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Abstract

First, the reverse triple I method with Lukasiewicz’s implication operator is studied. The formulas of supremum for Fuzzy
Modus Ponens (FMP) and infimum for Fuzzy Modus Tollens (FMT) of inverse triple I method are obtained respectively. Second,
the reductivity of reverse triple I method is considered. Lastly, the theory of sustention degree is discussed and its properties are
analysed. The generalized problem of reverse triple I method is solved and the corresponding formulas of α-reverse triple I method
with sustention degree are also given.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Fuzzy reasoning; Reverse triple I method; Implication operator RL ; Sustention degree; Reductivity

1. Preliminaries

Fuzzy reasoning is the mathematical and logical foundation of fuzzy control. Since the method of Composition
Rule of Inference (CRI) was put forward in 1973 by Zadeh [1], the CRI method has been widely used and proved to
be successful in dealing with many questions where the theory of fuzzy control are involved [2,3]. Moveover, very
rigorous logical foundation of the method was provided by Hajek [4]. Using this idea of the CRI method, in 1999
Wang proposed first triple I method [5–7] with full inference rule that utilizes the implication operator in every step
of the reasoning. Wang also offered full proofs for the triple I method in logic [8]. The method efficiently improves
CRI method. It may be suitable to be used instead of Zadeh’s CRI method in some circumstances. Its basic idea is as
follows:

For known A ∈ F(X), B ∈ F(Y ), and A∗
∈ F(X) (or B∗

∈ F(Y )), seek the optimal B∗
∈ F(Y ) (or A∗

∈ F(X))
such that A → B sustains farthest A∗

→ B∗, i.e.

(A(x) → B(y)) → (A∗(x) → B∗(y))
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takes the value as large as possible for any x ∈ X and y ∈ Y , where F(X) and F(Y ) denote the collections consisting
of all fuzzy subsets of X and Y respectively. One can use the triple I method with diverse kinds of implication
operators.

In addition, the theory of sustention degree for triple I method was also presented, and its generalized form should
be expressed as the following optimal problem:

For any α ∈ [0, 1], A ∈ F(X), B ∈ F(Y ), and A∗
∈ F(X) (or B∗

∈ F(Y )), seek the optimal B∗
∈ F(Y ) (or

A∗
∈ F(X)) satisfying

(A(x) → B(y)) → (A∗(x) → B∗(y)) ≥ α

for any x ∈ X and y ∈ Y .
Based on this idea, for the implication operator R0 : [0, 1]

2
→ [0, 1]

R0(a, b) =

{
1 a ≤ b
a′
∨

b a > b

where a′
= 1 − a, reverse triple I method was proposed by Song and Wu in [9]. Its basic idea is as follows:

For known A ∈ F(X), B ∈ F(Y ), and A∗
∈ F(X) (or B∗

∈ F(Y )), seek the optimal B∗
∈ F(Y ) (or A∗

∈ F(X))
such that A∗

→ B∗ sustains farthest A → B, i.e.

(A∗(x) → B∗(y)) → (A(x) → B(y)) (1)

takes the value as large as possible for any x ∈ X and y ∈ Y . Meanwhile, the authors discussed the generalized form
of reverse triple I method expressed as the following optimal problem:

Under the hypothesis of (1), for any α ∈ [0, 1], seek the optimal B∗
∈ F(Y ) (or A∗

∈ F(X)) satisfying

(A∗(x) → B∗(y)) → (A(x) → B(y)) ≥ α (2)

for any x ∈ X and y ∈ Y .
In this paper, for the implication operator RL : [0, 1]

2
→ [0, 1]

RL(a, b) = (1 − a + b) ∧ 1 =

{
1 a ≤ b
a′

+ b a > b

where a′
= 1 − a, we will discuss the reverse triple I method and its generalized form. The formulas of supremum

for Fuzzy Modus Ponens (FMP) and infimum for Fuzzy Modus Tollens (FMT) of inverse triple I method are obtained
respectively. Moreover, the reductivity of reverse triple I method is considered. In addition, the corresponding formulas
of α-reverse triple I method with sustention degree are also studied.

