Pseudo 2-factor isomorphic regular bipartite graphs

M. Abreua, A.A. Diwanb, Bill Jacksonc, D. Labbated, J. Sheehane

a Dipartimento di Matematica, Università della Basilicata, C. da Macchia Romana, 85100 Potenza, Italy
b Department of Computer Science and Engineering, Indian Institute of Technology, Mumbai 400076, India
c School of Mathematical Sciences, Queen Mary College, London E1 4NS, UK
d Dipartimento di Matematica, Politecnico di Bari, I-70125 Bari, Italy
e Department of Mathematical Sciences, King’s College, Old Aberdeen AB24 3UE, UK

Received 20 September 2006
Available online 27 September 2007

Abstract

A graph G is pseudo 2-factor isomorphic if the parity of the number of circuits in a 2-factor is the same for all 2-factors of G. We prove that there exist no pseudo 2-factor isomorphic k-regular bipartite graphs for $k \geq 4$. We also propose a characterization for 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs and obtain some partial results towards our conjecture.

© 2007 Elsevier Inc. All rights reserved.

Keywords: 2-factor; Bipartite; Circuits; Connectivity

1. Introduction

All graphs considered are finite and simple (without loops or multiple edges). We shall use the term multigraph when multiple edges are permitted.

A graph with a 2-factor is said to be 2-factor hamiltonian if all its 2-factors are Hamilton circuits, and, more generally, 2-factor isomorphic if all its 2-factors are isomorphic. Examples of such graphs are K_4, K_5, $K_{3,3}$, the Heawood graph (which are all 2-factor hamiltonian) and the Petersen graph (which is 2-factor isomorphic).

Several recent papers have addressed the problem of characterizing families of graphs (particularly regular graphs) which have these properties. It is shown in [1,8] that k-regular 2-factor isomorphic bipartite graphs exist only when $k \in \{2, 3\}$ and an infinite family of 3-regular 2-factor...
hamiltonian bipartite graphs, based on $K_{3,3}$ and the Heawood graph, is constructed in [8]. It is conjectured in [8] that every 3-regular 2-factor hamiltonian bipartite graph belongs to this family, and, in [1], that every connected 3-regular 2-factor isomorphic bipartite graph is 2-factor hamiltonian. (We shall see in Section 3.2.4 of this paper that the latter conjecture is false.) Faudree, Gould and Jacobsen [7] determine the maximum number of edges in both 2-factor hamiltonian graphs and 2-factor hamiltonian bipartite graphs. In addition, Diwan [6] has shown that K_4 is the only 3-regular 2-factor hamiltonian planar graph.

In this paper, we extend the above mentioned results on regular 2-factor isomorphic bipartite graphs to the more general family of pseudo 2-factor isomorphic graphs i.e. graphs G with the property that the parity of the number of circuits in a 2-factor is the same for all 2-factors of G. We prove in Theorem 3.2 that pseudo 2-factor isomorphic k-regular bipartite graphs exist only when $k \in \{2, 3\}$. We conjecture a characterization of 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs in Conjecture 3.5, and obtain some partial results towards our conjecture. We show in particular in Theorem 3.19 that there are no planar pseudo 2-factor isomorphic cubic bipartite graphs.

2. Preliminaries

An r-factor of a graph G is an r-regular spanning subgraph of G. A 1-factorization of G is a partition of the edge set of G into 1-factors.

Let G be a bipartite graph with bipartition (X, Y) such that $|X| = |Y|$, and A be its bipartite adjacency matrix. In general $0 \leq |\det(A)| \leq \text{per}(A)$. We say that G is det-extremal if G has a 1-factor and $|\det(A)| = \text{per}(A)$. Let $X = \{x_1, x_2, \ldots, x_n\}$, $Y = \{y_1, y_2, \ldots, y_n\}$. For F a 1-factor of G, define the sign of F, $\text{sgn}(F)$, to be the sign of the permutation of $\{1, 2, \ldots, n\}$ corresponding to F. Then G is det-extremal if and only if G has a 1-factor and all its 1-factors have the same sign.

We shall need the following results. The first is elementary (and is a special case of [9, Lemma 8.3.1]).

Lemma 2.1. Let F_1, F_2 be 1-factors in a bipartite graph G and t be the number of circuits in $F_1 \cup F_2$ of length congruent to zero modulo four. Then $\text{sgn}(F_1) \text{sgn}(F_2) = (-1)^t$.

