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THE TUNNEL NUMBER OF THE SUM OF n KNOTS
IS AT LEAST n
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We prove that the tunnel number of the sum of n knots is at least n. ( 1998 Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION

In [5], Norwood showed that tunnel number 1 knots are prime. This led to the more
general conjecture, see for instance [4, Problem 1.70B], that the tunnel number of a sum of
n knots is at least n. Here we prove this conjecture. The idea is to show that the splittig
surface of a Heegard splitting corresponding to a tunnel system realizing the tunnel number
of the sum of n knots intersects each individual knot complement essentially. Then
a sophisticated Euler characteristic argument, based on the idea of untelescoping the
Heegaard splitting, yields the result.

2. PRELIMINARIES

For standard definitions concerning knots, see [1] or [6] and for those concerning
3-manifolds, see [2] or [3].

Definition 1. Let N be a submanifold of M, we denote an open regular neighborhood of
N in M by g (N).

Definition 2. Let K be a knot in S3. Denote the complement of K, S3!g(K), by C(K).

Remark 1. Let K"K
1
dK

2
be the sum of two knots. Then the decomposing sphere

gives rise to a decomposing annulus A properly embedded in C(K) such that
C(K)"C(K

1
)X

A
C(K

2
). If K"K

1
d2dK

n
, then we may assume that the decomposing

spheres are nested, so that C (K)"C(K
1
) X

A1
2X

An~1
C(K

n
).

Definition 3. A ¹unnel system for a knot K is a collection of disjoint arcs
T"t

1
X2Xt

n
properly embedded in C(K) such that C(K)!g(T) is a handlebody. The

tunnel number of K, denoted by t (K), is the least number of arcs required in a tunnel system
for K.

Definition 4. A compression body is a 3-manifold ¼ obtained from a connected closed
orientable surface S by attaching 2-handles to S]M0NLS]I and capping off any resulting
2-sphere boundary components. We denote S]M1N by L

`
¼ and L¼!L

`
¼ by L

~
¼.
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Definition 5. A set of defining disks for a compression body ¼ is a set of disks
MD

1
,2, D

n
N properly embedded in ¼ with LD

i
LL

`
¼ for i"1,2, n such that the result

of cutting ¼ along D
1
X2XD

n
is homeomorphic to L

~
¼]I.

Definition 6. A Heegaard splitting of a 3-manifold M is a decomposition M"»X
S
¼ in

which », ¼ are compression bodies such that »W¼"L
`
»"L

`
¼"S and M"»X¼.

We call S the splitting surface or Heegaard surface.

Definition 7. Let M"»X
S
¼ be an irreducible Heegaard splitting. We may think of

M as being obtained from L
~
»]I by attaching all 1-handles dual to 2-handles in

» followed by all 2-handles in ¼, followed, perhaps, by 3-handles. An untelescoping of
M"»X

S
¼ is a rearrangement of the order in which the 1-handles (of ») and the 2-handles

(dual to the 1-handles of ¼) are attached. This rearrangement is chosen so that M is
decomposed into submanifolds M

1
,2, M

m
, such that M

1
WM

i`1
"F

i
and F

i
is an

incompressible surface in M, and such that the M
i
inherit, from a subcollection of the

original 1-handles and 2-handles, strongly irreducible Heegaard splittings M
1
"

»
1
X

S1
¼

1
,2, M

m
"»

m
X

Sm
¼

m
. Unless M is a lens space or S1]S2, no S

1
,2, S

m
is

a torus. For details see [8,7]. We denote the untelescoping of M"»X
S
¼ by

M"(»
1
X

S1
¼

1
) X

F1
2X

Fm~1
(»

m
X

Sm
¼

m
). For convenience, we will occasionally denote

L
~
»"L

~
»

1
by F

0
.

LEMMA 2. s(S)"+m
i/1

s (S
i
)!&m~1

i/1
s (F

i
).

Proof. Let M"»X
S
¼ be a Heegaard splitting, then

s(S)"s(L
~
»)!2(d(1-handles attached in » )!d(0-handles attached in » ) )

and in an untelescoping,

s(S
i
)"s (L

~
»

i
)!2(d(1-handles attached in »

i
)!d (0-handles attached in »

i
) )

"s (F
i~1

)!2(d(1-handles attached in »
i
)!d (0-handles attached in »

i
) ).

