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Abstract—We prove the well-posedness and study the strong asymptotic stability of a compactly
coupled system of wave equations with a nonlinear feedback acting on one end only. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. INTRODUCTION

In this paper, we are concerned with the global existence and asymptotic stability of the evolu-
tionary system

uwf — Auy + aluy —ug) = 0, inQ xRy, (1.1)
uy — Aug + alug — uy) =0, nQxR,, (1.2)
w =0, u=0, on g x Ry, ' (1.3)
o
ur =0, $+au2+g(u’2) =0, onl; xRy, (1.4)
ul(O) = %10, u'l(O) = U1, ug(D) = U920, ué((]) = U21, in Q, (15)

where €0 is a bounded domain in R, {[,,T',} is a partition of its boundary I,  is the outward
unit normal vector to ', Ry = [0,4o0), and o : @ = Ry, a: 1 = Ry, g: R — R are some
given functions. Under suitable assumptions, we shall prove that system (1.1)-(1.5) is well posed,
dissipative, and strongly stable.

This problem is motivated by an analogous problem in ordinary differential equations for
coupled oscillators and has potential application in isolation of objects from outside disturbances.
As an example in engineering, rubber and rubber-like materials are used to absorb vibration or
shield structures from vibration. Modeling of structures such as beams, or plates sandwiched
with rubber or similar materials, will lead to equations similar to those of (1.1) and (1.2).

When u, satisfies the same equation as up on I'; x Ry, this problem was studied by Komornik
and Rao [1] by using two different approaches. The first one is based on the application of a
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compact perturbation theorem of Gibson [2], which has been applied successively in the study of
the SCOLE model [3] and the Rayleigh beam equation [4]. This method allows them to establish
the uniform decay rate of energy in the linear case for arbitrary nonnegative bounded measurable
function ¢x. The second one is a direct adaptation of the usual multiplier method [5]. This method
leads to decay rate estimates both in the linear and nonlinear case, under the assumption that o
is constant. The results of Komornik and Rao {1] were improved by the author in [6].

In this paper, as there is no damping acting on u; on I'y, we will see that there is a price
paid for weakening this hypothesis compared with the one assumed by Komornik and Rao [1]
and Aassila [6]. Only strong asymptotic stability will be proved, and in general, there is no
exponential decay even if g is linear. System (1.1)-(1.5) is called a compactly coupled system
since if we set B(uy,us,v1,v2) = (0,0,a(us — w1}, a{ur — ug)) with D(B) := H = H}(Q) x
Hy, () x L?(0Q) x L*(€)), then thanks to Rellich’s Theorem, B is a compact linear operator in M.

Throughout the paper, we shall make the following assumptions.

(H1) The domain £ is of class C.
(H2) The partition of I satisfies the condition Ty NT = .
(H3) There exists a point zp € R™ such that, putting m(z) = x — x5, we have

m-v <0, only, and ipf‘m v >0, onTy.
1

(H4) The coefficient a is nonnegative and belongs to CY(T1). Moreover, either Iy # @ or
infr1 a > 0.
(I15) The function « is nonnegative and belongs to L™ ().
(H6) The function g is continuous, nondecreasing g(0) = 0, and there exists a constant ¢ > 0
- such that ‘
lg{x)] <1+ x| VreR. (1.6)

Setting HE () = {v € H'(Q) | v = 0 on T}, our main results are as follows.
TuvoreM 1. (Well-posedness and regularity.) Given {(up1, ui1,uz,uz) € Hy(Q) x L) x
H} () x L*(Q) arbitrarily, problem (1.1) (1.5) has a unique weak solution satisfying
€ C (Ry, HY(RQ)) N O (Ry, L),
up € C (Ry, HE (D)} nC* (Ry, LA(Q)),

and its energy defined by

. 2 N . 1
E(t) := %fﬂu'f + Vm P u o Vgl 4 ol — ue)? dr + 5]{“ aus dv
1

is nonincreasing.
Furthermore, if g is globally Lipschitz continuous and

(uol,uu,um,un) S (H2 n H&) M HGI X (H2 ﬂH]lO) x H%o
are such that

du;
Wf + auag + glus) =0, on Ty,

then the solution is more regular and we have
wy € L (Ry, H2(Q) N HAHQ)) n W (R, TH)) n W2 (R, L3(Q)),
up € L= (Ry, HX(Q) 1 HE (Q2)) n W (Ry, HE () nW* (Ry, L*()) .

