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Abstract

Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria
of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three
computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm
optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima
of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a
game. The performance of the considered computational intelligence methods on this problem is investigated using
multistart and deflection.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Game theory is a mathematical theory of socio-economic phenomena exhibiting interaction among
decision-makers, calledplayers, whose actions affect each other. The fundamental assumptions that
underlie the theory are that players pursue well-defined exogenous objectives and take into account
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their knowledge, or expectations, of other players’ behavior[17]. The theory has been so far applied in
the fields of economics, political science, evolutionary biology, computer science, statistics, accounting,
social psychology, law, and branches of philosophy such as epistemology and ethics[1].

A gameis a model of strategic interaction among a number of players, which includes the constraints
on the actions that players can take and the players’ interests, but does not specify the actions that players
do take. Asolutionis a systematic description of the outcomes that may emerge in a game[17]. In this
paper we consider only the family ofstrategic, ornormal form, games. The most commonly encountered
solution concept in game theory is that ofNash equilibrium[15,16]. This notion captures a steady state
of the play of a strategic game, in which each player holds correct expectations concerning the other
players’ behavior and acts rationally.

The problem of detecting the Nash equilibria of a finite strategic game admits a number of alternative
formulations, yet computing such solutions remains a challenging task up-to-date (for a comprehensive
review on algorithms to compute equilibria ofn-person games see[13], for a survey of algorithms
for 2-player games see[28]). Furthermore, an algorithm that computes a single Nash equilibrium is
unsatisfactory for many applications. Even if the resulting equilibrium is perfect, or satisfies some other
criterion posed in the literature on refinements of Nash equilibrium, we cannot eliminate the possibility
that other, more salient equilibria exist[13].

The problem of computing a Nash equilibrium can be formulated as a global optimization problem
[12]. This formulation allows us to consider three computational intelligence methods, namely, covariance
matrix adaptation evolution strategies (CMA-ES), particle swarm optimization (PSO), and differential
evolution (DE), to detect Nash equilibria. CMA-ES, PSO and DE are stochastic optimization methods
capable of handling nondifferentiable, nonlinear and multimodal objective functions. They exploit a
population of potential solutions to probe the search space synchronously. Each member of the population
adapts its position towards the most promising regions of the function’s landscape, characterized, in the
case of minimization, by lower function values. Incorporatingmultistart [30] or deflection[11], more
than one global minima of the objective function can be obtained.

The remaining paper is organized as follows: Section 2 is devoted to a brief exposition of basic concepts
of game theory and the formulation of the problem. In Section 3, the computational intelligence methods
considered, as well as, the techniques employed to compute more than one minimizers of a function, are
described. Section 4 outlines the proposed algorithmic scheme and discusses the experimental results.
The paper ends with conclusions in Section 5.

2. Notation and problem formulation

2.1. Strategic games and Nash equilibrium

A finite strategic game, � = 〈(N), (Si), (ui)〉, is defined by[17],

• a finite setN = {1, . . . , N} of players,
• for each playeri ∈ N, a set of actions, pure strategies,Si = {si1, . . . , simi },• for each playeri ∈ N, apayoff function, ui : S → R, is also defined, whereS = S1 × S2 × . . .× SN

is the Cartesian product of all setsSi .
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Next, we give the notation that will be used in the paper. The following is based on[13]. Let Pi be
the set of real valued functions onSi . The notationpij = pi(sij ), is used for the elementspi ∈ Pi .
Let alsoP = ×i∈NPi andm = ∑

i∈Nmi . ThenP is isomorphic toRm. We denote elements inP by
p = (p1, p2, . . . , pN), wherepi = (pi1, pi2, . . . , pimi ) ∈ Pi . If p ∈ P, andp′

i ∈ Pi , then(p′
i , p−i)

stands for the elementq ∈ P that satisfies,qi = p′
i andqi = pj for j �= i.

Now let �i be the set of probability measures onSi . We define� = ×i∈N �i , so� ⊆ Rm. Thus, the
elementspi ∈ �i are real valued functions onSi , pi : Si → R and it holds that,

∑
sij∈Si

pi(sij )= 1, pi(sij )�0, ∀sij ∈ Si.

We use the abusive notationsij to denote the strategypi ∈ �i with pij =1. Hence, the notation(sij , p−i)
represents the strategy where playeri adopts the pure strategysij , and all the other players adopt their
components ofp.

The payoff functionu is extended to have domainRm by the rule,

ui(p)=
∑
s∈S
p(s)ui(s), (1)

p(s)=
∏
i∈N

pi(si). (2)

Definition 1. A strategy profile,p∗ = (p∗
1, p

∗
2, . . . , p

∗
N) ∈ � is aNash equilibriumif p∗ ∈ � and for all

i ∈ N and allpi ∈ �i , ui(pi, p∗−i)�ui(p∗).

An immediate implication of the above definition is that for a strategy profilep∗ to be a Nash equilib-
rium, it must be that no playeri has an action yielding a payoff that he strictly prefers to the payoff he
receives by choosingp∗

i , assuming that every other playerj chooses his equilibrium actionp∗
j . In other

words, no player can profitably deviate, given the actions of other players.