So, since 1-handles are merely reordered in an untelescoping,

s(S )"s (L
~
»

i
)!2

m
+
i/1

d((1-handles attached in »
i
)!d (0-handles attached in »

i
))

"s (L
~
»)!

m
+
i/1

s (F
i~1

)#
m
+
i/1

s(S
i
). K

LEMMA 3. ¸et P be a properly embedded incompressible surface in an irreducible 3-
manifold M and let M"(»

1
X

S1
¼

1
)X

F1
2X

Fm~1
(»

m
X

Sm
¼

m
) be an untelescoping of

a Heegaard splitting M"»X
S
¼. ¹hen (Zm~1

i/1
F
i
)X(Zm

i/1
S
i
) can be isotoped to intersect

P only in curves essential in P.

Remark 4. This lemma demonstrates the advantage of working with untelescopings of
Heegaard splittings rather than Heegaard splittings. It is a deep fact that the splitting
surface of a strongly irreducible Heegaard splitting can be isotoped to intersect a properly
embedded incompressible surface only in curves essential in this surface. This fact is proven
for instance in [9, Lemma 6].
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Proof. Here (Zm~1
i/1

F
i
) may be isotoped to intersect P only in curves essential in P by

a standard innermost disk argument, since both are incompressible. Then P
i
"PWM

i
is

a properly embedded incompressible surface in M
i
. It follows that each S

i
may be isotoped

in M
i
to intersect P

i
only in curves essential in P

i
, by [9, Lemma 6]. Note that the latter

isotopies fix (Zm~1
i/1

F
i
). K

LEMMA 5. ¸et K be a prime knot and let A be an annulus properly embedded in C(K) such
that the components of LA are meridians. ¹hen A is boundary parallel.

Proof. In S3, A can be extended to a sphere by adding two meridian disks. This sphere
intersects K in two points. Since K is prime, one side of the sphere contains a single
unknotted arc. K

LEMMA 6. ¸et P be an incompressible surface in a compression body ¼. ¹hen the result of
cutting ¼ along P is a collection of compression bodies.

Proof. This is [9, Lemma 2]. K

Remark 7. In the above lemma, P need not be connected.

LEMMA 8. ¸et if A is a collection of incompressible annuli in a compression body ¼, then
in any component X of ¼!A, s(L

`
¼WX))s(L

~
¼WX).

Proof. Let D be a set of defining disks for ¼. We argue by induction on the pair
(Ds(L

~
¼ )!s (L

`
¼ ) D, DAWD D). If Ds (L

~
¼)!s (L

`
¼ ) D"0, then (D"0 and) all annuli are

spanning annuli and the result follows.

To complete the inductive step, suppose there is a disk D in D such that DWA"0. The
result of cutting ¼ along D is a compression body ¼ @ with Ds(L

~
¼ @ )!s (L

`
¼ @ ) D(

Ds(L
~
¼)!s(L

`
¼ ) D, or two compression bodies ¼ @ and ¼A with

Ds(L
~
¼ @)!s(L

`
¼ @) D(Ds(L

~
¼)!s (L

`
¼) D and Ds(L

~
¼)!s (L

`
¼A ) D(Ds(L

`
¼) D. The

components of ¼!A can be obtained from the components of ¼ @!A or of ¼ @!A

and ¼A!A by attaching a 1-handle either to a single component or so as to connect two
components. In both cases, the result follows from the inductive hypotheses.

If there is no such disk, consider DWA. If there is an arc a in DWA that is inessential in
A, then we may assume that a is outermost in A, and we may cut the disk D in
D containing a along a and paste on two copies of the disk cut off by a in A to obtain a disk
D@. Replacing D by D@ in D produces a new set of defining disks D@ with DAWD@ D(DAWD D.

If all arcs in DWA are essential inA, let b be an arc in DWA that is outermost in D. Let
A be the annulus in A that gives rise to b. Cutting and pasting A along b and the outermost
disk cut off in D yields a disk D@ disjoint fromA. If D@ is inessential, then A is inessential and
can be ignored. (Since cutting along A does not alter any components or their Euler
characteristics.) If D@ is essential, the result follows as above. This completes the inductive
step. K

3. THE COMBINATORICS

In the following, we consider a tunnel system T, realizing the tunnel number
of K

1
d2dK

n
. We also consider the Heegaard splitting C(K

1
d2dK

n
)"»X

S
¼
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corresponding to T and an untelescoping C(K
1
d2dK

n
)"(»

