and c o m p a c t  imbeddings.  

Let  v = (v l ,v2)  E V arb i t ra r i ly  and assume for a m o m e n t  t h a t  (1.1)-(1.5) has  a s m o o t h  
solut ion u := (ul ,  us).  Mul t ip lying equat ions (1.1),(1.2) wi th  Vl, v2, in tegra t ing  their  sum in f2, 
and finally using b o u n d a r y  condit ions (1.3),(1.4), we easily obta in  t h a t  

(u" + A u + B u ' , v ) v , , v = O ,  V v E V ,  

where  A : V --* V '  is the  dual i ty  mapp ing  and  B is the  nonlinear  ope ra to r  defined by 

(Bv, z )v , ,v  = [ g(v2)z2d"/, v = (Vl,V2), z = (Zl,Z2) E V, 
dl '  1 

which is well defined thanks  to  (H6). 
Hence,  (1.1)-(1.5) m a y  be wr i t t en  abs t rac t ly  as 

u' + A u  = 0, (1.7) 

U(0) = U0, (1.8) 

where  

U = (u, v) :=  (u, u ' ) ,  AU = ( - v ,  Au + By),  U(O) = (ulo, u11, u12, u22), 

and 
D(A) := I U =  (u,v) 6 V x W, Au + Bv  6 H}.  

LEMMA 2.1. ,4 is m a x i m a / m o n o t o n e  on V x H. 

PROOF. Le t t ing  U = (u, v) and U = (~, #) 6 D(A) arbitrari ly,  we have 

( A v -  A v ) v × .  = >_ 0, 
1 

hence, .4 is monotone .  

I t  r emains  to  show t h a t  for any  given ~" = (~, ~5) E V x H ,  there  exists  U = (u, v) E D( ,4)  such 
t h a t  ( I  + J t ) U  = U. I t  suffices to show t h a t  the  m a p  I + A + B : V --. V '  is onto.  Indeed,  then  
there  exists  v c V sat isfying 

(I + A + B)v  = ~ - A~. 
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Sett ing u = v + 5, we conclude easily tha t  If  E V x V ,  A u  + B v  = ~ - v c H (hence, U E D ( A ) ) ,  

and ( I  + A ) U  = U-. 
Let  us tu rn  now to prove the surjectivity of  I + A + B : V -~ V ~. Fix f E V ~ arbitrarily, set 

a ( t )  = g(s)  ds, t ~ ~{, 

and consider the map  F : V --~ R defined by the formula 

1 2 1 2 f 
F(~) = ~l tul l .  + ~llullv + Jr' G(u2)d"/- (f,u>v,,v. 

1 

Thanks  to (H6), F is well defined, continuously differentiable, and 

( F ' ( u ) , v ) v , , y  : ( ( I  + A + B ) u  - f , v > v , , v ,  

for all u, v E V. ~ r t h e r m o r e ,  thanks  to the nondecreasingness of g, F is convex, and hence, 
lower semicontinuous in V. Finally, we conclude from the inequality 

F ( v )  >_ ( l [ , v , , v  - " f " v ' )  ,[v,,v 

t ha t  F ( v )  --* +oo if [[vii" --* +oc ,  i.e., F is coercive. Hence, there is a point  u c V minimizing F .  

It  follows tha t  F ' ( u )  = 0, i.e., ( I  + A + B ) u  = f . 
The  regular i ty of  solutions can be proved in a s tandard  way, so we omit  the details here. 

3. S T R O N G  A S Y M P T O T I C  S T A B I L I T Y  

For the proof  of Theorem 2, we need the following useful theorem. 

THEOREM. (See [8].) Le t  A be a max ima l  monotone  linear operator in a complex  Hilbert  space 

V x H and assume that  

(a) A has a compact  resolvent; 
(b) A does not  have pure ly  imaginary  eigenvalues." 

Then  problem (1.7),(1.8) is s trongly  stable. 

The  proof  of (a) follows from the compactness  of the imbedding D ( A )  c V x H ,  a consequence 
of Rellich's Theorem.  For the proof  of (b), let U0 = 

having a purely imaginary eigenvalue iw: 
(Ul, U2, Vl, V2) be an eigenfunction of A 

Using the  definition of A, it follows tha t  

- v l  = iwul ,  in f~, (3.1) 

- v 2  = iwu2, in f~, (3.2) 

- A u l  + (ul - u2) ---- iwvl ,  in f~, (3.3) 

- A u 2  ~- (u2 - U l )  = i c z v 2 ,  in f~, (3.4) 

U 1 = 0, o n  Fo ,  (3.5) 

u2 = 0, on Fo, (3.6) 

ul  = 0, on F1, (3.7) 

0u2 
O----P + au2 + v2 = 0, on F1. (3.8) 

AUo = iwUo, w E ~,  Uo E D ( A ) .  
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F u r t h e r m o r e ,  U(t) : =  ei~tUo has  obvious ly  cons t an t  energy  

1 
E(t) = ~lIU(t)ll~xH, 

and  therefore ,  E I = 0, t h a t  is, v2 = 0 on F1. 