2. Reverse triple I method for the implication operator RL

First of all, we want to establish the reverse triple I principle.

Reverse triple I FMP principle with sustention degree. Suppose that X and Y are non-empty sets, A, A∗
∈ F(X), B ∈

F(Y ). Then B∗ satisfying this principle is the maximal fuzzy set in F(Y ) that maximizes (1).

Reverse triple I FMT principle with sustention degree. Suppose that X and Y are non-empty sets, A ∈ F(X), B, B∗
∈

F(Y ). Then A∗ satisfying this principle is the minimal fuzzy set in F(X) that maximizes (1).
For the implication operator RL , if RL(A(x), B(y)) = 1, according to the definition of it, then the maximum 1 of

(1) will be always taken, so B∗(y) = 1.
If RL(A(x), B(y)) ≤ 1, then we have the following reverse triple I method with sustention degree:

Theorem 2.1 (Reverse Triple I FMP Formula of Supremum). Suppose that X and Y are non-empty sets, A, A∗
∈

F(X), B ∈ F(Y ). Then the supremum B∗ consisting of fuzzy subsets in F(Y ) that maximizes (1) is determined by

B∗(y) = inf
x∈X

{A∗(x) + RL(A(x), B(y)) − 1} ∨ 0. (3)
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Proof. For any y ∈ Y and C(y) < B∗(y) with C(y) ∈ F(Y ), we will first prove: C(y) must make (1) take its
maximum 1, where B∗(y) is determined by (3). It is clear that

C(y) < B∗(y) ≤ A∗(x) + RL(A(x), B(y)) − 1. (4)

Note that RL(A(x), B(y)) − 1 ≤ 0 and from (4), we get C(y) < A∗(x). Using the sense of the operator RL , we have

A∗(x) → C(y) = (A∗(x))′ + C(y) = 1 − A∗(x) + C(y)

and from (4), we know

1 − A∗(x) + C(y) < RL(A(x), B(y)).

That means (A∗(x) → C(y)) < (A(x) → B(y)). So

Mxy = (A∗(x) → C(y)) → (A(x) → B(y)) ≡ 1

i.e. C(y) makes (1) take its maximum 1.
On the other hand, if there exists y0 ∈ Y such that D(y0) > B∗(y0), then we will prove: D(y0) cannot maximize

(1). By (3), we have

D(y0) > β = A∗(x0) + RL(A(x0), B(y0)) − 1. (5)

We will discuss in the cases as follows:

Case 1. If D(y0) < A∗(x0), then

A∗(x0) → D(y0) = (A∗(x0))
′
→ D(y0) = 1 − A∗(x0) + D(y0).

By (5), we get

1 − A∗(x0) + D(y0) > RL(A(x0), B(y0)).

That means

Mx0 y0 = (A∗(x0) → D(y0)) → (A(x0) → B(y0))

= A∗(x0) − D(y0) + RL(A(x0), B(y0)) < 1.

Case 2. If D(y0) ≥ A∗(x0), then A∗(x0) → D(y0) = 1. That means

Mx0 y0 = (A∗(x0) → D(y0)) → (A(x0) → B(y0))

= 1 → RL(A(x0), B(y0))

= RL(A(x0), B(y0)) < 1.

That is, D(y0) cannot maximize (1).

Summing up the above proof, B∗(y) is the supremum consisting of fuzzy subsets in F(Y ) that maximizes (1).
Likewise, if RL(A(x), B(y)) = 1, then A∗(x0) = 0 is minimal fuzzy set in F(X) that maximizes (1).
For the case where RL(A(x), B(y)) < 1, we get the following reverse triple I method with sustention degree:

Theorem 2.2 (Reverse Triple I FMT Formula of Infimum). Suppose that X and Y are non-empty sets, A ∈ F(X),
B, B∗

∈ F(Y ). Then the infimum A∗ consisting of fuzzy subsets in F(X) that maximizes (1) is determined by

A∗(x) = sup
y∈Y

{B∗(y) − RL(A(x), B(y)) + 1}. (6)