1
X

S1
¼

1
)X

F1
2X

Fm~1

(»
m
X

Sm
¼

m
) of C(K

1
d2dK

n
)"»X

S
¼. Set M

i
"»

i
X¼

i
. By Remark 1,

C(K
1
d2dK

n
)"C(K

1
)X

A1
X2X

An~1
C(K

n
). We will always assume that

L
~
»

1
"LC(K

1
d2dK

n
) and that Zm~1

i/1
F
i
and Zm~1

i/1
S
i
intersect Zn~1

j/1
A

i
only in curves

essential in Zn~1
j/1

A
i
. We will, furthermore, assume that, subject to these constraints, the

number of intersections of Zm~1
i/1

F
i
and Zm

i/1
S
i
with Zn~1

j/1
A

j
is minimal.

Definition 8. Set S
ij
"S

i
WC(K

j
), F

ij
"F

i
WC(K

j
) and A

ij
"M

i
WA

j
.

LEMMA 9. For all i, j, s (S
ij
) and s (F

ij
) are even.

Proof. Here F
i

is separating, so F
i
WA

j~1
is separating. Since LA

j~1
L

LC(K
1
d2dK

n
) which is a torus, hence connected, both components lie on one side

of F
i
, hence DF

i
WA

j~1
D is even. The same is true for DF

i
WA

j
D. Thus s (F

i
WC(K

j
) )"

2!2(genus(F
i
WC(K

j
) ))!DF

i
W(A

j~1
XA

j
) D is even. Similarly for S

i
. K

Definition 9. Set x
ij
"!1/2s(F

ij
) and y

ij
"!1/2s (S

ij
).

LEMMA 10. ºnder the assumptions above, y
ij
*maxMx

i~1j
, x

ij
N.

Proof. This follows from Lemma 8. K

LEMMA 11. For all j, there is an i, such that y
ij
'0.

Proof. Suppose y
ij
"0 for i"1,2, m. Then x

ij
"0 for i"1,2, m!1. So

G
j
"(Zm~1

i/1
F

ij
)X(Zm

i/1
S
ij
)LC(K

j
)

is a collection of annuli and tori. Since the tori arise only in Zm~1
i/1

F
ij
, they are incompress-

ible separating tori. Thus if a torus component ¹ of F
i
is in C(K

j
), then so is a component of

S
i{
, which cannot be a torus, for some i@. But this would contradict y

i{j
"0. Hence

G
j
consists entirely of annuli. By Lemma 5, the annuli are all boundary parallel. Hence

cutting C(K
j
) along the annular components of G

j
yields a copy of C(K

j
). By Lemma 6, all

components of C(K
j
) cut along G are compression bodies, a contradiction. K

LEMMA 12. For all j,
m
+
i/1

y
ij
'

m~1
+
i/1

x
ij
.

Proof. This follows by comparing the tables in Fig. 1. By Lemma 10, the largest value
encountered in a given column of the table in Fig. 1(a) occurs one time more often in the
corresponding columns of the table in Fig. 1(b). If the largest value encountered in a column
in the table in Fig. 1(a) is zero, then by Lemma 11, there must be nonzero entries in the
corresponding column of the table in Fig. 1b. K

Remark 13. Since all numbers involved are integers, it follows that +m
i/1

y
ij
*

1#+m~1
i/1

x
ij
, for all j.

THEOREM 14. t(K
1
d2dK

n
)*n.
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Fig. 1.

Proof. Here

n
+
j/1
A

m
+
i/1

y
ijB*

n
+
j/1
A1#

m~1
+
i/1

x
ijB"n#

n
+
j/1

m~1
+
i/1

x
ij

Hence,

n
+
j/1

m
+
i/1

y
ij
!

n
+
j/1

m~1
+
i/1

x
ij
*n.

Thus,

n
+
j/1

m
+
i/1

!2(y
ij
)!

n
+
j/1

m~1
+
i/1

!2(x
ij
))!2n

and by definition

n
+
j/1

m
+
i/1

s(S
i
WC(K

j
))!

n
+
j/1

m~1
+
i/1

s(F
i
WC(K

j
) ))!2n.

So,

s(S)"
m
+
i/1

s (S
i
)!

m~1
+
i/1

s(F
i
))!2n.

Whence
genus(S)*n#1

and
t(K

1
d2dK

n
)*n.

K
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