A k-circuit is a circuit of length k. A central circuit of a graph G is a circuit C such that $G - V(C)$ has a 1-factor. Lemma 2.1 easily implies:

Lemma 2.2. Let G be a bipartite graph. Then G is det-extremal if and only if G has a 1-factor and every central circuit of G has length congruent to two modulo four.

The next result follows from a more general theorem of Thomassen [12].

Theorem 2.3. Let G be a det-extremal bipartite graph. If each edge of G is contained in a 1-factor then G has a vertex of degree at most three.

We next describe a result of Asratian and Mirumyan [4], see also [3], concerning transformations between 1-factorizations of a regular bipartite graph. Let G be a t-regular bipartite graph, $\mathcal{F} = \{F_1, F_2, \ldots, F_t\}$ be a 1-factorization of G, and C be a circuit of G.
Proposition 3.1. Suppose $E(C) \subseteq F_i \cup F_j$ for some $1 \leq i < j \leq t$. Then we may obtain a new 1-factorization \mathcal{F}' of G by putting $F'_i = F_i \Delta E(C)$, $F'_j = F_j \Delta E(C)$ and $\mathcal{F}' = (\mathcal{F} - \{F_i, F_j\}) \cup \{F'_i, F'_j\}$, where Δ denotes symmetric difference. We say that \mathcal{F}' is obtained from \mathcal{F} by a 2-transformation.

Suppose $E(C) \subseteq F_i \cup F_j \cup F_k$ for some $1 \leq i < j < k \leq t$, and that $F_i \cap E(C)$ is a 1-factor of C. Let $X = (F_j \cup F_k) \Delta E(C)$. Since the edges of C alternate with respect to $F_j \cup F_k$, X is a 2-factor of G. Let $\{F'_i, F'_k\}$ be a 1-factorization of X. We may obtain a new 1-factorization \mathcal{F}' of G by putting $F'_i = F_i \Delta E(C)$, and $\mathcal{F}' = (\mathcal{F} - \{F_i, F_j, F_k\}) \cup \{F'_i, F'_j, F'_k\}$. We say that \mathcal{F}' is obtained from \mathcal{F} by a 3-transformation.

Theorem 3.2. Let G be a 1-factor in $F \cup F'$ of G. Then every 1-factorization of G can be obtained from a given 1-factorization by a sequence of 2- and 3-transformations.

3. Pseudo 2-factor isomorphic regular bipartite graphs

Let G be a bipartite graph. For each 2-factor F of G let $t^*(F)$ be the number of circuits of F of length congruent to 0 modulo 4, and let

$$ t(F) = \begin{cases}
0 & \text{if } t^*(F) \text{ is even}, \\
1 & \text{if } t^*(F) \text{ is odd}.
\end{cases} $$

We say that a bipartite graph G is pseudo 2-factor isomorphic if G has at least one 2-factor, and t has the same value on all 2-factors of G. In this case, we denote this constant value of t by $t(G)$. Equivalently, G is pseudo 2-factor isomorphic if the parity of the number of circuits in a 2-factor is the same for all the 2-factors of G.

3.1. Regular graphs of degree at least four

We show that there are no pseudo 2-factor isomorphic k-regular bipartite graphs for $k \geq 4$. Our proof uses the results of Thomassen, and Asratian and Mirumyan described in Section 2. We also use the fact that there is a close relationship between pseudo 2-factor isomorphic bipartite graphs and det-extremal bipartite graphs. This is illustrated by the following proposition.

Proposition 3.1. Suppose G is a pseudo 2-factor isomorphic bipartite graph.

(a) $G - F$ is det-extremal for all 1-factors F of G.
(b) If G is k-regular and $k \geq 3$ then $t^*(X) = 0$ for all 2-factors X of G. In particular, $t(G) = 0$.

Proof. (a) Let F be a 1-factor of G and $H = G - F$. Let F' be a 1-factor in H. Then $F \cup F'$ is a 2-factor of G, and hence the number of circuits of length congruent to 0 modulo 4 in $F \cup F'$ is congruent to $t(G)$ modulo 2. By Lemma 2.1, $\text{sgn}(F) \text{sgn}(F') = (-1)^{t(G)}$. Since the choice of F' is arbitrary, all 1-factors of H have the same sign. Thus H is det-extremal.

(b) Let X be a 2-factor of G and F be a 1-factor of $G - X$. By (a), $H = G - F$ is det-extremal. Since every circuit of X is a central circuit of H, Lemma 2.2 implies that $t^*(X) = 0$. \square

Theorem 3.2. Let G be a pseudo 2-factor isomorphic k-regular bipartite graph. Then $k \in \{2, 3\}$.