Proof. For any x ∈ X and C(x) > A∗(x) with C(x) ∈ F(X), we will first prove: C(x) must maximize (1), where
A∗(x) is determined by (6). It is clear that

C(x) > A∗(x) ≥ B∗(y) − RL(A(x), B(y)) + 1. (7)

Note that 1 − RL(A(x), B(y)) > 0 and from (7), we have C(x) > B∗(y). Using the sense of RL , we have

C(x) → B∗(y) = (C(x))′ + B∗(y) = 1 − C(x) + B∗(y)
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and from (7), we know

1 − C(x) + B∗(y) < RL(A(x), B(y)).

That means

Nxy = (C(x) → B∗(y)) → (A(x) → B(y)) = 1

i.e. C(x) makes (1) take its maximum 1.
On the other hand, if there exists x0 ∈ X such that D(x0) < A∗(x0), then we will prove: D(x0) cannot maximize

(1). By (6), we have

D(x0) < β = B∗(y0) − RL(A(x0), B(y0)) + 1. (8)

We will discuss in the cases as follows:
Case 1. If D(x0) > B∗(y0), then

D(x0) → B∗(y0) = (D(x0))
′
+ B∗(y0) = 1 − D(x0) + B∗(y0).

By (8), we get

1 − D(x0) + B∗(y0) > RL(A(x0), B(y0)).

That means

Nx0 y0 = (D(x0) → B∗(y0)) → (A(x0) → B(y0))

= D(x0) − B∗(y0) + RL(A(x0), B(y0)).

And from (8), we have

Nx0 y0 < 1.

Case 2. If D(x0) ≤ B∗(y0), then D(x0) → B∗(y0) = 1. That means

Nx0 y0 = (D(x0) → B∗(y0)) → (A(x0) → B(y0))

= 1 → RL(A(x0), B(y0))

= RL(A(x0), B(y0)) < 1.

That is, D(x0) cannot maximize (1). Combining the above proof, A∗(x) is the infimum consisting of fuzzy sets in
F(X) that maximizes (1).

3. The reductivity of reverse triple I method

We first give two definitions related to this section.

Definition 3.1 ([8,10,11]). For the algorithm of reverse triple I FMP, if A is a regular fuzzy subset (i.e. there exists
x0 ∈ X such that A(x0) = 1), and A∗

= A implies B∗
= B, then this algorithm is called reductive algorithm.

Definition 3.2 ([8,10,11]). For the algorithm of reverse triple I FMT, if B ′ is a regular fuzzy subset (i.e. there exists
y0 ∈ Y such that B(y0) = 0), and B∗

= B implies A∗
= A, then this algorithm is called reductive algorithm.

Theorem 3.1. (The Reductivity of Reverse Triple I FMP Algorithm) Suppose that X and Y are non-empty sets,
A, A∗

∈ F(X), B ∈ F(Y ), if RL(A(x), B(y)) < 1 and A is a regular fuzzy subset (i.e. there exists x0 ∈ X such that
A(x0) = 1), then for the algorithm of reverse triple I FMP, A∗

= A implies B∗
= B.

Proof. Suppose A∗
= A, A is a regular fuzzy set, then

B∗(y) = inf
x∈X

{A∗(x) + RL(A(x), B(y)) − 1} ∨ 0

≤ {A(x0) + RL(A(x0), B(y)) − 1} ∨ 0
= {1 + RL(1, B(y)) − 1} ∨ 0 = B(y).
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On the other hand, we have

B(y) → B∗(y) = B(y) → inf
x∈X

{A∗(x) + RL(A(x), B(y)) − 1} ∨ 0

= inf
x∈X

B(y) → (A∗(x) + RL(A(x), B(y)) − 1)

= inf
x∈X

B(y) → (A∗(x) + 1 − A(x) + B(y) − 1)

= inf
x∈X

B(y) → B(y) = 1.

Then, we get B(y) ≤ B∗(y).

So, we deduce B(y) = B∗(y).

