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In this note we study the constraints on F-theory GUTs with extra U (1)’s in the context of elliptic 
fibrations with rational sections. We consider the simplest case of one abelian factor (Mordell–Weil rank 
one) and investigate the conditions that are induced on the coefficients of its Tate form. Converting 
the equation representing the generic hypersurface P112 to this Tate’s form we find that the presence 
of a U (1), already in this local description, is consistent with the exceptional E6 and E7 non-abelian 
singularities. We briefly comment on a viable E6 × U (1) effective F-theory model.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

It has been by now widely accepted that additional U (1) or dis-
crete symmetries constitute an important ingredient in GUT model 
building. Such symmetries are useful to prevent dangerous super-
potential couplings of the effective field theory model, in particular 
those inducing proton decay operators and lepton number violat-
ing interactions at unacceptable rates. Model building in the con-
text of string theory has shown that such symmetries are naturally 
incorporated in the emerging effective field theory model. In the 
context of F-theory [1] in particular, the last few years several GUT 
symmetries have been analysed with the presence of additional 
U (1) factors [2].2

In F-theory models the non-abelian part of the gauge group is 
determined by specific geometric singularities of the internal man-
ifold. The internal space is an elliptically fibred Calabi–Yau (CY) 
fourfold Y4, over a three-fold base B3. The fibration is determined 
by the Weierstraß model

y2 = x3 + f (ξ)xz4 + g(ξ)z6 (1)

where the base of the fibration corresponds to the point of the 
torus z → 0 and as such it defines a zero section at [x : y : z] = [t2 :
t3 : 0]. For particularly restricted f , g functions the fiber degener-
ates over certain points of the base. The non-abelian singularities 
of the fiber are well known and have been systematically classi-
fied with respect to the vanishing order of the functions f , g and 
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2 For an incomplete list see [3–10], the reviews [11–14] and references therein.
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the roots of the discriminant of (1), by Kodaira [15]. An equiva-
lent description useful for local model building is also given by 
Tate [16,17]. There are U (1) symmetries however which do not 
emerge from a non-abelian singularity and as such they do not fall 
into the category of a Cartan subalgebra. There is no classification 
for such U (1) symmetries analogous to the non-abelian case and 
up to now they have not been fully explored. Abelian factors corre-
spond to extra rational sections and as such they imply additional 
restrictions on the form of the functions f , g . Because sections are 
given in terms of divisors whose intersection points with the fiber 
should be distinct and not identifiable by any monodromy action, 
this can occur only for rational intersection points. Therefore, for 
such points of an elliptic curve fibred over B3, their corresponding 
degree line bundle has a section that vanishes at these points.

It is known that rational points on elliptic curves constitute a 
group, the so called Mordell–Weil group. The Mordell Weil group 
is finitely generated in the sense that there exists a finite basis 
which generates all its elements [18]. A finitely generated group 
can be written as

Z ⊕ Z ⊕ · · · ⊕ Z ⊕ G

where G is the torsion subgroup, which in principle could be a 
source for useful discrete symmetries in the effective Lagrangian. 
Recent developments in F-theory have analysed some properties 
of the latter and its implications on effective field theory mod-
els. The rank of the abelian group is the rank of the Mordell–Weil 
group [19,20], however, the latter in not known. Up to now, stud-
ies with one, two and three extra sections have appeared and 
some general implications on the low energy models have been 
accounted for [21–33].
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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In this note we argue that the appearance of extra sections has 
significant implications on the engineering of non-abelian gauge 
symmetries based on the local Tate form of the model. In par-
ticular, in the case of local constructions based on the simple 
Tate’s algorithm the rational sections impose certain restrictions 
on the defining equation. When the latter is converted to the fa-
miliar local Tate’s form, in order to meet the requirements of the 
extra rational section, certain relations among Tate’s form coeffi-
cients occur. We will see that such constraints make impossible 
the appearance of familiar groups such as SU(5) in the local Tate 
form. To our knowledge, this issue has not been observed, and 
it might constitute another obstruction on the validity of simple 
Tate’s algorithm similar to those observed in reference [32]. Such 
obstructions can be evaded in more general models based on the 
‘top’ constructions of toric geometry [34]. Using the latter tech-
niques, SU(5) models with several Mordell–Weil U (1)’s have been 
built [21–33]. However, in this note we show that in the context 
of the familiar local Tate’s algorithm, viable effective models based 
on the exceptional singularities can be still easily accommodated.