2.2. Problem formulation

As previously mentioned, the problem of finding a Nash equilibrium of a normal form game can be
formulated as a problem of detecting the global minimum of a real valued function[12]. To this end,
three functions,x, z andg : P → Rm, are defined. For anyp ∈ P, i ∈ N andsij ∈ Si , define theij th
component as,

xij (p)=ui(sij , p−i), (3)
zij (p)=xij (p)− ui(p), (4)
gij (p)= max[zij (p),0]. (5)

Now, we define the real valued functionv : � → R, by,

v(p)=
∑
i∈N

∑
1�j �mi

[gij (p)]2. (6)
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Functionv is continuous, differentiable, and satisfies the inequalityv(p)�0, for allp ∈ �. Furthermore,
p∗ is a Nash equilibrium, if and only if, it is a global minimum ofv, i.e.v(p∗)= 0 [12,13].

3. Computational intelligence methods considered

3.1. Covariance matrix adaptation evolution strategies

Evolution strategies (ES) are population-based search algorithms developed by Rechenberg and Schwe-
fel [22–25]. ES exploit a population of� individuals to probe the search space. At each iteration of the
algorithm,� offsprings are produced by stochastic variation, called mutation, of recombinations of a set
of individuals (called theparents) from the current population. Mutation is typically carried out by adding
a realization of a normally distributed random vector. After the creation of the offspring individuals, a
selection phase takes place, where either the� best individuals among the offspring population, or the�
best individuals among both the parent and the offspring populations are selected to form the population
of the next generation. These two selection schemes are denoted as(�, �)-ES and(�+�)-ES, respectively.

ES use a set of parameters, calledstrategy parameters, to parameterize the normal distribution used
in the mutation procedure. These parameters can either be fixed, or evolve during the evolution process
resulting in self-adaptive ES[2]. Clearly, the parameters of the normal distribution play an important
role in the performance of the ES algorithm[7]. The adaptation of the strategy parameters in ES usually
takes place within the concept ofmutative strategy parameter control(MSC). In this context, strategy
parameters are mutated and search points are subsequently generated by means of this mutated strategy
parameter setting.

Covariance matrix adaptation evolution strategies (CMA-ES) have been developed by Hansen and
Ostermeier[6,7]. CMA-ES explicitly realize the objective of MSC, which is to favor strategy parameter
settings that produce individuals that are selected (in the minimization framework, this implies indi-
viduals with lower function values). Instead of utilizing selection information from a single generation
step, CMA-ES utilize a whole path taken by the population over a number of generations. Hansen and
Ostermeier call such pathsevolution paths. If successively selected mutation steps are parallel correlated,
the evolution path will be comparatively long, and vice versa if successively selected mutation steps are
anti–parallel correlated. An evolution path is calculated through an iterative process by weighted sum-
mation of successively selected mutation steps (cf. Eq. (9)). Moreover, CMA-ES implements a principal
component analysis of the previously selected mutation steps to determine the new mutation distribution.
An advantage of this approach is that it renders the adaptation mechanism inherently independent of the
coordinate system[7].

The proposed scheme for CMA-ES is(�W, �), where�W denotes weighted recombination from all
� individuals of the parent population. CMA-ES exploit a set of parameters,pc,G ∈ Rn, CG ∈ Rn×n,
p�,G ∈ Rn, and�G ∈ R+, whereG denotes the generation number. The parameters are initialized as
follows:pc,0=p�,0=0 andC0=I (the unity matrix), while�0 and the initial weighted mean of the� parent
individuals,〈X〉W,0, have to be chosen problem dependent[7]. The offsprings,Xk,G+1, k= 1, . . . , �, are
then determined by the equation,

Xk,G+1 = 〈X〉W,G + �G BGDGzk,G+1︸ ︷︷ ︸
∼N(0,CG)

,
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whereN(0, CG) denotes the Gaussian distribution with zero mean and covariance matrixCG, and,

〈X〉W,G = 1∑�
i=1wi

�∑
i=1

wiXi:�,G, wi ∈ R+,

with i : � denoting theith best individual, is the weighted mean of the� best individuals at generation
G; �G ∈ R+ is the step size;zk,G+1 ∈ Rn are independent realizations of a(0, I )-normally distributed
random vector. The matricesBG andDG are defined by the symmetrical positive definiten×n covariance
matrixCG, as follows[7],

CG = BGDG(BGDG)� = BG(DG)2B�
G.

This is actually a singular value decomposition ofCG. Thus, the matrixDG is ann× n diagonal matrix
with its diagonal elements being equal to the square roots of the eigenvalues ofCG, while,BG is ann×n
orthogonal matrix that determines the coordinate system, where the scaling withDG takes place and its
columns are the normalized eigenvectors ofCG. The matrixCG is updated by means of the evolution
pathpc,G+1,

pc,G+1 = (1 − cc)pc,G + cuc cwBGDG〈z〉W,G+1, (7)

CG+1 = (1 − ccov)CG + ccovpc,G+1p
�
c,G+1, (8)

where,pc,G stands for the weighted differences of points〈x〉W; cc ∈ [0,1] determines the cumulation
time forpc; cuc =√

cc(2 − cc) normalizes the variance of thepc,

cW =
∑�
i=1wi√∑�
i=1w

2
i

, 〈z〉W,G+1 = 1∑�
i=1wi

�∑
i=1

wizi:�,G+1,

andccov ∈ [0,1] determines the change rate of the matrixC. The evolution of the global step-size�G is
determined by a “conjugate” evolution path,p�,G+1,

p�,G+1 = (1 − c�)p�,G + cu�cWBG〈z〉W,G+1, (9)

�G+1 = �G exp

(
1

d�

‖ p�,G+1 ‖ −�̂n
�̂n

)
, (10)

where,c� determines the cumulation time;cu� =√
c�(2 − c�); d� is a damping parameter that affects the

feasible change rate of�G; and�̂n represents the expectation of the length of a(0, I )-normally distributed
random vector.