Proof. Suppose the theorem is false. Let G be a pseudo 2-factor isomorphic k-regular bipartite graph with $k \geq 4$. By Proposition 3.1(a), all 1-factors in any 1-factorization of G have the same
sign. By Theorem 2.3, G contains two 1-factors with different signs. Since every 1-factor is contained in a 1-factorization of G, there are two 1-factorizations F_0, F_1 of G such that all 1-factors in F_0 have positive sign and all 1-factors in F_1 have negative sign. However, by Theorem 2.4, F_1 can be obtained from F_0 by a sequence of 2- and 3-transformations. Since $k \geq 4$, at least one 1-factor is preserved in every transformation, and hence the signs of all 1-factors in the resulting 1-factorization must be the same as those of the 1-factors in the original 1-factorization. This gives a contradiction.

Theorem 3.2 generalizes the analogous results for 2-factor hamiltonian bipartite graphs [8] and 2-factor isomorphic bipartite graphs [1]. Its proof is substantially simpler than the proofs given for the latter two results.

3.2. Cubic graphs

It is straightforward to show that $K_{3,3}$ and the Heawood graph H_0, shown in Fig. 1(a), are 2-factor hamiltonian and hence pseudo 2-factor isomorphic, see [8]. We first show that the Pappus graph P_0, shown in Fig. 1(b), is pseudo 2-factor isomorphic but not 2-factor isomorphic.

Proposition 3.3. The Pappus graph P_0 is pseudo 2-factor isomorphic but not 2-factor isomorphic.

Proof. We adopt the labeling of the Pappus graph P_0 given in Fig. 1(b). Let F be a 2-factor of P_0 and C be a shortest circuit in F. Since P_0 is 3-arc-transitive, see [5], we may assume that the path $P = v_1v_2v_3v_4$ is contained in C. Since P_0 is bipartite, has 18 vertices, and has girth six, we have $|C| \in \{6, 8, 18\}$.

Suppose $|C| = 6$. By inspection, P is contained in exactly one 6-circuit $v_1v_2v_3v_4v_5v_6v_1$. This implies that edges $v_1v_8, v_6v_7, v_2v_9, v_3v_{14}, v_4v_{11}$ do not belong to F, which in turn implies that F contains the 6-circuits $v_{13}v_{14}v_{15}v_{16}v_{17}v_{18}v_1$, and $v_7v_8v_9v_{10}v_{11}v_{12}v_7$. Thus F consists of exactly three 6-circuits.

Now, suppose that $|C| = 8$. Then, by inspection, C is either: $v_1v_2v_3v_4v_5v_{16}v_{17}v_{18}v_1$, $v_1v_2v_3v_4v_{11}v_{10}v_{17}v_{18}v_1$, $v_1v_2v_3v_4v_{11}v_{12}v_{13}v_{18}v_1$, or $v_1v_2v_3v_4v_{11}v_{12}v_7v_6v_1$. These in turn, re-

Fig. 1. (a) Heawood H_0. (b) Pappus P_0.
isomorphic if and only if

Proof.

\[x \]

respectively, imply that \(v_6, v_9, v_{14}, v_5 \) have degree 1 in \(F \) which is impossible. Thus we cannot have \(|C| = 8 \).

The remaining case, when \(|C| = 18 \), occurs when \(C \) is a hamiltonian circuit of \(P_0 \), which clearly can occur.

In both the cases \(|C| = 6 \) and \(|C| = 18 \), we have \(t(F) = 0 \). Thus \(P_0 \) is pseudo 2-factor isomorphic. It is not 2-factor isomorphic since, by the above, it has two non-isomorphic 2-factors. \(\square \)

3.2.1. Star products

We show that \(K_{3,3}, H_0 \) and \(P_0 \) can be used to construct an infinite family of 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs.

Let \(G, G_1, G_2 \) be graphs such that \(G_1 \cap G_2 = \emptyset \). Let \(y \in V(G_1) \) and \(x \in V(G_2) \) such that \(d_{G_1}(y) = 3 = d_{G_2}(x) \). Let \(x_1, x_2, x_3 \) be the neighbors of \(y \) in \(G_1 \) and \(y_1, y_2, y_3 \) be the neighbors of \(x \) in \(G_2 \). If \(G = (G_1 - y) \cup (G_2 - x) \cup \{y_1x_1, y_2x_2, y_3x_3\} \), then we say that \(G \) is a *star product* of \(G_1 \) and \(G_2 \) and write \(G = (G_1, y) * (G_2, x) \), or more simply as \(G = G_1 * G_2 \) when we are not concerned which vertices are used in the star product. The set \(\{x_1y_1, x_2y_2, x_3y_3\} \) is a 3-edge cut of \(G \) and we shall also say that \(G_1 \) and \(G_2 \) are *3-cut reductions* of \(G \).

