On Cohen–Macaulay Rings of Invariants

M. Lorenz and J. Pathak

Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122-6094
E-mail: lorenz@math.temple.edu, pathak@math.temple.edu

Communicated by Susan Montgomery
Received January 3, 2001

We investigate the transfer of the Cohen–Macaulay property from a commutative ring to a subring of invariants under the action of a finite group. Our point of view is ring theoretic and not a priori tailored to a particular type of group action. As an illustration, we discuss the special case of multiplicative actions, that is, actions on group algebras $k[Z^n]$ via an action on Z^n.

Key Words: finite group action; ring of invariants; invariant theory; height; depth; Cohen–Macaulay ring; cohomology; Sylow subgroup.

INTRODUCTION

This article addresses the following question: to what extent does the Cohen–Macaulay property pass from a commutative ring R to a subring R^G of invariants under the action of a finite group G on R? As is well known, the Cohen–Macaulay property is indeed inherited by R^G whenever the trace map $tr_G: R \to R^G$, $r \mapsto \sum_{g \in G} g(r)$, is surjective [HE]; see also Corollary 3.2 below. In general, however, the property does not transfer, even in the particular case of linear actions, that is, G-actions on polynomial algebras $R = k[X_1, \ldots, X_n]$ by linear substitutions of the variables. The Cohen–Macaulay problem for linear invariants has been rather thoroughly explored without, at present, being anywhere near a final solution.

Our focus in this article will not be on linear G-actions on polynomial algebras nor, for the most part, on any other kind of group action on affine algebras over a field. Rather, in Sections 1–4, we work entirely in the setting of commutative noetherian rings. Besides being more general, this approach has resulted in a number of simplifications of results previously obtained by Kemper [Ke$_1$, Ke$_2$] in a geometric setting using geometric

1 Research of both authors supported in part by NSF Grant DMS-9988756.
methods. Nevertheless, the article owes a great deal to Kemper’s insights and originated from a study of his work.

A short outline of the contents is as follows. Section 1 is devoted to relative trace maps. We determine the height of their image, an ideal of R^G, and use this result to give a lower bound for the height of annihilators in R^G of certain cohomology classes. Section 2 reviews basic material on Cohen–Macaulay rings and local cohomology. In particular, we describe a pair of spectral sequences constructed by Ellingsrud and Skjelbred [ES]. These quickly yield certain depth estimates. Section 3 develops the main technical tools of this article. We use the Ellingsrud–Skjelbred spectral sequences to derive a depth formula for modules of invariants. This formula underlies virtually all our subsequent applications to the Cohen–Macaulay property of rings of invariants R^G. These applications, in the main, concern the case where R has characteristic $p > 0$ and focus on the role played by the Sylow p-subgroup of G. For the precise statements of our results, we refer the reader to Section 4 where they are presented. The final Section 5 initiates the study of the Cohen–Macaulay property in the special setting of multiplicative actions. These are defined to be G-actions on Laurent polynomial algebras $R = k[X_1^\pm, \ldots, X_n^\pm]$ stabilizing the lattice of monomials $\langle X_1, \ldots, X_n \rangle \cong \mathbb{Z}^n$; so we may think of G as a subgroup of $\text{GL}_n(\mathbb{Z})$. We show that if G maps onto some nontrivial p-group and has a cyclic Sylow p-subgroup, P, then R^G is Cohen–Macaulay if and only if P is generated by a bireflection, that is, a matrix $g \in \text{GL}_n(\mathbb{Z})$ so that $g - 1_{n \times n}$ has rank at most 2. In this case, P must have order 2, 3, or 4. A more detailed study of the Cohen–Macaulay property for multiplicative invariants will form the subject of the second author’s Ph.D. thesis.

Notations and Conventions. Throughout, G will denote a finite group and R will be a commutative ring (with 1) on which G acts by ring automorphisms, $r \mapsto g(r)$. The subring of G-invariant elements of R will be denoted by R^G and the skew group ring of G over R by RG. Thus, RG is the free left R-module with basis the elements of G, made into a ring by means of the multiplication rule $rg \cdot r'g' = rg(r')gg'$ for $r, r' \in R, g, g' \in G$. The ring R is a module over RG via $rg \cdot r' = rg(r')$. All modules are understood to be left modules.

1. THE RELATIVE TRACE MAP

1.1. Throughout this section, H denotes a subgroup of G. The relative trace map $\text{tr}_{G/H} : R^H \to R^G$ is defined by

$$\text{tr}_{G/H}(r) = \sum_{g \in G/H} g(r) \quad (r \in R^H).$$
Here, \(g \) runs over any transversal for the cosets \(gH \) of \(H \) in \(G \). Since \(\text{tr}_{G/H} \) is \(R^G \)-linear, the image of \(\text{tr}_{G/H} \) is an ideal of \(R^G \) which we shall denote by \(R^G_H \).

1.2. Covering Primes. The proof of the following lemma was communicated to us by Don Passman. The special case where \(R \) is an affine algebra over a field is covered by [Ke2, Satz 4.7]. As usual, we will write \(^sH = gh^{-1} \) \((g \in G) \) and \(I_G(\mathfrak{L}) = \{ g \in G | (g - 1)(R) \subseteq \mathfrak{L} \} \) denotes the inertia group of an ideal \(\mathfrak{L} \) of \(R \). We mention that in the geometric context (i.e., when \(R \) is the coordinate ring of an affine variety \(X \) and \(\mathfrak{L} \) comes from a point \(x \in X \)), the inertia group \(I_G(\mathfrak{L}) \) is just the isotropy group \(G_x \).

Lemma 1.1. For any prime ideal \(\mathfrak{L} \) of \(R \),

\[
\mathfrak{L} \supseteq R^G_H \Leftrightarrow \left[I_G(\mathfrak{L}) : I_{H}(\mathfrak{L}) \right] \in \mathfrak{L} \quad \text{for all } g \in G.
\]

Proof. The implication \(\Leftarrow \) follows from the straightforward formula

\[
\text{tr}_{G/H}(r) = \sum_{g \in I_G(\mathfrak{L}) \cap G/H} \left[I_G(\mathfrak{L}) : I_{H}(\mathfrak{L}) \right] g(r) \mod \mathfrak{L}
\]

for all \(r \in R^H \). For \(\Rightarrow \), assume that \(\mathfrak{L} \supseteq R^G_H \). It suffices to show that

\[
\left[I_G(\mathfrak{L}) : I_{H}(\mathfrak{L}) \right] \in \mathfrak{L}.
\]

Indeed, \(R^G_H = R^G_H \), since \(\text{tr}_{G/H}(r) = \text{tr}_{G/H}(g(r)) \) holds for all \(r \in R^H \) and \(g \in G \).