Therefore, it is the purpose of this note to examine the afore-
mentioned constraints and discuss the implications in the effective 
theory. As a “test ground”, we consider in particular the simplest 
case of two sections, i.e., one extra section in addition to the uni-
versal one and since abelian factors are related to extra sections, 
this means that the GUT symmetry will be supported by an ex-
tra U (1). Given the existence of one extra section, we re-derive 
the constraints on the Weierstraß model written in Tate’s form. In-
vestigating the relations of the coefficients we find that there are 
basically two viable GUT symmetries, namely E6 and E7 supple-
mented by the extra abelian factor. We briefly discuss the spec-
trum of the model E6 × U (1).

2. Case of two rational points

To set the stage, we recapitulate in this section some rele-
vant results derived in [20]. In fact, we re-consider thoroughly the 
derivation of the Weierstraß equation from the P (1,1,2) fibration 
with two rational sections. As a result, in the process of converting 
the initial form we find a second solution which is distinct from 
the first one with respect to the signs of the coefficients in Tate’s 
model.

We consider an elliptic curve E over a field K, a point P asso-
ciated to the holomorphic (zero) section, a rational point Q , and 
denote M =O(P + Q ) the corresponding line bundle of degree 2. 
From the Riemann–Roch theorem for genus one curves, we know 
that the number of global sections of a line bundle M is equal 
to its degree, h0(M) = d. Because in our case d = 2, the group 
H0(M) must have two sections which we call them u and v with 
weights equal to 1. Considering now H0(2M), it can be seen that a 
new section w with weight 2 is required, so that the three weights 
are [u, v, w] = [1, 1, 2]. Further, from u, v, w one can form six sec-
tions of degree 6 which match exactly the number of independent 
sections of H0(3M), while all possible sections corresponding to 
H0(4M) that can be constructed are nine, exceeding the indepen-
dent ones by one. Hence there has to be a constraint among them 
which defines a hyper-surface in the weighted projective space 
P (1,1,2) given by the equation which relates them

w2 + a0u2 w + a1uv w + a2 v2 w

= b0u4 + b1u3 v + b2u2 v2 + b3uv3 + b4 v4 (2)

with ai, b j coefficients in K.
One of the sections corresponds to the universal one so it van-

ishes at the two points P , Q . We can take this to be the u section 
and therefore Eq. (2) at these points becomes
w2 + a2 v2 w = b4 v4 (3)

The roots of the equation correspond to the points P , Q and since 
these are rational points the equation should split in two factors, 
with all coefficients in the field K. To avoid square roots we may 
redefine w̃ = w + ζ v2, ̃a2

2 = a2
2 + 4b4 with 2ζ = a2 − ã2 and write 

this equation as w̃2 + ã2 w̃ v2 = 0. Renaming w̃ → w for simplicity, 
we get

w
(

w + a2 v2) = 0

whose roots are the points P , Q

[u : v : w] = [0 : 1 : 0] and [u : v : w] = [0 : 1 : −a2]
With this redefinition, we can eliminate the term b4 v4 in the 
original equation (2), while similar reasoning allows us to set 
a0 = a1 = 0. Under the aforementioned circumstances the original 
equation reads3

w2 + a2 v2 w = u
(
b0u3 + b1u2 v + b2uv2 + b3 v3) (4)

To recover the Weierstraß form with global section associated to P , 
one has to find sections H0(kP ). Since from group structure this is 
H0(kM − kQ ) one has to look for H0(kM) vanishing k times at Q .