We next show that star products preserve the property of being pseudo 2-factor isomorphic in the family of cubic bipartite graphs.

Lemma 3.4. Let \(G \) be a star product of two pseudo 2-factor isomorphic cubic bipartite graphs \(G_1 \) and \(G_2 \). Then \(G \) is also pseudo 2-factor isomorphic.

Proof. Suppose \(G = (G_1, y) * (G_2, x) \) with \(x_1, x_2, x_3 \) the neighbors of \(y \) in \(G_1 \) and \(y_1, y_2, y_3 \) the neighbors of \(x \) in \(G_2 \). Suppose further that \(G \) is not pseudo 2-factor isomorphic. Then \(G \) has a 2-factor \(F \) with \(t(F) = 1 \). Since \(G \) is bipartite \(F \) contains exactly two edges of the 3-edge-cut \(S = \{x_1y_1, x_2y_2, x_3y_3\} \). Let \(C \) be the circuit of \(F \) which intersects \(S \) and \(C_i \) be the circuit of \(G_i \) corresponding to \(C \), \(i = 1, 2 \). Let \(F_i \) be the 2-factor of \(G_i \) consisting of the circuits of \(F \) which are contained in \(G_i \) together with \(C_i \). Since \(|C| = |C_1| + |C_2| - 2 \), we have \(1 = t(F) \equiv t(F_1) + t(F_2) \mod 2 \). Hence \(t(F_i) = 1 \) for some \(i \in \{1, 2\} \). Applying Proposition 3.1, we contradict the hypothesis that \(G_i \) is pseudo 2-factor isomorphic. \(\square \)

Given a set \(\{G_1, G_2, \ldots, G_k\} \) of 3-edge-connected cubic bipartite graphs let \(SP(G_1, G_2, \ldots, G_k) \) be the set of cubic bipartite graphs which can be obtained from \(G_1, G_2, \ldots, G_k \) by repeated star products. Lemma 3.4 implies that all graphs in \(SP(K_{3,3}, H_0, P_0) \) are pseudo 2-factor isomorphic. We conjecture that these are the only 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs.

Conjecture 3.5. Let \(G \) be a 3-edge-connected cubic bipartite graph. Then \(G \) is pseudo 2-factor isomorphic if and only if \(G \) belongs to \(SP(K_{3,3}, H_0, P_0) \).

Note that McCuaig [10] has shown that a 3-edge-connected cubic bipartite graph \(G \) is det-extremal if and only if \(G \in SP(H_0) \).

Let \(G \) be a graph and \(E_1 \) be an edge-cut of \(G \). We say that \(E_1 \) is a *non-trivial edge-cut* if all components of \(G - E_1 \) have at least two vertices. The graph \(G \) is *essentially 4-edge-connected* if \(G \) is 3-edge-connected and has no non-trivial 3-edge-cuts. It is easy to see that Conjecture 3.5 holds if and only if Conjectures 3.6 and 3.7 below are both valid.
Conjecture 3.6. Let G be an essentially 4-edge-connected pseudo 2-factor isomorphic cubic bipartite graph. Then $G \in \{K_{3,3}, H_0, P_0\}$.

Conjecture 3.7. Let G be a 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graph and suppose that $G = G_1 \ast G_2$. Then G_1 and G_2 are both pseudo 2-factor isomorphic.

We will obtain partial results on Conjectures 3.6 and 3.7 in the following two subsections.

3.2.2. Essentially 4-edge-connected cubic bipartite graphs

We show that if G is an essentially 4-edge-connected pseudo 2-factor isomorphic cubic bipartite graph and G has a 4-circuit then $G = K_{3,3}$. We need the following result of Plummer [11].

Proposition 3.8. (See [11].) Let G be an essentially 4-edge-connected cubic bipartite graph and e, f be independent edges of G. Then $\{e, f\}$ is contained in a 1-factor of G.

Proposition 3.9. Let G be an essentially 4-edge-connected cubic bipartite graph distinct from $K_{3,3}$, and C be a 4-circuit in G. Then C is contained in a 2-factor of G.