3.2. Particle swarm optimization

Particle swarm optimization (PSO) belongs to the class of swarm intelligence algorithms. The ideas
that underlie PSO are inspired not by the evolutionary mechanisms encountered in natural selection, but
rather by the social behavior of flocking organisms, such as swarms of birds and fish schools. It has
been observed that the behavior of the individuals that comprise a flock adheres to fundamental rules
like nearest-neighbor velocity matching and acceleration by distance[9,10]. In this respect, it has been
claimed that PSO performs mutation with a conscience[10].
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PSO is a population-based algorithm that exploits a population of individuals, to synchronously probe
promising regions of the search space. In this context, the population is called aswarm, and the individuals
are calledparticles. Each particle moves with an adaptable velocity within the search space, and retains
in its memory the best position it ever encountered. In theglobal variant of PSO the best position ever
attained by all individuals of the swarm is communicated to all the particles. In thelocal variant, each
particle is assigned to a neighborhood consisting of a prespecified number of particles. In this case, the
best position ever attained by the particles that comprise the neighborhood is communicated among them
[10,19].

Assume ann-dimensional search space,S ⊂ Rn, and a swarm consisting of NP particles. Theith
particle is in effect ann-dimensional vectorXi = (xi1, xi2, . . . , xin)

�. The velocity of this particle is
also ann-dimensional vector,Vi = (vi1, vi2, . . . , vin)�. The best previous position encountered by the
ith particle is a point inS, denoted as BPi = (bpi1, bpi2, . . . , bpin)�. Assumeg to be the index of the
particle that attained the best previous position among all the individuals of the swarm, andG to be the
iteration counter.

Then, according to theconstriction factorversion of PSO, the velocity of theith particle of the swarm
is determined by the following equation[3],

Vi,G+1 = �[Vi,G + c1r1(BPi,G −Xi,G)+ c2r2(BPg,G −Xi,G)], (11)

wherei=1,2, . . . ,NP;� is the constriction factor;c1 andc2 are called thecognitiveandsocialparameters,
respectively; andr1, r2 are random numbers uniformly distributed in the interval[0,1]. Alternatively, the
update of the velocity of the particle can be performed through theinertia weightvariant of the algorithm
[4,26,27],

Vi,G+1 = wV i,G + c1r1(BPi,G −Xi,G)+ c2r2(BPg,G −Xi,G), (12)

wherew is called theinertia weight. The position of theith particle in iterationG+ 1 is computed by,

Xi,G+1 =Xi,G + Vi,G+1. (13)

Both the constriction factor,�, and the inertia weight,w, are mechanisms for the control of the magnitude
of velocities. However, there are some major differences regarding the way these two are computed and
applied. The constriction factor is derived analytically through the formula[3],

� = 2�

|2 − � −
√

�2 − 4�|
, (14)

for �>4, where� = c1 + c2, and� = 1. Different configurations of�, as well as a thorough theoretical
analysis of the derivation of Eq. (14), can be found in[3,31]. The inertia weight,w, in Eq. (12), is
employed to manipulate the impact of the previous history of velocities on the current velocity. Therefore,
w resolves the trade-off between the global and local exploration ability of the swarm. A large inertia
weight encourages global exploration (visiting unexplored areas of the search space), while a small one
promotes local exploration, i.e. probing the current search area.A suitable value forw provides the desired
balance between the global and local exploration ability of the swarm, and consequently improves the
effectiveness of the algorithm. Therefore, it is preferable to initialize the inertia weight to a large value,
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giving priority to global exploration of the search space, and gradually decrease it, so as to obtain refined
solutions[26,27]. This finding is intuitively very appealing. In conclusion, an initial value ofw around 1.0
and a gradual decline towards 0 is considered a proper choice forw. The initialization of the swarm and the
velocities, is usually performed randomly in the search space, although more sophisticated initialization
techniques can enhance the overall performance of the algorithm[18].

Thorough theoretical investigations of the convergence properties of PSO through analyzing the tra-
jectories of the particles are provided in[3,31]. These studies are based on analyzing initially a simplified
deterministic model of the algorithm in order to provide an understanding about how it probes the search
space, and then continue on to analyze the full stochastic system[3,31]. Generalized models of the al-
gorithm are proposed, and techniques for controlling the convergence properties of the particle system
through the fine-tuning of the parameters are analyzed in[3,31].

3.3. Differential evolution

Storn and Price[29] introduced a novel minimization method, called differential evolution (DE), capa-
ble of handling nondifferentiable, nonlinear and multimodal objective functions. DE exploits apopulation
of NP potential solutions, calledindividuals, that aren-dimensional vectors, to probe the search space.
At each generation,G, of the algorithm three operators, namely,mutation, recombinationandselection,
are performed in order to obtain more accurate approximations to a solution[21]. All individuals are
uniformly initialized in the search space. At the mutation step, for eachi = 1, . . . ,NP, a new mutant
vectorVi,G+1 is generated by combining a number of vectors from the population of the current genera-
tion. Specifically, for each individualXi,G, i = 1, . . . ,NP, a new individualVi,G+1 (mutant individual)
is generated according to one of the following equations,