To simplify notation, put \(I = I_G(\mathfrak{L}) \) and let \(P \) denote a Sylow \(p \)-subgroup of \(I \cap H = I_H(\mathfrak{L}) \), where \(p \geq 0 \) is the characteristic of the commutative domain \(R/\mathfrak{L} \). (Here \(P = \{1\} \) if \(p = 0 \).) Then our desired conclusion, \([I : I \cap H] \in \mathfrak{L} \), is equivalent to

\[
[I : P] \in \mathfrak{L}.
\]

Furthermore, our assumption \(\mathfrak{L} \supseteq R^G_H \) entails that \(\mathfrak{L} \supseteq R^G_P \), because \(\text{tr}_{G/P} = \text{tr}_{G/H} \circ \text{tr}_{H/P} \). Thus, leaving \(H \) for \(P \), we may assume that \(H = P \) is a \(p \)-subgroup of \(I \). Let \(D = \{ g \in G | g(\mathfrak{L}) = \mathfrak{L} \} \) denote the decomposition group of \(\mathfrak{L} \); so \(I \subseteq D \). We claim that

\[
\mathfrak{L} \supseteq R^P.
\]

To see this, choose \(r \in R \) so that \(r \in g(\mathfrak{L}) \) for all \(g \in G \setminus D \) but \(r \notin \mathfrak{L} \). Then \(s = \prod_{g \in D} g(r) \) also belongs to \(\bigcap_{g \in G \setminus D} g(\mathfrak{L}) \) but not to \(\mathfrak{L} \) and, in addition, \(s \in R^P \). Now assume that, contrary to our claim, there exists an element \(f \in R^P \) so that \(\text{tr}_{D/P}(f) \notin \mathfrak{L} \). Then \(\text{tr}_{D/P}(sf) = s \text{tr}_{D/P}(f) \in \bigcap_{g \in G \setminus D} g(\mathfrak{L}) \setminus \mathfrak{L} \), and hence \(\text{tr}_{G/P}(sf) \notin \mathfrak{L} \), a contradiction.
By the claim, we may replace G by D, thereby reducing to the case where \mathfrak{C} is G-stable. (Note that I is unaffected by this replacement.) So G acts on R/\mathfrak{C} with kernel I, P is a p-subgroup of I, and $R_G^P \subseteq \mathfrak{C}$. Thus, $0 \equiv \text{tr}_{G/P}(r) \equiv [I:P] \cdot \sum_{g \in G/P} g(r) \mod \mathfrak{C}$ holds for all $r \in R_P$. Our desired conclusion, $[I:P] \subseteq \mathfrak{C}$, will follow if we can show that $0 \equiv \text{tr}_{G/P}(r) \equiv [I:P] \cdot \sum_{g \in G/P} g(s) \mod \mathfrak{C}$ holds for some $r \in R_P$. But $\sum_{g \in G/P} g$ induces a nonzero G/P-endomorphism on R/\mathfrak{C}, by linear independence of automorphisms of $K = \text{Fract}(R/\mathfrak{C})$; so $0 \equiv \sum_{g \in G/P} g(s) \mod \mathfrak{C}$ holds for some $s \in R$. Putting $r = \prod_{h \in P} h(s)$, we have $r \in R_P$ and $r \equiv s^{[P]} \mod \mathfrak{C}$. Since $|P|$ is 1 or a power of $p = \text{char } K$, we obtain $\sum_{g \in G/P} g(r) = \sum_{g \in G/P} g(s^{[P]}) = (\sum_{g \in G/P} g(s))^{[P]} \neq 0 \mod \mathfrak{C}$, as required. \hfill \[\square \]

1.3. Height Formula. For any collection \mathcal{X} of subgroups of G, we define the ideal $R_{\mathcal{X}}^G$ of R^G by

$$R_{\mathcal{X}}^G = \sum_{H \in \mathcal{X}} R_H^G.$$

Inasmuch as $R_D^G \subseteq R_H^G = R_{DH}^G$ holds for all $D \leq H \leq G$ and $g \in G$, there is no loss in assuming that \mathcal{X} is closed under G-conjugation and under taking subgroups.

Moreover, for any subgroup $H \leq G$, we define

$$I_R(H) = \sum_{h \in H} (h-1)(R)R.$$

Thus, $I_R(H)$ is an ideal of R, and $\mathfrak{C} \subseteq I_R(H)$ is equivalent with $H \leq I_{R_0}(\mathfrak{C})$. When R is the coordinate ring of an affine variety X the ideal $I_R(H)$ defines the subvariety X^H of H-fixed points in X.

Lemma 1.2. Assume that R has characteristic p, a positive prime, and let \mathcal{X} be a collection of subgroups of G that is closed under G-conjugation and under taking subgroups. Then

$$\text{height } R_{\mathcal{X}}^G = \inf \{ \text{height } I_R(P) \mid P \text{ is a } p\text{-subgroup of } G, P \notin \mathcal{X} \}.$$

Proof. One has

$$\text{height } R_{\mathcal{X}}^G = \inf_{\varpi} \text{height } \varpi = \inf_{\mathfrak{C}} \text{height } \mathfrak{C},$$

where ϖ runs over the prime ideals of R^G containing $R_{\mathcal{X}}^G$ and \mathfrak{C} runs over the primes of R containing $R_{\mathcal{X}}^G$. Here, the first equality is just the definition of height, while the second equality is a consequence of the standard relations between the primes of R and R^G; see, e.g., [Bou, Théorème 2, p. 42].
By Lemma 1.1,

\[\mathfrak{C} \supseteq R^G_{\mathfrak{C}} \iff p \left| \left[I_G(\mathfrak{C}) : I_H(\mathfrak{C}) \right] \right. \quad \text{for all } H \in \mathfrak{X}. \]

Since \(I_H(\mathfrak{C}) = I_G(\mathfrak{C}) \cap H \) belongs to \(\mathfrak{X} \) for \(H \in \mathfrak{X} \), the latter condition just says that the Sylow \(p \)-subgroups of \(I_G(\mathfrak{C}) \) do not belong to \(\mathfrak{X} \) or, equivalently, some \(p \)-subgroup \(P \leq I_G(\mathfrak{C}) \) does not belong to \(\mathfrak{X} \). Therefore,

\[\mathfrak{C} \supseteq R^G_{\mathfrak{C}} \iff \mathfrak{C} \supseteq \bigcap_{P \leq G \text{ a } p\text{-subgroup, } P \notin \mathfrak{X}} I_R(P), \]

which implies the asserted height formula.

1.4. Annihilators of Cohomology Classes. Let \(M \) be a module over the skew group ring \(RG \). Then, for each \(r \in R^G \), the map \(\rho: M \to M, m \mapsto rm \), is \(G \)-equivariant, and hence \(\rho \) induces a map on cohomology \(\rho_*: H^*(G, M) \to H^*(G, M) \). Letting \(r \) act on \(H^*(G, M) \) via \(\rho_* \) we make \(H^*(G, M) \) into an \(R^G \)-module.

The following lemma generalizes [Ke, Corollary 2.4].

Lemma 1.3. The ideal \(R^G_H \) of \(R^G \) annihilates the kernel of the restriction map \(\text{res}_H^G: H^*(G, M) \to H^*(H, M) \).