Theorem 3.2 (The Reductivity of Reverse Triple I FMT Algorithm). Suppose that X and Y are non-empty sets,
A ∈ F(X), B, B∗

∈ F(Y ), if RL(A(x), B(y)) < 1 and B ′ is a regular fuzzy subset (i.e. there exists y0 ∈ Y such that
B(y0) = 0), then for the algorithm of reverse triple I FMT, B∗

= B implies A∗
= A.

Proof. Suppose B∗
= B, B ′ is a regular fuzzy set, then

A∗(x) = sup
y∈Y

{B∗(y) − RL(A(x), B(y)) + 1}

≥ B(y0) − RL(A(x), B(y0)) + 1
= 0 − RL(A(x), 0) + 1 = A(x).

On the other hand, we have

A∗(x) → A(x) = sup
y∈Y

{B∗(y) − RL(A(x), B(y)) + 1} → A(x)

= inf
y∈Y

{(B∗(y) − RL(A(x), B(y)) + 1) → A(x)}

= inf
y∈Y

{(B∗(y) − (1 − A(x) + B(y)) + 1) → A(x)}

= inf
y∈Y

A(x) → A(x) = 1.

Then, we get A(x) ≥ A∗(x). Hence, we deduce A(x) = A∗(x).

Note. For the case RL(A(x), B(y)) = 1, we know that reverse triple I FMP and FMT algorithm are not reductive
algorithms.

Example. (1) Suppose that A(x) = A∗(x) = 0, B(y) = 1 − y, for the implication operator RL ,

(A∗(x) → B∗(y)) → (A(x) → B(y))

= (0 → B∗(y)) → (0 → 1 − y)

= (0 → B∗(y)) → 1.

B∗(y) = 1 is the maximal fuzzy set in F(Y ) that maximizes (1), it is clear that B∗(y) 6= B(y).

(2) Suppose that A(x) =
1
2 , B∗(y) = B(y) = 1, for the implication operator RL ,

(A∗(x) → B∗(y)) → (A(x) → B(y))

= (A∗(x) → 1) →

(
1
2

→ 1
)

= (A∗(x) → 1) → 1.

A∗(x) = 0 is the minimum fuzzy set in F(X) that maximizes (1), it is clear that A∗(x) 6= A(x).
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4. The theory of sustention degree

At first, we give the following reverse triple I FMP principle and FMT principle with sustention degree.

α-reverse triple I FMP principle with sustention degree. Suppose that X and Y are non-empty sets, A, A∗
∈

F(X), B ∈ F(Y ). Then B∗ satisfying this principle is the maximal fuzzy set in F(Y ) that holds (2).

α-reverse triple I FMT principle with sustention degree. Suppose that X and Y are non-empty sets, A ∈

F(X), B, B∗
∈ F(Y ). Then A∗ satisfying this principle is the minimal fuzzy set in F(X) that holds (2).

Definition 4.1 (Sustaining Degree [7]). Suppose that X is a non-empty set, A, B ∈ F(X), α ∈ [0, 1], if

inf
y∈Y

{A(x) → B(y)|x ∈ X} = α,

then we say that sustention degree from A to B is α, and denoted this by sust(A, B) = α.

It is clear that (2) holds if and only if the sustention degree from A∗
→ B∗ to A → B is no less than α. For the

implication operator RL , sust(A, B) ≥ α if and only if (A(x))′ + B(x) ≥ α, for any x ∈ X . The properties is as
follows:

Theorem 4.1. If sust(A, B) = α, sust(B, C) = β, then sust(A, C) ≥ α + β − 1. Especially, if sust(A, B) = 1, and
sust(B, C) = 1, then sust(A, C) = 1. i.e. at this point, transitivity holds.

Theorem 4.2. If A, B, Ai , Bi ∈ F(X), (i ∈ I ), then

(a) sust

(∨
i∈I

Ai , B

)
=

∧
i∈I

(Ai , B);

(b) sust

(
A,
∧
i∈I

B

)
=

∧
i∈I

(A, Bi ).