Vi,G+1=Xbest,G +Q(Xr1,G −Xr2,G), (15)
Vi,G+1=Xr1,G +Q(Xr2,G −Xr3,G), (16)
Vi,G+1=Xi,G +Q(Xbest,G −Xi,G)+Q(Xr1,G −Xr2,G), (17)
Vi,G+1=Xbest,G +Q(Xr1,G −Xr2,G)+Q(Xr3,G −Xr4,G), (18)
Vi,G+1=Xr1,G +Q(Xr2,G −Xr3,G)+Q(Xr4,G −Xr5,G), (19)
Vi,G+1=(Xr1,G +Xr2,G +Xr3,G)/3 + (p2 − p1)(Xr1,G −Xr2,G)

+ (p3 − p2)(Xr2,G −Xr3,G)+ (p1 − p3)(Xr3,G −Xr1,G), (20)

whereXbest,G denotes the best individual of the previous generation;Q>0 is a real parameter, called
mutation constant, which controls the amplification of the difference between two individuals so as to
avoid the stagnation of the search process; andr1, r2, r3, r4, r5 ∈ {1,2, . . . ,NP}, are random integers
mutually different and different from the running indexi. The mutation strategy of Eq. (20) is known
as thetrigonometric mutation strategy, and has been recently proposed in[5]. This strategy performs a
mutation according to Eq. (20) with probability	Q and a mutation according to Eq. (16) with probability
(1 − 	Q). The values ofpi , i ∈ {1,2,3} andp′ are obtained through the following equations,

p1=|f (Xr1,G)|/p′,
p2=|f (Xr2,G)|/p′,
p3=|f (Xr3,G)|/p′,
p′=|f (Xr1,G)| + |f (Xr2,G)| + |f (Xr3,G)|.
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At this point it is worth noting that performance differences caused by the selection of the mutation
strategy for DE will be provided in Section 4.

The resulting mutant vectors are mixed with a predetermined vector, calledtargetvector. This operation
is calledrecombination(crossover), and it gives rise to thetrial vector. At the recombination step, for
each componentj = 1,2, ..., n, of the mutant vector, a random numberr ∈ [0,1] is generated. Ifr is
smaller than the predefinedrecombination constant, CR ∈ [0,1], thejth component of the mutant vector
Vi,G+1 becomes thejth component of the trial vector. Otherwise, thejth component of the target vector,
Xi,G, is selected as thejth component of the trial vector, which is defined by,

Ui,G+1 = (ui1,G+1, ui2,G+1, . . . , uin,G+1),

where

uij,G+1 =
{
vij,G+1, if (randb(j)�CR) or j = rnbr(i),
xij,G, if (randb(j)>CR) andj �= rnbr(i),

wherej = 1,2, . . . , n; randb(j) is thejth evaluation of a uniform random number generator within the
range[0,1]; and rnbr(i) is a randomly chosen index from the set{1,2, . . . , n}.

Finally, at the selection step, the trial vector obtained after the recombination step is accepted for the
next generation, if and only if, it yields a reduction of the value of the objective function,f (·), relative to
the previous vector,Xi,G; if not,Xi,G is retained,

Xi,G+1 =
{
Ui,G+1, if f (Ui,G+1)< f (Xi,G),

Xi,G, otherwise.

3.4. Detecting more than one minimizers

The most simple technique to compute more than one minimizers of a function ismultistart [30]. In
this approach, as soon as a minimizer is detected the algorithm is reinitialized in the search space. This
approach, however, does not guarantee that the algorithm will not converge to one of the previously
detected minimizers.

Thedeflectiontechnique, proposed in[11], is an alternative technique that allows multiple minimizers
to be obtained in a single run of an optimization algorithm. Letf : S → R, S ⊂ Rn, be the original
objective function under consideration. Let alsox∗

i , i=1, . . . , m, bemminimizers off. Then, thedeflection
technique defines a new functionF(x) as follows,

F(x)= T1(x; x1, �1)
−1 · · · Tm(x; xm, �m)−1f (x), (21)

where�i , i = 1, . . . , m, are relaxation parameters, andT1, . . . , Tm, are appropriate functions in the sense
that the resulting functionF has exactly the same minimizers asf, except at pointsx∗

1, . . . , x
∗
m. The

functions,

Ti(x; xi, �i)= tanh(�i ‖ x − x∗
i ‖), i = 1, . . . , m, (22)

satisfy this property, known as thedeflection property, as shown in[11]. Therefore, when the optimization
algorithm detects a minimizer,x∗

i , of the objective function, the algorithm is restarted and an additional
Ti(x; xi, �i) is included in the objective functionF(x).
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Alternative configurations of the parameter� result in different shapes of the transformed function.
For larger values of� the effect of the deflection technique on the objective function is relatively mild.
On the other hand, using�<1 results in a functionF with considerably larger function values in the
neighborhood of the deflected minimizer. Deflection has been effectively used with PSO for detecting
periodic orbits of nonlinear mappings[20].

4. The proposed approach and experimental results

4.1. Proposed algorithm

The proposed algorithm for detecting several Nash equilibria, can be summarized in the following
three steps:

Step1: Apply one of the aforementioned optimization methods to detect a global minimizer (Nash
equilibrium) of the objective function.

Step2: Once a global minimizer is detected store it.
Step3: If the number of restarts allowed is not exceeded, apply multistart or deflection and go to

Step 1. Otherwise, terminate the algorithm and report the results.