THEOREM 2. (Strong asymptotic stability.) Assume that « = constant = 1 and g{xz) = x, then

we have
E(t) — 0, ast — +oo,

for all (ulo,ull,un,ugg) S Hé (Q) x LQ(Q) = HI!‘D(Q) x L2(Q)
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THEOREM 3. (Nonuniform stability.) If  is an open bounded interval (N = 1), g(z) = =, and
a = (1/2)(n? — m?)n?, then (1.1)-(1.5) has an eigenvalue A = in, and hence, the system is not
uniformly exponentiaily stable (n and m are positive integers).

The paper is organized as follows. In Section 2, we will prove Theorem 1. In Section 3,
Theorem 2, and in Section 4, Theorem 3.

2. WELL-POSEDNESS

We will apply the standard theory of nonlinear semigroups [7]. Let us introduce the two
following Hilbert spaces H = L2(Q) x L*(€) and V = H}(Q) x H}, () endowed with the norms

(s, u)l = [Q w3+l da

and
(s, )3 = ] Vsl + [V + (g — )P diz + [ ad dry.
0 r

1
One can easily verify that || - | and | - |y are norms, and then we have V C H C V' with dense
and compact imbeddings.
Let v = (v1,v2) € V arbitrarily and assume for a moment that (1.1)-(1.5) has a smooth
solution u := (uy,u2). Multiplying equations (1.1),(1.2) with v, v,, integrating their sum in Q,
and finally using boundary conditions (1.3),(1.4), we easily obtain that

(" + Au + Bu/, v}y v =0, Yev eV,

where 4 : V — V' is the duality mapping and B is the nonlinear operator defined by
(Bu,z)vr,v = / glvazmdy, v=(vi,v2), z=(21,22) €V,
r

which is well defined thanks to (H6).
Hence, (1.1)-(1.5) may be written abstractly as

U+ AU =0, (1.7)
U(0) = Us, (1.8)
where
U = (u,v) = (u,u'), AU = (—v, Au + Bv), U(0) = (w10, 11, Uiz, u22),
and

D(A) ={U={u,v) eV xV, Au+ Bve H}.

LEMMA 2.1. A is maximal monotone on V x H.
PROOF. Letting U = (u,v) and U = (&, %) € D(A) arbitrarily, we have

(av -}, = [ (oo - o2 — i)y 2 0

hence, 4 is monotone.

It remains to show that for any given U = (i, %) € V' x H, there exists U = (u,v) € D(A) such
that (I + A)U = U. It suffices to show that the map I + A+ B: V — V' is onto. Indeed, then
there exists v € V satisfying

(I+A+B)u=17-— Ad.
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Setting u = v + ii, we conclude easily that UeVxV,Au+Bv==%—vecH (hence, U € D{A)},
and (I + AU =U.
Let us turn now to prove the surjectivity of I + A+ B: V — V. Fix f € V' arbitrarily, set

it
Guy:/ gols)ds, teR,

0

and consider the map F': V — R defined by the formula
1,ou 1.
F(u) = gl + 3llullv + : Glug) dy — (f,wpvr,v.
1

Thanks to (H6), F is well defined, continuonsly differentiable, and

(F/{u),v)yvr v = {T+ A+ Blu— f,0)vr v,

for all uv,v € V. Furthermore, thanks to the nondecreasingness of g, £ is convex, and hence,
lower semicontinuous in V. Finally, we conclude from the inequality

Fo) = (3loly = 17l ) Lol

that F(v) — +oc if |u||y — +oo, L.e., F' is coercive. Hence, there is a point 4 € V' minimizing F'.
It follows that F'{u) =0, ie, I+ A+ B)u=f.
The regularity of solutions can be proved in a standard way, so we omit the details here.