Proof. The action of \(R^G = H^0(G, R) \) on \(H^*(G, M) \) can also be interpreted as coming from the cup product

\[H^0(G, R) \times H^*(G, M) \ni (s, x) \mapsto H^*(G, R \otimes_x M) \to H^*(G, M), \]

where the map denoted by \(\cdot \) comes from the \(G \)-equivariant map \(R \otimes_x M \to M, r \otimes m \mapsto rm \); see e.g., [Br, Exercise 1, p. 114]. Furthermore, the relative trace map \(\text{tr}_{G/H}^H: R^H \to R^G \) is identical with the corestriction map \(\text{cor}_{H}^G: H^0(H, R) \to H^0(G, R) \); cf. [Br, p. 81]. Thus, the transfer formula for cup products [Br, (3.8), p. 112] gives, for \(s \in R^H \) and \(x \in H^*(G, M) \),

\[\text{tr}_{G/H}^H(s) x = \cdot \left(\text{tr}_{G/H}^H(s) \cup x \right) = \cdot \left(\text{cor}_{H}^G(s \cup \text{res}_{H}^G(x)) \right). \]

Therefore, if \(\text{res}_{H}^G(x) = 0 \) then \(\text{tr}_{G/H}^H(s) x = 0 \).

We summarize the material of this section in the following proposition. For convenience, we write \(\text{res}_{p}^G(\cdot) = \cdot_{|_p} \).

Proposition 1.4. Assume that \(R \) has characteristic \(p \), and let \(M \) be an \(RG \)-module. Then, for any \(x \in H^*(G, M) \),

\[\text{height } \text{ann}_{R^G}(x) \geq \inf \{ \text{height } I_R(P) \mid P \text{ a } p\text{-subgroup of } G, x|_p \neq 0 \}. \]
Proof. Let \mathcal{S} denote the splitting data of x, that is, $\mathcal{S} = \{H \leq G \mid x|_H = 0\}$; cf. [CoR]. By Lemma 1.3, $\text{ann}_{R^G}(x) \supseteq R^G_x$, and by Lemma 1.2, $\text{height } R^G_x = \inf\{|\text{height } I_R(P)| \mid \text{P is a } p\text{-subgroup of } G, \ x|_P \neq 0\}$. The proposition follows.

2. DEPTH

2.1. In this section, A denotes a commutative noetherian ring, α is an ideal of A, and M is a finitely generated module over the group ring $A[G]$.

2.2. Depth and Local Cohomology. Let H^i_α denote the ith local cohomology functor with respect to α, that is, the ith right derived functor of the α-torsion functor

$$\Gamma_\alpha(M) = H^0_\alpha(M) = \{m \in M \mid m \text{ is annihilated by some power of } \alpha\}.$$

Then

$$\text{depth}(\alpha, M) = \inf\{i \mid H^i_\alpha(M) \neq 0\}$$

(where $\inf \emptyset = \infty$); see [BS, Theorem 6.2.7].

Recall from Section 1.4 (with $A = R^G$) that $H^*(G, M)$ is a module over A. Our hypotheses on A and M entail that M is a noetherian A-module, and hence so are all $H^*(G, M)$. Therefore,

$$\text{depth}(\alpha, H^*(G, M)) = \inf\{i \mid H^i_\alpha(H^q(G, M)) \neq 0\}.$$

2.3. The Ellingsrud–Skjelbred Spectral Sequences. The above A-modules $H^i_\alpha(H^q(G, M))$ feature as the $E^{i,q}_{\alpha}$-terms of a certain spectral sequence due to Ellingsrud and Skjelbred [ES]. In fact, two related spectral sequences are constructed in [ES] in the following manner.

The α-torsion functor Γ_α and the G-fixed point functor $(\cdot)^G = H^0(G, \cdot)$ clearly commute: $\Gamma_\alpha(M^G) = (\Gamma_\alpha(M))^G$. Moreover, if the $A[G]$-module M is injective, then one checks that $\Gamma_\alpha(M)$ is also injective as $A[G]$-module (as in [BS, Proposition 2.1.4]) and M^G is injective as an A-module. Therefore, $H^i(G, \Gamma_\alpha(M)) = 0$ and $H^i_\alpha(M^G) = 0$ holds for all $i > 0$ if M is injective. We obtain two Grothendieck spectral sequences converging to

$$H^*_\alpha(G, M) := R^*(\Gamma_\alpha(\cdot)^G)(M) = R^*(\cdot)^G \Gamma_\alpha(M),$$

Furthermore, the spectral sequences (2.1) yield the following estimates for depth \(\alpha, M^G\).

Lemma 2.1. (a) **Lower bound:** \(\text{depth}(\alpha, M^G) \geq \min\{\text{depth}(\alpha, M), h_\alpha + 1\}\), where \(h_\alpha = \inf_{q > 0}(q + \text{depth}(\alpha, H^q(G, M)))\).

(b) **Upper bound:** Assume that \(H^p_a(H^q(G, M)) \neq 0\) for some \(p_0 \geq 0, q_0 > 0\) with \(s := p_0 + q_0 < \text{depth}(\alpha, M)\). Assume further that \(H^{p_0 + 1 - j}(H^q(G, M)) = 0\) holds for \(j = 1, \ldots, q_0 - 1\) and \(H^{p_0 + 1 - j}(H^q(G, M)) = 0\) holds for \(j > q_0\). Then \(\text{depth}(\alpha, M^G) \leq s + 1\).

Proof. Put \(m = \text{depth}(\alpha, M)\). Then \(H^q_2(M) = 0\) for \(q < m\), and so the \(\delta\)-sequence in (2.1) implies that \(H^p_a(G, M) = 0\) for \(n < m\). Therefore, the \(E\)-sequence satisfies

\[
E^{p,q}_2 = 0 \quad \text{if } p + q < m.
\]

Furthermore, \(E^{p,0}_2 = H^p_2(M^G)\); so

\[
\text{depth}(\alpha, M^G) = \inf\{p \mid E^{p,0}_2 \neq 0\}.
\]

Finally,

\[
h_\alpha = \inf\{p + q \mid q > 0, E^{p,q}_2 \neq 0\}.
\]

To prove (a), assume that \(p < \min(m, h_\alpha + 1)\). Then \(E^{p,0}_2 = 0\), by (2.2), and \(E^{i,j}_2 = 0\) for \(j > 0, i + j < p, r \geq 2\). Recall that the differential \(d_r\) of \(E_r\) has bidegree \((r, 1 - r)\). Thus, \(E^{p,0}_2\) has no nontrivial boundaries and consists entirely of cycles. This shows that \(E^{p,0}_2 = E^{p,0}_1 = \cdots = E^{p,0}_0\), and hence \(E^{p,0}_2 = 0\). Thus, (a) is proved.