4.2. Test problems

The performance of the algorithm on finding Nash equilibria, was studied on six benchmark problems
which are included in the latest stable version (ver. 0.97.0.5) of the state-of-the-art GAMBIT software
suite[14] (GAMBIT is freely available fromhttp://econweb.tamu.edu/gambit/ ). All games
were characterized by more than one Nash equilibria. In all problems, the main goal was to detect several
(and if possible all the) equilibria. To obtain the list of Nash equilibria of each game, the GAMBIT routine
PolEnumSolve was used. Next, the test problems used are reported. For games with more than three
players the payoff matrices are not reported due to space limitations. The name of the GAMBIT file that
corresponds to each game is mentioned so that the reader can obtain all the information about these games
from GAMBIT.

Test Problem 1. This is a four-person, normal form game, with 2 pure strategies available to each player.
The game is characterized by three equilibria. The GAMBIT file that corresponds to this game is named
2x2x2x2.nfg .

Test Problem 2. This is another four-person, normal form game, with 2 pure strategies available to each
player. The game is characterized by five mixed equilibria. The GAMBIT file that corresponds to this
game is namedg3.nfg .

Test Problem 3. This is a five player game, with two pure strategies available to each player. The
game is characterized by five Nash equilibria. The GAMBIT file that corresponds to this game is named
2x2x2x2x2.nfg .

Test Problem 4. This is a normal form game with three players and two pure strategies available to each
player[12]. The payoffs of this game are given inTable 1. This game has a total of 9 Nash equilibria,

http://econweb.tamu.edu/gambit/
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Table 1
Payoff matrices for Test Problem 4

s31 s21 s22 s32 s21 s22

s11 9,8,12 0,0,0 s11 0,0,0 3,4,6
s12 0,0,0 9,8,2 s12 3,4,4 0,0,0

Table 2
Payoff matrix for Test Problem 6

s21 s22 s23 s24

s11 3,2 0,0 0,0 0,0
s12 0,0 2,2 0,0 0,0
s13 0,0 0,0 1,4 0,0
s14 0,0 0,0 0,0 4,7

Table 3
Number of restarts for each test problem

Test problem 1 2 3 4 5 6
Restarts 8 10 10 15 18 20

four pure strategy equilibria, three mixed strategy equilibria, and and two full support strategy equilibria.
The GAMBIT file that corresponds to this game is2x2x2.nfg .

TestProblem5. This is a three player coordination game with three strategies available to each player.The
game is characterized by 13 equilibria.The GAMBIT file that corresponds to this game iscoord333.nfg .

Test Problem 6. This is a two-player game with four strategies available to each player. This game has a
total of 15 Nash equilibria. The GAMBIT file that corresponds to this game iscoord4.nfg (Table 2).

4.3. Experimental setup

Numerical experiments were performed using a DE, a PSO, and a CMA-ES, C++ Interface developed
under the Fedora Linux 1.0 operating system using the GNU compiler collection (gcc) version 3.3.2. For
the singular value decomposition performed by the CMA-ES algorithm the C Linear Algebra PACKage
(CLAPACK) 3.0 and the Automatically Tuned Linear Algebra Software (ATLAS) 3.4.2 libraries were
used.

For each test problem, all the algorithms were allowed to perform a number of restarts depending on
the number of Nash equilibria of the game under consideration. Each algorithm was allowed to perform
a prespecified number of iterations per restart. The stopping criterion employed was to achieve a function
value less than or equal to 10−8. Otherwise, the algorithm was reinitialized when the maximum number
of iterations per restart was reached. The number of restarts for each test problem is illustrated in
Table 3. When the deflection technique was used, the values of the relaxation parameters,�i of
Eq. (21), were set to 1.
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Table 4
Default parameter setting for the CMA-ES algorithm[7]

� � wi=1,...,� cc ccov c� d�

4 + �3 ln(n)� ��/2� ln( �+1
2 )− ln(i) 4

n+4
2

(n+√
2)2

4
n+4 c−1

� + 1

Table 5
Population size and iterations per restart for DE and PSO

Problem Pop. size Iterations

TP1 20 1000
TP2 20 1000
TP3 50 2000
TP4 10 1000
TP5 20 1000
TP6 10 1000

For each point,X, to be a Nash equilibrium of a game it must be a minimizer of Eq. (6) andX ∈ �,
as defined in Section 2. To evaluate the function value of each individual,X, we use the following
normalization:

x
p
ij = ‖ xij ‖∑mi

j=1 ‖ xij ‖ ,

with i ∈ N, andj = 1, . . . , mi , which ensures thatXp ∈ �. Note that this normalization is used only to
compute the objective function of Eq. (6) and not to constrain the populations to lie in�. Our experience
indicates that if the normalized individuals,Xp, replace the original individuals,X, then the diversity of
the population decreases drastically and this in turn causes the premature convergence of the considered
methods.

For the CMA-ES, the default parameter setup suggested in[7] was adopted. This setup is illustrated
in Table 4. The initial component-wise standard deviation of the mutation step,�0, was set to 1.0 for all
games. Moreover, the maximum number of generations per restart was set to 1000.

For the DE algorithm, the values for the mutation constant,Q, and the recombination constant CR were
set to 0.7 and 0.9, respectively, following the suggestions in[29]. Concerning the trigonometric mutation
strategy defined by Eq. (20), the value of the parameter	Q was set to 0.1 [5]. Population size, as well as,
the number of generations per restart were problem dependent. The setup used for these parameters was
the same for DE and PSO and their values are reported inTable 5.