Proof. Suppose the theorem is false and let G be a counterexample. Let $C = x_1y_2x_3y_4x_1$ and let y_1, x_2, y_3, x_4 be the neighbors in $V(G) - V(C)$ of x_1, y_2, x_3, y_4 respectively. If y_1, x_2, y_3, x_4 were not distinct then the essential 4-edge-connectivity of G would imply that $G = K_{3,3}$. Thus y_1, x_2, y_3, x_4 are distinct. By Proposition 3.8, G has a 1-factor F with $\{x_1y_1, x_3y_3\} \subseteq F$. This implies that we must also have $\{x_2y_2, x_4y_4\} \subseteq F$. Thus $G - F$ is a 2-factor of G containing C. □

Propositions 3.1(b) and 3.9 immediately imply:

Theorem 3.10. Let G be an essentially 4-edge-connected pseudo 2-factor isomorphic cubic bipartite graph. Suppose G contains a 4-circuit. Then $G = K_{3,3}$.

3.2.3. Cubic bipartite graphs of edge-connectivity three

We present a partial converse of Lemma 3.4. We need the following definition.

Let G be a connected cubic bipartite graph. We say that G is badly behaved if there is an edge f of G with the property that, for every 2-factor F of G:

(i) $t(F) = 1$ if and only if $f \in F$;
(ii) if $t(F) = 0$ then each circuit of F has length congruent to two modulo four;
(iii) if $t(F) = 1$ then F has exactly one circuit C of length congruent to zero modulo 4 and $f \in E(C)$.

In this case f is said to be a bad edge of G. Note that a badly behaved graph cannot be pseudo 2-factor isomorphic by (i).

We next introduce some additional notation for working with 2-factors. Given a 2-factor F of a graph G containing a vertex x and edge e, we use C_x and C_e to denote the circuits of F to which x and e belong. Let $G = (G_1, y) \ast (G_2, x)$ be a cubic bipartite graph with bipartition (X, Y). Let F_i be a 2-factor of G_i, $i = 1, 2$. We say that F_1 and F_2 are compatible 2-factors if for each $j \in \{1, 2, 3\}$, $yx_j \in C_y$ if and only if $yx_j \in C_x$. In this case we define a circuit $C_x \ast C_y$ in G by setting $C_x \ast C_y = (C_y - y) \cup (C_x - x) \cup \{x_jy_j : yx_j \in C_y, j = 1, 2, 3\}$, and a 2-factor $F_1 \ast F_2$
of \(G \) by setting \(F_1 \ast F_2 = (F_1 - C_x) \cup (F_2 - C_x) \cup \{C_x \ast C_y\} \). The 2-factor \(F_1 \ast F_2 \) is said to be the join 2-factor of \(F_1 \) and \(F_2 \). Note that the circuit \(C \) has length \(|C| = |C_x| + |C_y| - 2 \). Using this notation we have the following lemma.

Lemma 3.11. Let \(F_i \) be a 2-factor of \(G_i \), \(i = 1, 2 \), such that \(F_1, F_2 \) are compatible. Then \(t(F_1 \ast F_2) = 1 \) if and only if \(t(F_1) \neq t(F_2) \).

Proof. It follows from the above definition that \(|C_x \ast C_y| = |C_x| + |C_y| - 2 \). Thus, \(t^*(F_1 \ast F_2) = t^*(F_1) + t^*(F_2) \mod 2 \). Hence, \(t(F_1 \ast F_2) = 1 \) if and only if \(t(F_1) \neq t(F_2) \). \(\square \)

Theorem 3.12. Let \(G = (G_1, y) \ast (G_2, x) \) be a cubic bipartite graph with \(x_1, x_2, x_3 \) the neighbors of \(y \) in \(G_1 \) and \(y_1, y_2, y_3 \) the neighbors of \(x \) in \(G_2 \). Then \(G \) is pseudo 2-factor isomorphic if and only if either:

(a) \(G_1, G_2 \) are both pseudo 2-factor isomorphic, or
(b) \(G_1, G_2 \) are both badly behaved and, for some \(i \in \{1, 2, 3\} \), \(xy_i \) is a bad edge of \(G_1 \) and \(xy_i \) is a bad edge of \(G_2 \).

Proof. We first assume that (a) or (b) holds. If (a) holds, \(G \) is pseudo 2-factor isomorphic by Lemma 3.4. Hence we may suppose that (b) holds and, relabeling if necessary, that \(yx_1 \) and \(xy_3 \) are bad edges of \(G_1 \) and \(G_2 \), respectively. Let \(F \) be a 2-factor of \(G \). Then \(F = F_1 \ast F_2 \) for 2-factors \(F_1 \) of \(G_1 \) and \(F_2 \) of \(G_2 \). If \(x_3y_3 \notin F \) then \(x_3y \notin F_1 \) and \(xy_3 \notin F_2 \). This implies that \(t(F_1) = 0 = t(F_2) \). Otherwise, if \(x_3y_3 \in F \) then \(x_3y \in F_1 \) and \(xy_3 \in F_2 \). This implies that \(t(F_1) = 1 = t(F_2) \). In both cases \(t(F) = 0 \) by Lemma 3.11. Since the choice of \(F \) was arbitrary, \(G \) is pseudo 2-factor isomorphic.