Theorem 4.3. If A, B, C, Bi , Ci ∈ F(X), (i ∈ I ), then

(a) sust

(
A,

∨
i∈I

Bi → C

)
=

∧
i∈I

(A, Bi → C);

(b) sust

(
A, B →

∧
i∈I

Ci

)
=

∧
i∈I

(A, B → Ci ).

5. Supremum (infimum) for FMP (FMT) of α-rerverse triple I method with sustention degree

Now, we will consider the generalized problem of reverse triple I method with sustention degree. That is, for given
α ∈ [0, 1], our purpose is how to seek the optimal solution satisfying (2).

For the implication operator RL , if RL(A(x), B(y)) ≥ α, according to the sense of the operator RL , it is clear that
B∗(y) = 1 is the maximal fuzzy set in F(Y ) that holds (2).

If RL(A(x), B(y)) < α, then we have the following α-reverse triple I FMP formula of supremum with sustention
degree:

Theorem 5.1 (α-Reverse Triple I FMP Formula of Supremum). Suppose that X and Y are non-empty sets, A, A∗
∈

F(X), B ∈ F(Y ), α ∈ (0, 1]. Then the supremum B∗ consisting of fuzzy subsets in F(Y ) that holds (2) is determined
by

B∗(y) = inf
x∈Ey

{A∗(x) + RL(A(x), B(y)) − α} ∨ 0. (9)

where Ey = {x ∈ X |RL(A(x), B(y)) < α}.



1026 Z. Zhao, Y. Li / Computers and Mathematics with Applications 53 (2007) 1020–1028

Proof. For any y ∈ Y and C(y) < B∗(y) with C(y) ∈ F(Y ), C(y) must hold (2). It is clear that

C(y) < B∗(y) ≤ A∗(x) + RL(A(x), B(y)) − α. (10)

Note that RL(A(x), B(y)) − α < 0 and from (10), we get C(y) < A∗(x). Using the sense of the operator RL , we
have

A∗(x) → C(y) = (A∗(x))′ + C(y) = 1 − A∗(x) + C(y)

we will discuss in the cases as follows:

Case 1. If (A∗(x) → C(y)) > (A(x) → B(y)), then

Mxy = (A∗(x) → C(y)) → (A(x) → B(y)) = A∗(x) − C(y) + RL(A(x), B(y)).

From (10), we have Mxy > α.

Case 2. If (A∗(x) → C(y)) ≤ (A(x) → B(y)), then

Mxy = (A∗(x) → C(y)) → (A(x) → B(y)) = 1 ≥ α.

So, C(y) holds (2).
On the other hand, if there exists y0 ∈ Y such that D(y0) > B∗(y0), then we will prove: D(y0) cannot hold (2).

By (10), we have

D(y0) > β = A∗(x0) + RL(A(x0), B(y0)) − α. (11)

The discussion will be divided into two cases:

Case 1. If D(y0) < A∗(x0), then

A∗(x0) → D(y0) = (A∗(x0))
′
→ D(y0) = 1 − A∗(x0) + D(y0).

We will discuss:
(a) If (A∗(x0) → D(y0)) > (A(x0) → B(y0)), then

Mx0 y0 = (A∗(x0) → D(y0)) → (A(x0) → B(y0)) = A∗(x0) − D(y0) + RL(A(x0), B(y0))

from (11), we get

Mx0 y0 < α.

(b) If (A∗(x0) → D(y0)) ≤ (A(x0) → B(y0)), then Mx0 y0 = 1, that is

1 − A∗(x0) + D(y0) ≤ RL(A(x0), B(y0))

but by (11), we can deduce

RL(A(x0), B(y0)) > 1 − A∗(x0) + (A∗(x0)) + RL(A(x0), B(y0)) − α

i.e. 1 < α, it’s a contradiction.

Case 2. If D(y0) ≥ A∗(x0), then A∗(x0) → D(y0) = 1

Mx0 y0 = (A∗(x0) → D(y0)) → (A(x0) → B(y0))

= 1 → RL(A(x0), B(y0))

= RL(A(x0), B(y0)) < α.