Concerning the PSO method, the global variant of the algorithm was considered because it exhibited
faster convergence compared to the local variant. In contrast to DE and CMA-ES, the particles were
constrained in the box[−1,1]n, wheren stands for the dimension of the problem, in order to avoid
possible velocities explosion. In the constriction factor version, the values of thec1 andc2 parameters
were set to 2.05, while � was set to 0.729 [3]. An upper bound,Vmax, on the absolute value of the
velocities of the particles was used and set to 1. In the inertia weight version, the inertia weightw was
initialized to 1.0 and it gradually declined towards zero for the 75% of the available iterations. Swarm
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Table 6
Results for Test Problem 1 with deflection

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 2.97 0.18 2 3 8830.08 2048.87 6644.00 17638.00
DE1 2.97 0.18 2 3 21297.67 6006.98 11493.33 44170.00
DE2 2.93 0.25 2 3 25512.56 6892.15 19706.67 49220.00
DE3 2.97 0.18 2 3 22237.22 6631.78 17160.00 52670.00
DE4 3.00 0.00 3 3 21990.89 3364.67 17406.67 29346.67
DE5 3.00 0.00 3 3 25781.78 3448.10 21273.33 32780.00
DE6 3.00 0.00 3 3 23996.67 3220.54 20340.00 30146.67
PSOc 2.97 0.18 2 3 23219.00 5208.07 18020.00 45530.00
PSOi 3.00 0.00 3 3 30966.67 2170.56 27860.00 34140.00

Table 7
Results for Test Problem 1 with multistart

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 2.57 0.50 2 3 3344.69 731.87 2234.00 4642.50
DE1 2.43 0.50 2 3 4796.33 1124.29 3400.00 7050.00
DE2 2.70 0.47 2 3 8708.00 2551.35 6046.67 13970.00
DE3 2.43 0.50 2 3 6220.22 1556.19 3793.33 10430.00
DE4 2.77 0.43 2 3 5085.78 1330.14 3660.00 7970.00
DE5 2.57 0.50 2 3 9749.89 2965.66 5793.33 15820.00
DE6 2.70 0.47 2 3 9478.67 2654.48 6793.33 15290.00
PSOc 2.67 0.48 2 3 6265.56 1849.13 4293.33 10020.00
PSOi 2.47 0.51 2 3 23998.56 5630.68 16986.67 32030.00

size and generations per restart were problem dependent and the setup used in the numerical experiments
is summarized inTable 5.

4.4. Presentation of the results

To evaluate the comparative performance of CMA-ES, DE, and PSO, on each test problem, we com-
pared the performance of each algorithm with respect to the number of (different) Nash equilibria detected,
as well as, with respect to the mean number of function evaluation required to compute a different Nash
equilibrium. Moreover, on each test problem we investigated the performance differences caused by the
choice between the deflection and the multistart technique. For each test problem, and for each choice
between deflection and restart, 30 numerical experiments were performed for each of the considered
algorithms. All results are reported inTables 6–17. Each table reports the mean, the standard devia-
tion (�), the minimum (min), and maximum (max) number of different Nash equilibria detected, and
the corresponding values for the number of function evaluations required to compute a distinct Nash
equilibrium.
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Table 8
Results for Test Problem 2 with deflection

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 4.27 0.45 4 5 9588.79 1395.51 6927.80 11692.50
DE1 4.73 0.45 4 5 22657.00 3933.48 15432.00 29865.00
DE2 4.30 0.47 4 5 32609.63 4529.02 24388.00 40230.00
DE3 4.63 0.49 4 5 25435.27 4164.88 19844.00 32955.00
DE4 4.33 0.48 4 5 28687.27 4971.97 19860.00 36610.00
DE5 0.87 0.51 0 2 — — — —
DE6 4.47 0.51 4 5 34362.23 5270.18 26620.00 43985.00
PSOc 4.67 0.48 4 5 24504.73 4703.46 19288.00 34285.00
PSOi 4.90 0.31 4 5 30276.07 2628.65 28120.00 37910.00

Table 9
Results for Test Problem 2 with multistart

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 3.33 0.76 2 5 3090.94 736.69 1991.40 4873.50
DE1 3.37 0.85 2 5 7069.79 2063.60 4072.00 11046.67
DE2 2.73 0.74 1 4 35206.72 16168.87 17480.00 97740.00
DE3 2.83 0.65 2 4 15888.28 6360.15 7766.67 29800.00
DE4 3.30 0.84 2 5 29414.12 13156.15 7408.00 75290.00
DE5 0.97 0.41 0 2 — — — —
DE6 2.87 0.73 2 4 43101.39 14224.91 25795.00 71750.00
PSOc 3.40 0.86 2 5 11973.08 3660.57 7348.00 20610.00
PSOi 3.23 0.73 2 5 39025.94 10225.40 24516.00 69670.00

Table 10
Results for Test Problem 3 with deflection

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 3.03 0.89 2 5 19778.25 7116.49 9223.80 30626.50
DE1 3.10 0.55 2 4 218134.03 62594.70 118787.50 369475.00
DE2 1.20 0.71 0 3 — — — —
DE3 3.17 0.75 2 4 227278.33 78168.94 137712.50 377850.00
DE4 3.03 0.72 2 5 253272.33 85881.17 108470.00 432625.00
DE5 1.63 0.76 0 3 — — — —
DE6 2.57 0.82 1 4 376246.53 207052.30 160337.50 941800.00
PSOc 3.00 0.69 2 4 255346.25 91762.29 107550.00 422075.00
PSOi 3.37 0.72 2 5 255715.97 70688.00 139450.00 451250.00
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Table 11
Results for Test Problem 3 with multistart