3. STRONG ASYMPTOTIC STABILITY

For the proof of Theorem 2, we need the following useful theorem.
THEOREM. (See [8].) Let A be a maximal monotone linear operator in a complex Hilbert space
V x H and assume that

(a) A has a compact resolvent;
(b) A does not have purely imaginary eigenvalues.-
Then problem (1.7),(1.8) is strongly stable.

The proof of (a) follows from the compactness of the imbedding D(A) C V x H, a consequence
of Rellich’s Theorem. For the proof of (b), let Uy = (uy,us,v1,v9) be an eigenfunction of A
having a purely imaginary eigenvalue iw:

AUp = iwly, weR, Uye D(A).

Using the definition of .4, it follows that

—v1 = fwus, in Q, (3.1)

—vg = Wi, in €, (3.2)

—Auy + (uy — uz) = fwyy, in 9, (3.3)
—Auy + (uz — w1) = twvsg, n 9, (3.4)
uy = 0, on [y, (3.5)

ug = 0, on [, (3.6)

up = 0, on T, (3.7)

% +aus +1v9 =0, on I'y. (3.8)

av
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Furthermore, U(t) := £l has obviously constant energy

1

E(t) = 51U

and therefore, £’ = 0, that is, vo =0 on I';.
If w # 0, we conclude by Carleman’s unique continuation theorem (cf., for example, [9]) that
1y = us in €. Taking into account (3.1),(3.2), we obtain that vy = vp in Q, and therefore, Uy = 0.
If w = 0, then multiplying (3.3) with u1, integrating by parts in {2, we obtain that

/ul(ul—uz)d:ﬂJr/ |V’li1|2df§:0.
Q 7]

Similariy, we also have

/uz(ul — up) dz +/ [Vug|? +f aluz|* dy = 0.
) Q Ty

Hence, [[(11,u2)|/3, = 0, and therefore, 4y = us = 0, and we conclude that v; = vy in Q. Thus,
we have Uy = 0.
It foliows that A cannot have purely imaginary eigenvalues.

4. NONUNIFORM STABILITY
For simplicity, we assume that ¢ = (0,1) and e = 0. The problem

(A = A (w1, iy, 01, 82) T =0

is equivalent to

iy — Aup = 0, (4.1)

u) —auy — Ay +aovy =90, (4.2)
By — Avy = 0, (4.3)

ouy + v —avy — Ay =0, (4.4)
#1(0) = u1{l) =0, (4.5)

v1(0) =0, vi(l) = —ia(1). (4.6)

If we set

(3) = (o) w

and owing to the prool of Theorem 2, we can easily deduce that F'(t) = 0, and hence, (Z:) is a
solution to
ul — Xy = aluy — ), (4.8)
v — X% = alvy —u), (4.9)
u1(0) = w, (1) =0, (4.10)
v1(0) = vy (1) = vi{1) = 0. (4.11)
Setting @ = © + v, ¢ = u — v, (4.8)—{4.11) can be rewritten as
¢" —A¢ =0, (4.12)
P — (A* + 2a) =0, (4.13)

#(0) = ¢(1) = %(0) = (1) = 0. (4.14)



290 M. AASSILA

'The solutions to the above equations satisfying the boundary conditions at & = 0 are of the form

¢(z) = cysinh Az, ¥(z) = casinh /A2 + 2a x.

In order to satisfy the boundary conditions at 2 = 1, with ¢; # 0 and ¢z # 0, we should have

A=inm, VA +20=1imn, n,meN,

Hence, we deduce that if o = (1/2)(n? — m?)n?, then the system has an eigenvalue A = inw, and
consequently, it is not uniformly exponentially stable.
REMARKS.

(1} The results of Theorems 1-3 hold true if we assume that u satisfies the Neumann boundary

condition on I';.
(2) Theorem 2 remains valid (with a simple modification of the proof) for the nonlinear case if
the function g is locally Lipschitz continuous and if it satisfies the following two conditions:

g(z) #0, ifz#0,
Je>0:|glx)] €1+ x|V, vrelR
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