For (b), we check that \(E^{s+1,0}_2 \neq 0\). Our hypotheses imply that, at position \((p_0, q_0)\), all incoming differentials \(d_r\) \((r \geq 2)\) are 0 as well as all outgoing \(d_r\) \((r \geq 2, r \neq q_0 + 1)\). Therefore, \(E^{p_0,q_0}_2 = E^{p_0,q_0}_1\) and \(E^{p_0,q_0}_2 = E^{p_0,q_2}_2 = \text{Ker}(d^{p_0,q_0}_2)\). The former implies that \(E^{p_0,q_0_1}_0 \neq 0\), by hypothesis on \((p_0, q_0)\), and the latter shows that \(d^{p_0,q_0+1}_2\) is injective, because \(E^{p_0,q_0}_2 = 0\) by (2.2). Thus, \(d^{p_0,q_0+1}_2\) embeds \(E^{p_0,q_0+1}_2\) into \(E^{s+1,0}_2\), forcing the latter to be nonzero. Hence, \(E^{s+1,0}_2\) is nonzero as well, as desired.

In this article, we will only apply the above estimates in a very limited way, namely with \(p_0 = 0\) in the notation of part (b). This case yields
estimates that could also be derived by other means, e.g., by using Koszul complexes as done by Kemper in [Ke1, Ke2].

2.5. Cohen–Macaulay Rings. For any finitely generated A-module V, one defines $\dim V = \dim(A/\text{ann}_AV)$ and

$$\text{height}(\alpha, V) = \text{height}(\alpha + \text{ann}_AV/\text{ann}_AV);$$

so $\dim V = \sup_{\alpha \supset \text{ann}_AV} \text{height}(\alpha, V)$. Always,

$$\text{depth}(\alpha, V) \leq \text{height}(\alpha, V);$$

see [BH, Exercise 1.2.22(a)]. The A-module V is called Cohen–Macaulay if equality holds for all ideals α of A. In order to show that V is Cohen–Macaulay, it suffices to check that $\text{depth}(\alpha, V) \geq \text{height}(\alpha, V)$ holds for all maximal ideals α of A with $\alpha \supset \text{ann}_AV$.

3. MODULES OF INVARIANTS

3.1. Throughout this section, R^G is assumed noetherian and α denotes an ideal of R^G. Moreover, M denotes an RG-module that is finitely generated as an RG-module. Our finiteness assumptions hold, for example, whenever R is an affine algebra over some noetherian subring $k \subset R^G$ and M is a finitely generated RG-module; see [Bou, Théorème 2, p. 33].

3.2. The Problem and a Sufficient Condition. Assuming $_RM$ to be Cohen–Macaulay, we are interested in the question under what circumstances R^GM will be Cohen–Macaulay as well. We remark that $_RM$ is Cohen–Macaulay if and only if $_RM^G$ is; see [Ke2, Proposition 1.17].

For future reference, we record the following simple lemma.

Lemma 3.1. Assume that $_RM$ is Cohen–Macaulay and that $\sqrt{\alpha} \supset \text{ann}_RM^G$. Then $\text{depth}(\alpha, M) = \text{height}(\alpha, M) \geq \text{height}(\alpha, M^G)$.

Proof. Note that $\sqrt{\alpha} \supset \text{ann}_RM^G \supset \text{ann}_RM$ entails that $\text{height}(\alpha, M) \geq \text{height}(\alpha, M^G)$. Further, $\text{height}(\alpha, M) = \text{depth}(\alpha, M)$, because $_RM^G$ is Cohen–Macaulay. The lemma follows.

We now give a sufficient condition for $_RM^G$ to be Cohen–Macaulay. We note that $\dim _RM = \dim _RM^G$, by the familiar relations between the primes of R and of R^G.

Corollary 3.2. Assume that $_RM$ is Cohen–Macaulay. If $H^q(G, M) = 0$ holds for $0 < q < \dim _RM - 1$ then $_RM^G$ is Cohen–Macaulay as well. In particular, this holds whenever the trace map $\text{tr}_G = \text{tr}_{G/(1)}: R \to R^G$ is surjective.
Proof. Let \(\alpha \) be an ideal of \(R^G \) with \(\alpha \supseteq \text{ann}_{R^G} M^G \). Our hypothesis on \(H^q(G, M) \) entails that the value of \(h_q \) in Lemma 2.1 satisfies \(h_q \geq \dim_R M - 1 \). Also, \(\dim_R M = \dim_{R'} M \geq \text{height}(\alpha, M) \geq \text{height}(\alpha, M^G) \), by Lemma 3.1. Thus, Lemma 2.1(a) gives \(\text{depth}(\alpha, M^G) \geq \text{height}(\alpha, M^G) \), which proves that \(R_{\alpha :} M^G \) is Cohen–Macaulay.

For the last assertion, just note that Lemma 1.3 implies that \(H^q(G, M) \) = 0 holds for all \(q > 0 \) when \(R_{(i)}^G = R^G \). □

Note that the condition \(H^q(G, M) = 0 \) for \(0 < q < \dim_R M - 1 \) is vacuous for \(\dim_R M \leq 2 \). For \(\dim_R M = 3 \) it becomes \(H^4(G, M) = 0 \). The latter holds, for example, whenever \(M \) is a \(G \)-permutation module without \(|G| \)-torsion; explicitly, as a \(G \)-module, \(M \cong \bigoplus_H (\mathbb{Z}/G) \otimes_{\mathbb{Z}(H)} M(H) \), where \(H \) runs over certain subgroups of \(G \) and each \(M(H) \) is an \(H \)-submodule of \(M^H \) so that \(|H| m = 0 \), \(m \in M(H) \) implies \(m = 0 \).

3.3. Example: Multiplicative Invariants over Cohen–Macaulay Rings. Let \(M = R = k[A] \) be the group ring of a free abelian group \(A \cong \mathbb{Z}^n \) over a Cohen–Macaulay ring \(k \); so \(R \) is Cohen–Macaulay as well. Let \(G \) act on \(A \) by group automorphisms. By \(k \)-linear extension to \(R \) we obtain a \(G \)-action on \(R \) by algebra automorphisms which is indeed a permutation action. Thus, the foregoing implies immediately that \(R^G \) is Cohen–Macaulay when \(n + \dim k \leq 3 \) and \(k \) has no \(|G| \)-torsion. We will return to this type of group action, called multiplicative, in greater detail in Section 5, focusing on the case where \(k \) is a field whose characteristic divides \(|G| \).

3.4. Depth Formula. In view of Corollary 3.2, we may concentrate on the case where \(M \) has non-vanishing positive \(G \)-cohomology. The following proposition is a version of results of Kemper, see [Ke1, Corollary 1.6; Ke2, Kor. 1.18].

Proposition 3.3. Assume that \(R M \) is Cohen–Macaulay and that \(\sqrt{\alpha} \supseteq \text{ann}_{R^G} M^G \). Furthermore, assume that, for some \(r \geq 0 \), \(H^q(G, M) = 0 \) holds for \(0 < q < r \) but \(\alpha x = 0 \) for some \(0 \neq x \in H^q(G, M) \). Then

\[
\text{depth}(\alpha, M^G) = \min\{r + 1, \text{depth}(\alpha, M)\}.
\]

Remark. \(\text{height}(\alpha, M) = \text{depth}(\alpha, M) \) holds in the above formula; see Lemma 3.1.