That is, D(y0) cannot hold (2).

Summing up the above proof, B∗(y) is the supremum consisting of fuzzy sets in F(Y ) that holds (2).
If RL(A(x), B(y)) ≥ α, using the sense of the operator RL , then A∗(x) = 0 is the minimal fuzzy set in F(X) that

holds (2).
If RL(A(x), B(y)) < α, then we have the following α-reverse triple I FMT formula of infimum with sustaining

degree:
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Theorem 5.2 (α-Reverse Triple I FMT Formula of Infimum). Suppose that X and Y are non-empty sets, A ∈

F(X), B, B∗
∈ F(Y ), α ∈ (0, 1]. Then the infimum A∗ consisting of fuzzy subsets in F(X) that holds (2) is determined

by

A∗(x) = sup
y∈Kx

{B∗(y) − RL(A(x), B(y)) + α} (12)

where Kx = {y ∈ Y |RL(A(x), B(y)) < α}.

Proof. For any x ∈ X and C(x) > A∗(x) with C(x) ∈ F(X), we will first prove: C(x) must hold (2). It is easy to see
that

C(x) > A∗(x) ≥ B∗(y) − RL(A(x), B(y)) + α. (13)

Because of RL(A(x), B(y)) < α, we know C(x) > B∗(y). Using the sense of RL , we get

C(x) → B∗(y) = (C(x))′ + B∗(y) = 1 − C(x) + B∗(y)

we will discuss in the following cases:
Case 1. If (C(x) → B∗(y)) > (A(x) → B(y)), then

Nxy = (C(x) → B∗(y)) → (A(x) → B(y)) = C(x) − B∗(y) + RL(A(x), B(y))

from (13), we get

Nxy ≥ α.

Case 2. If (C(x) → B∗(y)) ≤ (A(x) → B(y)), then

Nxy = (C(x) → B∗(y)) → (A(x) → B(y)) = 1 ≥ α.

That is, C(x) holds (2).
On the other hand, if there exists x0 ∈ X such that D(x0) < A∗(x0), then we will prove: D(x0) cannot hold (2). It

is easy to see that:

D(x0) < β = B∗(y0) − RL(A(x0), B(y0)) + α. (14)

The discussion will be divided into two cases.
Case 1. If D(x0) > B∗(y0), then

D(x0) → B∗(y0) = (D(x0))
′
+ B∗(y0) = 1 − D(x0) + B∗(y0)

we will discuss in two subcases:
(a) If (D(x0) → B∗(y0)) > (A(x0) → B(y0)), then

Nx0 y0 = (D(x0) → B∗(y0)) → (A(x0) → B(y0)) = D(x0) − B∗(y0) + RL(A(x0), B(y0))

from (14), we have

Nx0 y0 < α.

(b) If (D(x0) → B∗(y0)) ≤ (A(x0) → B(y0)), then Nx0 y0 = 1, that means

1 − D(x0) + B∗(y0) ≤ RL(A(x0), B(y0))

and by (14), we deduce

RL(A(x0), B(y0)) > 1 − (B∗(y0) − RL(A(x0), B(y0)) + α) + B∗(y0)

i.e. 1 < α, it is a contradiction.
Case 2. If D(x0) ≤ B∗(y0), then D(x0) → B∗(y0) = 1. At this point,

Nx0 y0 = (D(x0) → B∗(y0)) → (A(x0) → B(y0))

= 1 → RL(A(x0), B(y0))

= RL(A(x0), B(y0)) < α.
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That is, D(x0) cannot hold (2).

All of the above proof shows that A∗(x0) is the infimum consisting of fuzzy sets in F(X) that holds (2).

6. Conclusion

The theory of reverse triple I method with sustention degree is discussed with the implication operator RL and the
computation formulas of infimum for Fuzzy Modus Ponens and supremum for Fuzzy Modus Tollens are shown. In
addition, its generalization problem is studied. Results that have been gained will enrich the theory of α-reverse triple
I method. Furthermore, we hope them to build the important theoretical basis for designing fuzzy controllers of new
type.
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