We next assume that \(G \) is pseudo 2-factor isomorphic. Choose \(j \in \{1, 2, 3\} \) and let \(F_j \), respectively \(F'_j \), be a 2-factor of \(G_j \), respectively \(G'_j \), avoiding \(jy \), respectively \(yj \). Then \(F_j \) and \(F'_j \) are compatible 2-factors and \(F = F_j \ast F'_j \) is a 2-factor of \(G \) avoiding \(jy \). Since \(G \) is pseudo 2-factor isomorphic, Proposition 3.1(b) and Lemma 3.11 imply that \(t(F_j) = t(F'_j) = t_j \), say. It follows that every 2-factor \(X_j \) of \(G_j \) which avoids \(jy \) satisfies \(t(X_j) = t_j \) and every 2-factor \(X'_j \) of \(G'_j \) which avoids \(yj \) satisfies \(t(X'_j) = t_j \). If \(t_1 = t_2 = t_3 \) then \(G_1 \) and \(G_2 \) are both pseudo 2-factor isomorphic and (a) holds. Hence we suppose without loss of generality that \(1 = t_1 \geq t_2 \geq t_3 = 0 \).

Suppose \(t_2 = 0 \). Let \(L_1, L_2, L_3 \) be a 1-factorization of \(G_1 \), labeled so that \(yx_j \in L_j \) for all \(1 \leq j \leq 3 \). By Lemma 2.1, \(\text{sgn}(L_1) \text{sgn}(L_2) = (-1)^{t_3} = 1 \), \(\text{sgn}(L_1) \text{sgn}(L_3) = (-1)^{t_2} = 1 \), and \(\text{sgn}(L_2) \text{sgn}(L_3) = (-1)^{t_1} = -1 \). Clearly this is impossible. Hence \(t_2 = 1 \), and thus \(t_3 = 0 \).

Let \(F_j \), respectively \(F'_j \), be a 2-factor of \(G_1 \), respectively \(G'_2 \), avoiding \(jy \), respectively \(jy \). Then \(F = F_j \ast F'_j \) is a 2-factor of \(G \). Since \(G \) is pseudo 2-factor isomorphic, Proposition 3.1(b) implies that all circuits of \(F \) have length congruent to two modulo four. This implies that all circuits of \(F_j \cup F'_j \) other than \(C_y, C_x \) have length congruent to two modulo four. Furthermore, the facts that \(|C_y \cup C_x| = |C_x| + |C_y| - 2 \) have length congruent to two modulo four, \(t_1 = 1 = t_2 \) and \(t_3 = 0 \), imply that \(|C_y| \equiv |C_x| \equiv 0 \mod 4 \) if \(j \in \{1, 2\} \) and \(|C_y| \equiv |C_x| \equiv 2 \mod 4 \) if \(j = 3 \). Thus \(G_1 \) and \(G_2 \) are both badly behaved, \(yx_3 \) is a bad edge of \(G_1 \) and \(xy_3 \) is a bad edge of \(G_2 \). \(\square \)
Theorem 3.12 implies that Conjecture 3.7 is equivalent to the statement that there are no 3-edge-connected badly behaved cubic bipartite graphs. We will see in the next subsection that 2-edge-connected badly behaved cubic bipartite graphs can exist. We close this subsection by showing that a 3-edge-connected badly behaved cubic bipartite graph can have at most one bad edge. This will follow easily from the following lemma, which is a special case of a result of Aldred, Holton, Porteous and Plummer [2, Theorem 3.1].

Lemma 3.13. Let G be a 3-edge-connected cubic bipartite graph and $e, f \in E(G)$. Then G has a 1-factor containing e and avoiding f.

Corollary 3.14. Suppose that G is a badly behaved 3-edge-connected cubic bipartite graph. Then G contains exactly one bad edge.