Proof of Proposition 3.3. Our hypothesis \(\alpha x = 0 \) for some \(0 \neq x \in H^q(G, M) \) is equivalent with \(H^0_{\alpha}(H^q(G, M)) \neq 0 \); so \(\text{depth}(\alpha, H^q(G, M)) = 0 \). The asserted equality is trivial for \(r = 0 \), since \(\text{depth}(\alpha, M^G) = \text{depth}(\alpha, M) = 0 \) holds in this case. Thus we assume that \(r > 0 \). Then, in
the notation of Lemma 2.1, we have \(r = h \), and part (a) of the lemma gives the inequality \(\geq \).

To prove the reverse inequality, note that Lemma 3.1 gives depth(\(\alpha, M \)) \(\geq \) depth(\(\alpha, M^G \)). Therefore, it suffices to show that depth(\(\alpha, M^G \)) \(\leq r + 1 \) if depth(\(\alpha, M \)) \(> r + 1 \). For this, we quote Lemma 2.1(b) with \(p_0 = 0 \) and \(q_0 = r \) (so \(s = r \)).

4. THE SYLOW SUBGROUP OF \(G \)

4.1. In this section, we focus on rings of invariants \(R^G \). If not explicitly mentioned otherwise, \(R \) is assumed to be noetherian as a \(R^G \)-module and to have characteristic \(p \), a positive prime. We let \(P \) denote a Sylow \(p \)-subgroup of \(G \).

4.2. A Necessary Condition. Put

\[
\mu = \mu(G, R) = \inf \{ r > 0 | H^r(G, R) \neq 0 \}.
\]

Proposition 4.1. Put \(\mathcal{P} = \{ P' \leq P | \text{height } I_R(P') \leq \mu + 1 \} \). If \(R \) and \(R^G \) are both Cohen–Macaulay and \(\mu < \infty \) then the restriction map

\[
\text{res}^G_{\mathcal{P}}: H^\mu(G, R) \to \prod_{P' \in \mathcal{P}} H^\mu(P', R)
\]

is injective.

Proof. Let \(0 \neq x \in H^\mu(G, R) \) be given and put \(\alpha = \text{ann}_{R^G}(x) \). Then, by Proposition 1.4,

\[
\text{height } \alpha \geq \inf \{ \text{height } I_R(P') | P' \text{ a } p \text{-subgroup of } G, \ x|_{P'} \neq 0 \}.
\]

Since \(R^G \) is Cohen–Macaulay, height \(\alpha = \text{depth } \alpha \). Finally, Proposition 3.3 with \(M = R \) gives depth \(\alpha \leq \mu + 1 \). Thus, there exists a \(p \)-subgroup \(P' \) of \(G \) with \(x|_{P'} \neq 0 \) and height \(I_R(P') \leq \mu + 1 \). Note that both the condition \(x|_{P'} \neq 0 \) and the value of height \(I_R(P') \) are preserved upon replacing \(P' \) by a conjugate \(gP' \) with \(g \in G \). Therefore, we may assume that \(P' \leq P \), which proves the proposition.

4.3. Galois and Almost Galois Actions. Recall that the \(G \)-action on a commutative ring \(R \) is Galois, in the sense of Auslander and Goldman [AG], if every maximal ideal of \(R \) has trivial inertia group in \(G \) or, equivalently, \(I_R(H) = R \) holds for all subgroups \(1 \neq H \leq G \). Thus, a \(G \)-action on the coordinate ring of an affine variety \(X \) is Galois precisely if the fixed point subvarieties \(X^H \) are empty.
We will say that a G-action on R is almost Galois if height $I_R(H) \geq \dim R$ holds for all $1 \neq H \leq G$ (where height $R = \infty$). In the geometric setting, this means that the fixed point subvarieties X^H are finite. For linear actions, X is a nonzero vector space on which G acts linearly; so each X^H is a subspace. Thus, linear actions are never Galois (when $G \neq 1$), and they are not even almost Galois in the modular case (i.e., when $P \neq 1$). Similarly, multiplicative actions (cf. Section 3.3) are never Galois but they are often almost Galois; see Section 5.2. Part (a) of the following proposition holds for any commutative ring R; it is included for the sake of completeness.

Proposition 4.2. (a) If the G-action on R is Galois then R^G is Cohen–Macaulay if and only if R is.

(b) Assume that R is Cohen–Macaulay and that the action of the Sylow p-subgroup P on R is almost Galois. Then R^G is Cohen–Macaulay if and only if $\dim R \leq \mu + 1$.

Proof. (a) By [CHR, Lemma 1.6 and Theorem 1.3], the trace map $\text{tr}_G : R \to R^G$ is surjective for Galois actions and R is finitely generated projective as an R^G-module. Thus, R is faithfully flat as an R^G-module. Moreover, for any prime \mathfrak{p} of R, the fibre $R_{\mathfrak{p}}/(\mathfrak{p} \cap R^G)R_{\mathfrak{p}}$ has dimension 0. Therefore, by [BH, 2.1.23], R^G is Cohen–Macaulay if and only if R is.

(b) The implication \Leftarrow follows from Corollary 3.2 with $M = R$. For the converse, let R^G be Cohen–Macaulay and assume, without loss, that $\mu < \infty$. Then Proposition 4.1 implies that there is a subgroup $1 \neq P' \leq P$ with height $I_R(P') \leq \mu + 1$. On the other hand, by hypothesis on the P-action, height $I_R(P') \geq \dim R$; so $\dim R \leq \mu + 1$.

4.4. Example: Affine Actions on Polynomial Algebras. A G-action on the polynomial algebra $R = k[X_1, \ldots, X_n]$ over a field k is called affine if G stabilizes the subspace $L = k + \sum_kX_j$ of polynomials of degree at most 1. Since G acts trivially on k, the quotient $V = L/k$ inherits a $k[G]$-module structure. Let $\gamma \in \text{Ext}_{k[G]}(V, k)$ denote the extension class of $0 \to k \to L \to V \to 0$. We claim

the G-action on R is Galois if and only if the restrictions

$\gamma|_H \in \text{Ext}_{k[H]}(V, k)$ are nonzero for all subgroups

$1 \neq H \leq G$.

Indeed, if $\gamma|_H = 0$ for some H then H acts linearly on R, and hence the action won’t be Galois. Conversely, assume that all $\gamma|_H$ are nonzero. Then G is a p-group, where $p = \text{char } k$. In order to show that all $I_R(H) = R$, it suffices to consider cyclic subgroups $1 \neq H = \langle h \rangle$. But then the restriction
map $\text{Ext}_{k[H]}(V, K) \to \text{Ext}_{k[H]}(V^H, k)$ can be identified with the canonical map $\text{ann}_{V^*} \sum h/(h - 1)V^* \to (V^H)^* \cong V^*/(h - 1)V^*$, and hence it is injective. Thus, $\gamma|_H$ has a nonzero image in $\text{Ext}_{k[H]}(V^H, k)$, that is, $0 \neq h(l) - l \in k$ holds for some $l \in L$. Since $h(l) - l \in I_R(H)$, we conclude that $I_R(H) = R$, as desired.