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 2.43 0.90 1 4 13076.37 6503.76 4426.50 28458.00
DE1 2.40 0.81 1 4 57805.69 59371.86 17075.00 342550.00
DE2 1.67 0.71 0 3 — — — —
DE3 2.37 0.72 1 4 66788.47 36564.10 20487.50 189000.00
DE4 2.77 0.68 1 4 74955.14 48618.67 24600.00 252400.00
DE5 1.47 0.68 0 3 — — — —
DE6 2.50 0.82 1 4 340859.44 222252.48 156475.00 936450.00
PSOc 2.50 0.63 2 4 78288.75 33132.98 38600.00 157825.00
PSOi 2.30 0.60 1 3 226939.72 78364.01 148750.00 495450.00

Table 12
Results for Test Problem 4 with deflection

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 7.37 0.93 6 9 4871.85 1597.16 2091.00 8202.50
DE1 6.70 1.09 4 9 8977.96 3176.34 4145.00 17247.50
DE2 7.17 1.05 5 9 9783.33 2956.87 5838.75 17442.00
DE3 7.27 0.87 6 9 9983.27 2640.40 6037.50 15616.67
DE4 7.90 0.76 7 9 7036.02 1814.05 3757.78 11135.71
DE5 6.80 1.13 4 9 14986.52 4051.78 8363.33 30562.50
DE6 7.57 0.90 5 9 9568.29 2586.73 6322.22 18076.00
PSOc 7.03 0.76 5 8 8569.21 1838.82 5630.00 14886.00
PSOi 6.90 0.96 5 8 15026.70 3084.20 10991.25 21912.00

Table 13
Results for Test Problem 4 with multistart

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 2.70 0.65 2 4 3194.14 715.61 2052.75 4408.50
DE1 2.73 0.64 2 4 6281.19 3456.75 2752.50 14680.00
DE2 2.77 0.73 2 4 11211.28 3456.54 6526.67 18205.00
DE3 2.53 0.57 2 4 11934.17 4423.44 6950.00 23745.00
DE4 3.03 0.85 2 4 11633.22 4497.53 6105.00 26060.00
DE5 2.70 0.70 2 4 37830.64 11964.14 19560.00 65805.00
DE6 2.80 0.81 2 5 16947.42 6346.54 8095.00 32090.00
PSOc 2.93 0.58 2 4 7455.39 1701.89 5442.50 10565.00
PSOi 2.07 0.45 1 4 40458.78 9647.80 18715.00 82550.00
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Table 14
Results for Test Problem 5 with deflection

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 10.30 0.60 9 12 2303.75 490.27 1556.82 3482.10
DE1 10.40 0.62 10 12 4798.46 1023.89 3511.67 8140.00
DE2 10.57 0.63 10 12 9279.43 1045.27 7665.00 11436.00
DE3 10.47 0.57 10 12 5697.87 1306.27 4121.82 10224.00
DE4 9.10 1.06 7 10 21072.97 7679.69 9866.00 36940.00
DE5 0.73 1.53 0 8 — — — —
DE6 10.17 0.38 10 11 17023.22 3706.66 9872.73 22782.00
PSOc 10.53 0.78 9 12 5598.80 844.73 4290.00 7450.00
PSOi 10.50 0.51 10 11 15116.76 1009.87 13783.64 16912.00

Table 15
Results for Test Problem 5 with multistart

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 1.77 0.86 1 4 7753.11 3252.50 2863.75 11882.00
DE1 1.30 0.53 1 3 39076.33 11198.85 14360.00 51900.00
DE2 1.70 0.65 1 3 97813.78 41449.85 41866.67 167720.00
DE3 1.33 0.55 1 3 62016.11 18262.06 21433.33 91640.00
DE4 1.93 0.78 1 4 149817.17 75240.08 53565.00 310060.00
DE5 0.27 0.52 0 2 — — — —
DE6 1.53 0.82 1 4 203752.00 74901.93 60800.00 289700.00
PSOc 1.40 0.50 1 2 33819.00 10338.13 20350.00 44820.00
PSOi 1.23 0.43 1 2 134998.00 32606.27 76110.00 160380.00

Table 16
Results for Test Problem 6 with deflection

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 13.93 0.58 13 15 2200.47 269.03 1671.21 2787.13
DE1 13.90 0.71 12 15 3863.48 594.87 2939.33 5440.00
DE2 13.80 0.48 13 15 5217.48 609.81 4358.57 6937.69
DE3 13.97 0.61 13 15 5835.41 917.29 4361.43 7510.00
DE4 13.70 0.75 12 15 5054.90 595.60 4272.14 6483.08
DE5 11.87 1.14 8 13 9522.17 2106.37 7140.00 18767.50
DE6 13.60 0.67 12 15 5358.69 682.98 4482.14 7304.62
PSOc 14.20 0.89 12 15 3047.69 347.04 2540.00 3834.62
PSOi 14.33 0.48 14 15 6815.01 237.90 6276.00 7197.86
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Table 17
Results for Test Problem 6 with multistart

Method Nash equilibria Function evaluations per equilibrium

Mean � Min Max Mean � Min Max

CMA-ES 5.90 0.96 4 8 2990.22 531.53 2142.38 4549.00
DE1 6.33 1.12 4 9 6613.78 1598.33 4415.00 12607.50
DE2 6.43 1.28 4 9 11267.65 3036.64 6545.56 18670.00
DE3 5.47 1.38 2 8 14720.26 6609.17 6441.25 41225.00
DE4 6.97 1.16 4 9 12314.96 3164.66 8338.89 20575.00
DE5 6.87 1.25 5 9 20609.33 4637.34 14332.22 32652.00
DE6 6.33 1.03 5 8 12927.57 2583.13 9397.50 18496.00
PSOc 5.33 1.12 2 7 6499.35 2123.42 4395.71 15865.00
PSOi 4.60 1.07 2 6 21526.97 7461.19 14948.33 46365.00
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Fig. 1. Nash equilibria detected with deflection (left) and multistart (right) for TP1.