Proof. Suppose f and f^* are distinct bad edges of G. By Lemma 3.13, G has a 1-factor F containing f and avoiding f^*. Let $X = G - F$. Since $f^* \in X$ we must have $t(X) = 1$ and since $f \notin X$ we must have $t(X) = 0$, a contradiction. □

3.2.3.1. 3-cut reductions

Let G be a cubic bipartite graph with bipartition (X, Y) and K be a non-trivial 3-edge-cut of G. Let H_1, H_2 be the components of $G - K$. We have seen that G can be expressed as a star product $G = (G_1, y_K) \ast (G_2, x_K)$ where $G_1 - y_K = H_1$ and $G_2 - x_K = H_2$. We say that y_K, respectively x_K, is the marker vertex of G_1, respectively G_2, corresponding to the cut K. Each non-trivial 3-edge-cut of G distinct from K is a non-trivial 3-edge-cut of G_1 or G_2, and vice versa. If G_i is not essentially 4-edge-connected for $i = 1, 2$, then we may reduce G_i along another non-trivial 3-edge-cut. We can continue this process until all the graphs we obtain are essentially 4-edge-connected. We call these resulting graphs the constituents of G. It is easy to see that the constituents of G are unique i.e. they are independent of the order we choose to reduce the non-trivial 3-edge-cuts of G. Furthermore, each vertex of G and each marker vertex belong to a unique constituent of G. Let $T(G)$ be the graph whose vertex set is the set of constituents of G, in which two vertices are adjacent if the corresponding constituents contain two marker vertices x_K, y_K corresponding to the same non-trivial 3-edge-cut K. It is straightforward to check that $T(G)$ is a tree, which we will call the 3-cut reduction tree of G. Conjecture 3.5 is equivalent to the statement that if G is a 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graph then every constituent of G is isomorphic to $K_{3,3}, H_0$ or P_0.

We can use Theorem 3.10 to deduce some evidence in favor of this statement.

Theorem 3.15. Let G be a 3-edge-connected pseudo 2-factor isomorphic bipartite graph. Suppose G contains a 4-cycle C. Then C is contained in a constituent of G which is isomorphic to $K_{3,3}$.

Proof. It is easy to see that no edge of C can be obtained in a non-trivial 3-edge-cut of G. Thus C is contained in a unique constituent G_1 of G and no vertex of C is a marker vertex of G_1. Suppose $G_1 \neq K_{3,3}$. By Theorem 3.10, C is contained in a 2-factor F_1 of G_1. It is straightforward to show, as in the proof of Theorem 3.12, that F_1 can be extended to a 2-factor F of G with $C \subseteq F$. This contradicts Proposition 3.1(b). □
3.2.4. Cubic bipartite graphs of edge-connectivity two

We shall construct infinite families of 2-edge-connected badly behaved cubic bipartite graphs and 2-edge-connected non-hamiltonian 2-factor isomorphic cubic bipartite graphs.

Let \(G, G_1, G_2 \) be graphs such that \(G_1 \cap G_2 = \emptyset \). Let \(e_i = u_i v_i \in E(G_i) \) for \(i = 1, 2 \). If \(G = (G_1 - e_1) \cup (G_2 - e_2) \cup \{u_1u_2, v_1v_2\} \), then we say that \(G \) is a 2-join of \(G_1 \) and \(G_2 \) and write \(G = (G_1, e_1) \circ (G_2, e_2) \), or more simply \(G = G_1 \circ G_2 \) when we are not concerned which edges are used in the 2-join. The set \(\{u_1u_2, v_1v_2\} \) is a 2-edge cut of \(G \) and we shall also say that \(G_1 \) and \(G_2 \) are 2-cut reductions of \(G \).

Lemma 3.16. Let \(G_i \) be a pseudo 2-factor isomorphic cubic bipartite graph and \(e_i = u_i v_i \in E(G_i) \) for \(i = 1, 2 \). Let \(G = (G_1, e_1) \circ (G_2, e_2) \). Then \(G \) is badly behaved and both \(u_1u_2 \) and \(v_1v_2 \) are bad edges of \(G \).

Proof. The lemma can be proved in a similar way to Lemma 3.4. \(\square \)

Lemma 3.16 can be used to construct an infinite family of badly behaved cubic bipartite graphs of edge-connectivity two, by choosing any \(G_1, G_2 \in SP(K_{3,3}, H_0, P_0) \). The badly behaved graphs \(G \) constructed in this way will all have the property that their bad edges belong to 2-edge-cuts. We can modify the construction to obtain badly behaved graphs without this property. Let \(G_1, G_2 \) be graphs and \(e_i = x_i y_i \in E(G_i) \) for \(i = 1, 2 \). Define \((G_1, e_1) \circ (G_2, e_2) \) to be the graph consisting of the disjoint union of \(G_1 - e_1 \) and \(G_2 - e_2 \) and two new adjacent vertices \(u, v \) together with the new edges \(uv, x_1 u, y_1 v, x_2 u, y_2 v \). It is straightforward to show that if \(G_1, G_2 \) are pseudo 2-factor isomorphic cubic bipartite graphs then \((G_1, e_1) \circ (G_2, e_2) \) is badly behaved with \(uv \) as its bad edge.