In the special case where the G-action on V is trivial, $\text{Ext}_{k[G]}(V, k)$ can be identified with $\text{Hom}(G, V^*)$ and the above Galois condition just says that γ is an injection $G \to V^*$. Geometrically, this case corresponds to an action of G on $\text{Hom}(R, k) \cong V^*$ by translations, $g(f) = f - \gamma(g)$.

Returning to general affine actions on R, we remark that if the action of the Sylow p-subgroup P is almost Galois then it is actually Galois. For, as we have remarked above, no nonidentity subgroup of P can act linearly, and so γ must restrict nontrivially to all these subgroups. In this case, the P-trace tr_P is surjective, and hence so is tr_G which in turn entails that $\mu = \infty$. Hence Proposition 4.2(b) says

$$\gamma|_H \neq 0 \text{ for all subgroups } 1 \neq H \leq P \Rightarrow R^G \text{ is Cohen-Macaulay.}$$

4.5. Bireflections. Following [Ke$_2$], we will call an element $g \in G$ a bireflection on R if height $I_R(\langle g \rangle) \leq 2$.

Corollary 4.3. Assume that R and R^G are Cohen-Macaulay. Let H denote the subgroup of G that is generated by all p'-elements of G and all bireflections in P. Then $R^G = R^G_H$.

Proof. First note that H is a normal subgroup of G and G/H is a p-group. Thus, if $R^G \neq R^G_H$ or, equivalently, $\ Henri(G/H, R^H) \neq 0$ then also $H^1(G/H, R^H) \neq 0$; see [Br, Theorem VI.8.5]. In view of the exact sequence

$$0 \to H^1(G/H, R^H) \to H^1(G, R) \xrightarrow{\text{res}_H^G} H^1(H, R)$$

(see [Ba, 35.3]) we further obtain $H^1(G, R) \neq 0$. Thus, $\mu = 1$ holds in Proposition 4.1 and every $P' \in \mathcal{P}$ consists of bireflections. Therefore $P' \subseteq H$ and Proposition 4.1 implies that $\text{res}_H^G : H^1(G, R) \to H^1(H, R)$ is injective, contradicting the above exact sequence. Therefore, we must have $R^G = R^G_H$. \blacksquare

In case $\mathbb{F}_p = \mathbb{Z} \cdot 1_R$ is a G-module direct summand of R, the conclusion $R^G = R^G_H$ of the above corollary is equivalent with $G = H$. In this form, the corollary is essentially [Ke$_2$, Korollar 4.10] (at least for affine R).

4.6. The Case $|P| = p$. Put

$$\mu_p(G) = \mu(G, \mathbb{F}_p) = \inf\{r > 0 \mid H^r(G, \mathbb{F}_p) \neq 0\}.$$
We will determine this number in the case where the order of \(G \) is
divisible by \(p \) but not by \(p^2 \); in other words, \(|P| = p\). As usual \(\mathbb{N}_G(P) \) and
\(C_G(P) \) will denote the normalizer and the centralizer, respectively, of \(P \) in
\(G \). Thus, \(\mathbb{N}_G(P)/C_G(P) \) is a subgroup of \(\text{Aut}(P) = \text{Aut}(\mathbb{Z}/p) \cong \mathbb{F}_p^* \), and hence it is cyclic of order dividing \(p - 1 \).

Corollary 4.4. Assume that \(|P| = p\). Then \(\mu_p(G) = 2[\mathbb{N}_G(P) : C_G(P)] - 1 \). Moreover, if \(\mathbb{F}_p \) is a \(G \)-module direct summand of \(R \) and \(R \) and \(R^G \) are both Cohen–Macaulay then height \(I_{\mathbb{F}}(P) \leq 2[\mathbb{N}_G(P) : C_G(P)] \).

Proof. Put \(N = \mathbb{N}_G(P), C = C_G(P), \) and \(r = 2[\mathbb{N} : C] - 1 \). In order to prove that \(\mu_p(G) = r \), we use the fact that \(H^*(G, \mathbb{F}_p) \cong H^*(P, \mathbb{F}_p)^{N/C} \) holds for \(\ast > 0 \); see [Be, Corollary 3.6.19]. If \(p = 2 \) then \(N = C \) and so \(r = 1 \). Moreover, \(H^*(P, \mathbb{F}_p)^{N/C} \cong H^*(\mathbb{Z}/2, \mathbb{F}_2) \) equals \(\mathbb{F}_2 \) in all degrees.

This proves the assertion for \(p = 2 \); so we assume \(p \) odd from now on. In
this case, \(H^*(\mathbb{Z}/p, \mathbb{F}_p) \cong \mathbb{F}_p[v_1, b_2]/(v_1^2, v_1b_2 - b_2v_1) \) with \(\deg v_1 = 1 \) and
\(\deg b_2 = 2 \); see [AM, Corollary II.4.2]. Moreover, identifying \(\text{Aut}(\mathbb{Z}/p) \) with \(\mathbb{F}_p^* \), the action of \(\text{Aut}(\mathbb{Z}/p) \) on \(H^*(\mathbb{Z}/p, \mathbb{F}_p) \) becomes scalar multiplication, \(v_1 \mapsto \phi v_1, b_2 \mapsto \phi b_2 \), where \(\phi \in \mathbb{F}_p^* \). Taking \(\phi \) to be a generator for the subgroup of \(\mathbb{F}_p^* \) corresponding to \(N/C \), we see that

\[
H^*(P, \mathbb{F}_p)^{N/C} \cong \bigoplus_{i \geq 0} \mathbb{F}_p[v_1 b_2^{[N/C]}] \oplus \bigoplus_{i > 0} \mathbb{F}_p v_1 b_2^{[N/C]} - 1;
\]

see [AM, pp. 104–105]. The smallest positive degree where \(H^*(P, \mathbb{F}_p)^{N/C} \) does not vanish is therefore indeed \(2([N : C] - 1) + 1 = r \).

Now assume that \(\mathbb{F}_p \) is a \(G \)-module direct summand of \(R \) and \(R \) and \(R^G \) are both Cohen–Macaulay. The former hypothesis implies that \(H^*(G, R) \neq 0 \) and hence \(\mu \leq r \). Moreover, our hypothesis on \(|P|\) implies that \(\mathcal{P} \ni P \) holds in Proposition 4.1, because otherwise \(\mathcal{P} \) would consist of the identity subgroup alone. Therefore, height \(I_{\mathbb{F}}(P) \leq \mu + 1 \leq r + 1 \), as desired.

In the case of a linear action, the upper bound for height \(I_{\mathbb{F}}(P) \) given in
the above corollary also follows from [Ke3, Theorem 3.1].

4.7. The Non-Cohen–Macaulay Locus. We finish this section by recording an elementary observation independent of the local cohomology methods used thus far and valid for any commutative ring \(R \).