To obtain a clearer image of the statistical properties of the obtained results, we also provide boxplots,
in Figs. 1–6for the detected Nash equilibria, and inFigs. 7–12for the number of function evaluations.
Each box corresponds to an instance of one of the considered algorithms, and it has lines at the lower
quartile, median, and upper quartile values. The whiskers, i.e. the lines extending from each end of the
box, show the extent covered by the remaining values. Outliers appear beyond the ends of the whiskers,
and they are denoted with crosses. Notches represent a confidence interval for the medians for box to box
comparison.

As we can see fromTable 6, the DE variants 4, 5, and 6, as well as the inertia weight version of
PSO (PSOi) are capable of detecting all 3 Nash equilibria of Test Problem 1 in every run. Moreover, no
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Fig. 2. Nash equilibria detected with deflection (left) and multistart (right) for TP2.
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Fig. 3. Nash equilibria detected with deflection (left) and multistart (right) for TP3.

algorithm found less than 2 equilibria in a single run. Performing a Kruskal–Wallis statistical test[8] on the
results, the null hypothesis that the median performance of all the algorithms is identical, was not rejected
(p-value equal to 0.634). It is important to note at this point that this hypothesis was rejected in all the
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Fig. 4. Nash equilibria detected with deflection (left) and multistart (right) for TP4.
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Fig. 5. Nash equilibria detected with deflection (left) and multistart (right) for TP5.

other cases. Comparing the results ofTable 6with those ofTable 7we observe that deflection marginally
improves the capability of all the algorithms to compute different minimizers. CMA-ES proved to be
the computationally cheapest method. This finding, which is also valid for all the other test problems,
was expected since in our experimental setting CMA-ES required the smallest number of individuals
compared to DE and PSO.
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Fig. 6. Nash equilibria detected with deflection (left) and multistart (right) for TP6.
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Fig. 7. Function evaluations for deflection (left) and multistart (right) for TP1.

Regarding Test Problem 2, the best performing method with respect to the number of different mini-
mizers detected was PSOi, when deflection was used, and the constriction factor version of PSO (PSOc)
when multistart was used. As can be seen fromTables 8and9, deflection ensured a superior performance
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Fig. 8. Function evaluations for deflection (left) and multistart (right) for TP2.
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Fig. 9. Function evaluations for deflection (left) and multistart (right) for TP3.

than multistart, since all algorithms (with the exception of DE5) managed to compute at least 4 out of 5
equilibria. This is more clearly shown inFig. 2. Function evaluations per equilibrium are not reported for
DE5 since the algorithm was incapable of detecting even one equilibrium in some occasions.
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Fig. 10. Function evaluations for deflection (left) and multistart (right) for TP4.
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Fig. 11. Function evaluations for deflection (left) and multistart (right) for TP5.

Similar results were obtained for Test Problem 3, as shown inTables 10and11. PSOi proved the best
performing method when equipped with deflection. On the other hand, DE4 gave the best results for
multistart. A poor performance was exhibited by DE2 and DE5. On Test Problem 4,Tables 12and13,
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Fig. 12. Function evaluations for deflection (left) and multistart (right) for TP6.

DE4 proved the best performing method when equipped with either deflection or multistart. The same
was observed for Test Problems 5 and 6 with multistart, while for the deflection case, DE2 and PSOi
performed better, respectively.

Overall, the obtained results suggest that incorporating the deflection technique improves significantly
the ability of the considered methods to detect different minimizers, compared to multistart. DE4 exhibits
the best overall performance when multistart is used. When equipped with the deflection technique, the
best performing methods appear to be DE4, PSOi and PSOc. An interesting point to note is that on
this set of problems, the DE variants that exploit the best individual of the population in the mutation
strategy (DE1, DE3, and DE4) overall exhibited a superior performance. In the context of computational
intelligence methods, this property is known as elitism. Finally, the least computationally expensive
method per computed minimizer, was CMA-ES.

5. Conclusions

The concept of Nash equilibrium is central in game theory. In this contribution the effectiveness of
three computational intelligence methods, namely CMA-ES, PSO, and DE, was investigated on the task
of locating and computing the Nash equilibria of finite strategic games. To employ these methods the
global optimization formulation of the problem of computing Nash equilibria was adopted. To detect more
than one Nash equilibria in a single run, the multistart and the deflection techniques for the computation
of more than one global minimizers of a function, were employed.

In all the test problems, the deflection technique enhanced significantly the performance of the consid-
ered methods compared to multistart. This finding becomes more pronounced as the number of equilibria
increases. In most cases, the methods that exploit the best individuals of the current population to produce
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the population of the next generation, tended to exhibit superior performance. Overall, the two versions
of PSO and the DE variants that exploit the best individual in the mutation strategy, exhibited the most
robust behavior with respect to the number of different equilibria detected. The CMA-ES was the least
computationally expensive method per computed minimizer.
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