I f  w # 0, we conc lude  by C a r l e m a n ' s  unique con t inua t ion  t he o re m (cL, for example ,  [9]) t h a t  

Ul = u2 in f~. Tak ing  into account  (3.1),(3.2),  we ob t a in  t h a t  vl  = v2 in f~, and  therefore ,  U0 = 0. 

I f  w = 0, t h e n  mul t i p ly ing  (3.3) wi th  u l ,  in tegra t ing  by pa r t s  in f~, we o b t a i n  t h a t  

Similar ly ,  we also have 

/ ul(ul  - u 2 ) d x  + / ~  IVul l  2dx  = O. 

~ u2(ul - U2) dx + / [Vu2[2 + / r  a[u2[2 d'y = O. 
1 

Hence,  [[(Ul,U2)l[~ = 0, and  therefore ,  u l  = u2 = 0, and  we conclude  t h a t  Vl = v2 in ft. Thus ,  

we have Uo = 0. 

I t  follows t h a t  .,4 canno t  have pure ly  imag ina ry  eigenvalues.  

4 .  N O N U N I F O R M  S T A B I L I T Y  

For  s impl ic i ty ,  we assume t h a t  ft = (0, 1) and  a = 0. T h e  p rob lem 

( A  - h i )  ( U l ,  ~ t l ,  V l ,  ?)2) T = 0 

is equ iva len t  to  

]1 
U 1 --OLU 1 --  A~t 1 q-OLV 1 = O, 

f;2 - Avl = O, 

aul + V'l ~ - avl - A~,2 = O, 

Ul(0) = ul (1)  = 0, 

Vl(O) = O, V'I(1 ) = --V2(1). 

(4.1) 
(4.2) 
(4.3) 
(4.4) 
(4.5) 
(4.6) 

If  we set  

, 

Ul and  owing to  t he  p roof  of T h e o r e m  2, we can easi ly deduce  t h a t  E'(t) = O, and  hence,  ( -1 ) is a 

so lu t ion  to  

u]' - ~ 2 U l  = ~ ( u ,  - V l ) ,  

/! ~ 2 V l  = Ot(V 1 - -  U l )  , V 1 --  

U l ( O  ) ~--- ~ t l ( 1  ) : O, 

V l ( 0 )  = V l ( 1 )  : V~(1 )  : 0 .  

Se t t i ng  ¢ = u + v, ~b = u - v, (4.8)-(4.11)  can be r ewr i t t en  as 

¢" - A2¢ = 0, 

¢,, _ (~2 + 2 ~ ) ¢  = 0,  

¢(0)  : ¢(1)  = ~b(0) : ~b(1) : 0. 

(4.8) 
(4.9) 

(4.1o) 
(4.11) 

(4.12) 
(4.13) 
(4.14) 
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The  solut ions to the above equat ions  satisfying the b o u n d a r y  condi t ions  at  x = 0 are of the  form 

¢(x) = cl s inh Ax, ~(x)  = c2 sinh V / ~  + 2~ x. 

In  order to satisfy the  b o u n d a r y  condi t ions  at  x = 1, with Cl ~ 0 and  c2 ~ 0, we should have 

)~ = inT~, y /  )~ ~ + 2(~ = imTr, n, m E N.  

Hence, we deduce t ha t  if a = (1 /2 ) (n  2 - m2)Tr 2, then  the system has an eigenvalue ~ = i n n ,  and  

consequently,  it is not  uni formly exponent ia l ly  stable. 

REMARKS. 

(1) The  results of Theorems 1-3 hold t rue  if we assume tha t  ul  satisfies the N e u m a n n  b o u n d a r y  

condi t ion  on F1. 

(2) Theorem 2 remains  valid (with a simple modificat ion of the proof) for the  nonl inear  case if 

the funct ion g is locally Lipschitz cont inuous  and if it satisfies the following two condit ions:  

g ( x )  ~ O, if x ~ 0, 

3 c  > O : lg(x)[ <_ l T clxl N / ( N - 2 ) ,  V x E R .  
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