By definition, the non-Cohen–Macaulay locus of \(R^G \) consists of those prime ideals \(\mathfrak{q} \) of \(R^G \) so that the localization \((R^G)_\mathfrak{q} \) is not Cohen–Macaulay. Thus, \(R^G \) is Cohen–Macaulay if and only if its non-Cohen–Macaulay locus is empty. Here, we point out a general bound for the non-Cohen–Macaulay locus in terms of relative trace maps. More detailed results for affine algebras over a field can be found in [Ke2, Kapitel 5].

Recall the notation \(R^G_{\mathcal{P}} \) from Section 1.3.
Proposition 4.5. Let \mathcal{H} denote the set of subgroups H of G so that R^H is Cohen–Macaulay. Then, for every prime ideal \mathfrak{p} of R^G so that $\mathfrak{p} \not\supseteq R^G_{\mathfrak{p}^G}$, the localization $(R^G)_{\mathfrak{p}}$ is Cohen–Macaulay.

Proof. By hypothesis, $\mathfrak{p} \not\supseteq R^G_H$ for some $H \in \mathcal{H}$. Let $R_\mathfrak{p}$ denote the localization of R at the multiplicative subset $R^G \setminus \mathfrak{p}$. Then the G-action on R extends to $R_\mathfrak{p}$ and $(R_\mathfrak{p})^G = (R^G)_{\mathfrak{p}}$. Similarly, $(R_\mathfrak{p})^H = (R^H)_{\mathfrak{p}}$, so $(R_\mathfrak{p})^H$ is Cohen–Macaulay. By choice of \mathfrak{p} the relative trace map $\text{tr}_{G/H}: (R_\mathfrak{p})^H \rightarrow (R_\mathfrak{p})^G$ is onto. Fix an element $c \in (R_\mathfrak{p})^H$ so that $\text{tr}_{G/H}(c) = 1$ and define $\rho: (R_\mathfrak{p})^H \rightarrow (R_\mathfrak{p})^G$ by $\rho(x) = \text{tr}_{G/H}(cx)$. This map is a “Reynolds operator,” i.e., ρ is $(R_\mathfrak{p})^G$-linear and restricts to the identity on $(R_\mathfrak{p})^G$. Since $(R_\mathfrak{p})^H$ is integral over $(R_\mathfrak{p})^G$, a result of Hochster and Eagon [HE; BH, Theorem 6.4.5] implies that $(R_\mathfrak{p})^G$ is Cohen–Macaulay, which proves the proposition.

As an application, we note that if G has subgroups H_i so that each R^H_i is Cohen–Macaulay and the indices $[G : H_i]$ are coprime in R^G then R^G is Cohen–Macaulay as well. Indeed, writing $1 = \sum [G : H_i] r_i$ with $r_i \in R^G$, we obtain $1 = \sum \text{tr}_{G/H_i}(r_i) \in R^G_{\mathfrak{p}^G}$; so the non-Cohen–Macaulay locus of R^G is empty.

5. Multiplicative Actions

5.1. In this section, we focus on a particular type of group action often called multiplicative actions. These arise from G-actions on lattices $A \cong \mathbb{Z}^n$ by extending the action k-linearly to the group algebra $R = k[A] \equiv k[X_1^{\pm 1}, \ldots, X_n^{\pm 1}]$. Here, we assume k to be a field such that $p = \text{char } k$ divides the order of G; otherwise the invariant subalgebra R^G would certainly be Cohen–Macaulay because R is; see Proposition 4.5. There is no loss in assuming G to be faithfully embedded in $\text{GL}(A) \cong \text{GL}_n(\mathbb{Z})$, and we will do so. The above notations will remain valid throughout this section.

5.2. The action of G on $R = k[A]$ is almost Galois (see Section 4.3) if and only if G acts fixed-point-freely on A, that is, no $1 \neq g \in G$ has an eigenvalue 1 on A. Furthermore, an element $g \in G$ is a bireflection on R (Section 4.5) if and only if the endomorphism $g - 1 \in \text{End}(A) \cong M_n(\mathbb{Z})$ has rank at most 2. Both these observations are consequences of the following

Lemma 5.1. For any subgroup $H \leq G$, height $I_R(H) = n - \text{rank } A^H$.

Proof. By definition, the ideal $I_R(H)$ of R is generated by the elements $h(a) - a = (h(a)a^{-1} - 1)a$ for $h \in H$, $a \in A$. Thus, $R/I_R(H) \cong$
\(k[A/\langle H, A \rangle] \), where we have put \([H, A] = \langle h(a)a^{-1} \mid h \in H, a \in A \rangle \leq A \).

Consequently, height \(I_R(H) = \dim R - \dim R/I_R(H) = n - \text{rank } A/[H, A] \). Finally, since the group algebra \(\mathbb{Q}[H] \) is semisimple, \(A \otimes \mathbb{Q} = (A^H \otimes \mathbb{Q}) \oplus ([H, A] \otimes \mathbb{Q}) \); so rank \(A/[H, A] = \text{rank } A^H \).

5.3. Since \(G \) permutes the \(k \)-basis of \(R \), the Eckmann–Shapiro Lemma [Br, VI 5.2] implies that

\[
H^*(G, R) \cong \bigoplus_{a \in A/G} H^*(G_a, k),
\]

where \(G_a \) denotes the isotropy group of \(a \) in \(G \). In particular, using the notations of Sections 4.2 and 4.6, we have

\[
\mu = \inf_{a \in A} \mu_p(G_a). \tag{5.1}
\]

5.4. Example: Inversion. Let \(G = \langle g = -1_{n \times n} \rangle \) act on \(R = k[X_1^\pm, \ldots, X_n^\pm] \) via \(g(X_i) = X_i^{-1} \). This action is fixed-point-free on \(A = \mathbb{Z}^n \).

Moreover, assuming \(p = 2 \), we have \(\mu = \mu_2(G) = 1 \) by (5.1). Therefore, Proposition 4.2(b) gives

\(R^G \) is Cohen–Macaulay if and only if \(n \leq 2 \).

5.5. Example: Reflection Groups. An element \(g \in G \) is called a reflection on \(R \) if height \(I_R(\langle g \rangle) \leq 1 \) or, equivalently, if the endomorphism \(g - 1 \in \text{End}(A) \cong M_n(\mathbb{Z}) \) has rank at most 1; see Lemma 5.1. If \(G \) is generated by reflections then \(R^G \) is an affine normal semigroup algebra over \(k \); see [Lo1]. Therefore, \(R^G \) is Cohen–Macaulay in this case, for any field \(k \); see [BH, Theorem 6.3.5]. This is in contrast with the situation for finite group actions on polynomial algebras by linear substitutions of the variables, where (modular) reflection groups need not lead to Cohen–Macaulay invariants [Nak].

5.6. Cyclic Sylow Subgroups. As before, we let \(P \) denote a fixed Sylow \(p \)-subgroup of \(G \). Moreover, \(O^p(G) \) denotes the intersection of all normal subgroups \(N \) of \(G \) so that \(G/N \) is a \(p \)-group.