We next state a similar result to Proposition 3.12 for 2-edge-cuts, which we will use in the following subsection to show that there are no planar pseudo 2-factor isomorphic cubic bipartite graphs.

Lemma 3.17. Let \(G_i \) be a cubic bipartite graph and \(e_i = u_i v_i \in E(G_i) \) for \(i = 1, 2 \). Let \(G = (G_1, e_1) \circ (G_2, e_2) \) and suppose that \(G \) is pseudo 2-factor isomorphic. Then \(G_i \) is pseudo 2-factor isomorphic and \(G_{3-i} \) is badly behaved with \(e_{3-i} \) as a bad edge, for some \(i \in \{1, 2\} \).

Proof. The lemma can be proved in a similar way to Lemma 3.12. \(\square \)

We close this subsection by constructing an infinite family of non-hamiltonian connected 2-factor isomorphic cubic bipartite graphs.

Proposition 3.18. Let \(G_i \) be a 2-factor hamiltonian cubic bipartite graph with \(k \) vertices and \(e_i = u_i v_i \in E(G_i) \) for \(i = 1, 2, 3 \). Let \(G \) be the graph obtained from the disjoint union of the graphs \(G_i - e_i \) by adding two new vertices \(w \) and \(z \) and new edges \(wu_i \) and \(zv_i \) for \(i = 1, 2, 3 \). Then \(G \) is a non-hamiltonian connected 2-factor isomorphic cubic bipartite graph of edge-connectivity two.

Proof. The assertion that \(G \) has edge-connectivity two follows from the fact that connected cubic bipartite graphs are 2-edge-connected. The assertion that \(G \) is non-hamiltonian holds since \(G - \{w, z\} \) has three components.
Let F be a 2-factor of G. By symmetry we may assume that $F = F' \cup F_3$, where F_3 is a 2-factor of G_3 avoiding u_3v_3 and $F' = (F_1 - e_1) \cup (F_2 - e_2) \cup \{wu_1, wu_2, zv_1, zv_2\}$ is a 2-factor of $G - G_3$, with F_i a 2-factor of G_i containing u_iv_i for $i = 1, 2$. Since G_i is 2-factor hamiltonian, F_i is a k-circuit for $i = 1, 2, 3$. Thus F has exactly two circuits, one of which has length k and the other length $2k + 2$. Hence G is 2-factor isomorphic.

It was shown in [8] that all graphs in $SP(K_{3,3}, H_0)$ are 2-factor hamiltonian. Thus we may apply Proposition 3.18 by taking $G_1 = G_2 = G_3$ to be any graph in $SP(K_{3,3}, H_0)$ to obtain an infinite family of 2-edge-connected non-hamiltonian 2-factor isomorphic cubic bipartite graphs. This family gives counterexamples to the conjecture [1, Conjecture 1.2] that all connected 2-factor isomorphic cubic bipartite graphs are 2-factor hamiltonian. Note, however, that Conjecture 3.5 would imply the truth of the modified conjecture that all 3-edge-connected 2-factor isomorphic cubic bipartite graphs are 2-factor hamiltonian.

3.2.5. Planar cubic bipartite graphs

We show that there are no planar pseudo 2-factor-isomorphic cubic bipartite graphs.

Theorem 3.19. Let G be a pseudo 2-factor-isomorphic cubic bipartite graph. Then G is non-planar.

Proof. Suppose the theorem is false and let G be a counterexample with as few edges as possible. Clearly G is connected, and hence 2-edge-connected. Since G is a planar cubic bipartite graph Euler’s formula implies that G has a face of size four. Thus G contains a 4-circuit. If G were 3-edge-connected then Theorem 3.15 would imply that some constituent of G is isomorphic to $K_{3,3}$. This would contradict the planarity of G since each constituent of G can be obtained by edge-contractions (which preserve planarity). Hence G has edge-connectivity two. Lemma 3.17 now implies that some 2-cut reduction of G is a pseudo 2-factor-isomorphic planar cubic bipartite graph. This contradicts the minimality of G. □

Acknowledgment

The fifth named author would like to thank Claude Candat for his help while writing this paper.

References