THEOREM 5.2. Assume that \(O^p(G) \neq G \) and that \(P \) is cyclic. Then \(R^G \) is Cohen–Macaulay if and only if \(P \) is generated by a bireflection. In this case, \(P \) has order 2, 3, or 4.

Proof. Our hypothesis \(O^p(G) \neq G \) is equivalent with \(\mu_p(G) = 1 \); so \(\mu = 1 \) holds as well, by (5.1). Assuming \(R^G \) to be Cohen–Macaulay, Corollary 4.3 and the subsequent remark imply that \(G = H \). Since all \(p \)-elements of \(G \) belong to \(O^p(G) \), it follows that \(G/O^p(G) = P/P \cap O^p(G) \) is generated by the images of the bireflections in \(P \). Since \(P \) is cyclic, it follows that \(P \) is generated by a bireflection. Now, \(P \) acts faithfully on the lattice \(A/A^p \) of rank at most 2. Thus, \(P \) is isomorphic to
a cyclic p-subgroup of $GL_2(\mathbb{Z})$, and these are easily seen to have orders 2, 3, or 4.

The converse follows from the more general lemma below which does not depend on cyclicity of P or nontriviality of $G/O^p(G)$.

Lemma 5.3. If $\text{rank } A/A^p \leq 2$ then R^G is Cohen–Macaulay.

Proof. By Proposition 4.5, it suffices to show that R^p is Cohen–Macaulay; so we may assume that $G = P$ is a p-group. Note that G acts faithfully on A/A^G. If G acts as a reflection group on A then it does so on A as well, and hence the invariants R^G will be Cohen–Macaulay; see Section 5.5. Thus we may assume that A has rank 2 and G acts on $A \cong \mathbb{Z}^2$ as a non-reflection p-group. By the well-known classification of finite subgroups of $GL_2(\mathbb{Z})$ (e.g., [Lo, 2.7]), this leaves the cases $G \cong \mathbb{Z}/q$ with $q = 2, 3, or 4$ to consider.

The cases $q = 2 or 3$ can be dealt with along similar lines. Indeed, for both values of q, the only indecomposable G-lattices, up to isomorphism, are \mathbb{Z}, $\mathbb{Z}[G]$, and $\mathbb{Z}[G]/(\hat{G})$, where $\hat{G} = \sum_{g \in G} g$; see [CR, Exercise 4, p. 514/5]. Thus, $A \cong \mathbb{Z}^m \oplus (\mathbb{Z}[G]/(\hat{G}))/\mathbb{Z}[G]$, and $R^G \cong k[B]^G[X_1^{\pm 1}, \ldots, X_m^{\pm 1}]$, where we have put $B = (\mathbb{Z}[G]/(\hat{G}))/\mathbb{Z}[G]$. Since R^G is Cohen–Macaulay if and only if $k[B]^G$ is, we may assume that $m = 0$.

Now, $A \cong (\mathbb{Z}[G]/(\hat{G}))^{r+s}$; so $2 = (r+s)|G| - 1$. When $n = 3$, this leads to either $r = 1, s = 0$ or $r = 0, s = 1$. In the former case, rank $A = 2$ and so R^G is surely Cohen–Macaulay, being a normal domain of dimension 2. If $r = 0, s = 1$ then A is a G-permutation lattice of rank 3. Hence, $R = k[A]$ is a localization of the symmetric algebra $S(A \otimes k)$, and likewise for the subalgebras of invariants. Since linear invariants of dimension ≤ 3 are known to be Cohen–Macaulay (e.g., [Ke]), R^G is Cohen–Macaulay in this case as well. For $n = 2$, there are three cases to consider, one of which ($r = 2, s = 0$) leads to an invariant algebra of dimension 2 which is clearly Cohen–Macaulay. Thus, we are left with the possibilities $r = 1, s = 1$, and $r = 0, s = 2$. Explicitly, after an obvious choice of basis, G acts as one of the following groups on A:

Case 1.

$$G_1 = \langle g_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle.$$

Case 2.

$$G_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
For G, $A \cong \mathbb{Z}^4$ is a permutation lattice. Hence, as above, it suffices to check that the linear invariant algebra $S(V)^G$ for $V = A \otimes k$ is Cohen–Macaulay which is indeed the case, by [ES], since $\dim V/V^G = 2$.

For G_1, one can proceed as follows: Embed G_1 into $\Gamma = \langle g_1, \text{diag}(-1, 1, 1) \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2$ and denote the corresponding basis of $A \cong \mathbb{Z}^3$ by $\{x, y, z\}$; so $g_1(x) = x^{-1}$, $g_1(y) = z$, and $g_1(z) = y$. One easily checks that $R^\Gamma = k[\xi, \alpha_1, \sigma_2]$, where $\xi = x + x^{-1}$, $\alpha_1 = y + z$, and $\sigma_2 = yz$. Furthermore, $R = k[A] = R^\Gamma \otimes xR^\Gamma \otimes yR^\Gamma \otimes xyR^\Gamma$. With this, the invariant subalgebra R^{G_1} is easily determined; the result (for char $k = 2$) is $R^{G_1} = R^G \otimes (xy + x^{-1}z)R^\Gamma$ which is indeed Cohen–Macaulay. This completes the proof for $G \cong \mathbb{Z}/2$ or $\cong \mathbb{Z}/3$.

We now sketch the remaining case, $G = \langle g \rangle \cong \mathbb{Z}/4$. The action on $\mathcal{A} = A/A^G$ can then be described by $G \bar{x} = \langle (0, -1) \rangle$; so $\mathcal{A} \cong \mathbb{Z}[G]/(g^2 + 1)$. With this, one calculates $\text{Ext}_G(\mathcal{A}, \mathcal{A}) \cong \mathbb{Z}/2$. Thus, there is exactly one (up to isomorphism) non-split extension of G-modules $0 \to \mathcal{A} \to U \to \mathcal{A} \to 0$. A suitable module U is $U = \mathcal{A}[G]/(g - 1)(g^2 + 1)$. Furthermore, one calculates $\text{Ext}_G(U, \mathcal{A}) = 0$. Consequently, either $A \cong A^G \otimes \mathcal{A}$ or $A \cong \mathbb{Z}^m \oplus U$, and hence either $R^G \cong k[\mathcal{A}][A^G]$ which is Cohen–Macaulay because $k[A]^G$ has dimension 2, or $R^G \cong k[U]^G[X_1^\pm 1, \ldots, X_n^\pm 1]$ which is Cohen–Macaulay precisely if $k[U]^G$ is. This reduces the problem to the case where $A = U$ which can be handled by direct calculation, taking advantage of the fact that a conjugate of group G_1 is contained in G. We leave the details to the reader.

ACKNOWLEDGMENT

We thank Don Passman for the proof of Lemma 1.1 and Gregor Kemper for his comments on a preliminary version of this article. Thanks also to the referee for many valuable suggestions.

REFERENCES