Starting with k = 1, we have already assumed that the section u
vanishes at P , Q and thus one can set u := z. For k = 2 one section 
is u2 while the other must be a linear combination of all possible 
degree-2 sections. Let

w = γ u2 + βuv + αv2

Substituting in Eq. (2) while organising in powers of u, we get

(
β2 + γ (2α + a2) − b2

)
u2 + (

β(2α + a2) − b3
)
u + α(α + a2)

The vanishing of the coefficients of zeroth and first order powers 
in u above, gives the solutions

α = −a2, β = −b3

a2

and

α = 0, β = b3

a2

Therefore, (setting γ = 0 since section u2 has already been in-
cluded) we can have two possible forms of the section x given by

x = b3uv + a2 w + a2
2 v2

x = b3uv − a2 w (5)

To find y we examine H0(3M). In general we expect another 
combination of the form

w = μu2 + λuv + κv2

We substitute as before, and demand vanishing of the coefficients 
up to second order in u:

κ(a2 + κ) = 0, λ(a2 + 2κ) − b3 = 0

μ(a2 + 2κ) − b2 + λ2 = 0

3 Notice that the singularity is resolved by blowing up w → sw and u → su so 
that

sw2 + a2 v2 w = u
(
b0u3s3 + b1u2s2 v + b2usv2 + b3 v3)

.
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Again, we obtain two distinct solutions which imply two forms 
of y:

y = a3
2 v3 + a2

2 v w + a2b2u2 v − b2
3u2 v

a2
+ a2b3uv2

y = a2
2 v w − a2b2u2 v + b2

3u2 v

a2
− a2b3uv2 (6)

To recover the Weierstraß form of the original equation, we 
must invert the equations of x(u, v, w), y(u, v, w) and substitute 
them into the original equation. On can observe that both sets of 
x, y solutions leads to the same Weierstraß form. For the first so-
lution

v = a2 y

a2
2(b2u2 + x) − b2

3u2

w = − a3
2 y2

(b2
3u2 − a2

2(b2u2 + x))2
+ b3uy

b2
3u2 − a2

2(b2u2 + x)
+ x

a2

u = z (7)

while, inverting the second solution for x, y we obtain

v = a2 y

b2
3u2 − a2

2(b2u2 + x)

w = b3uy

b2
3u2 − a2

2(b2u2 + x)
− x

a2

u = z (8)

These lead to the Weierstraß equation in Tate’s form

y2 + 2
b3

a2
xyz ± b1a2 yz3

= x3 ±
(

b2 − b2
3

a2
2

)
x2z2 − b0a2

2xz4 − b0a2
2

(
b2 − b2

3

a2
2

)
z6 (9)

with the upper signs corresponding to the first case and the lower 
ones to the second solution.

Defining the functions

f = b1b3 − a2
2b0 − b2

2

3

g = b0b2
3 + 1

12
a2

2

(
3b2

1 − 8b0b2
) + 2

27
b3

2 − 1

3
b1b3b2 (10)

we may also write down the compact Weierstraß form of the lat-
ter, which is just the form given in (1).

3. Constraints on gauge group structure of the effective model

After this short review we proceed with the investigation of 
the obtained Weierstraß form. The main point we wish to stress is 
that in the specific form given above, the coefficients satisfy certain 
relations and therefore are strongly constrained. In this work we 
restrict our analysis to Weierstraß equation given by the original 
Tate’s algorithm [16,17].4 Since the specific type of the non-abelian 
singularity depends on the form of these coefficients, these afore-
mentioned relations are expected to impose restrictions on the 
gauge group of the effective theory. However, before abandoning 
the simple Tate algorithm, it is worth considering whether there 
are viable GUT symmetries left over to accommodate the Standard 
Model gauge group. To see this, we should compare (9) with the 
general Tate form given by

4 A generalisation of these results can be found in [32].
Table 1
Tate’s algorithm for the most common non-abelian groups [16,17]. Table shows the 
gauge group, the order of vanishing of the coefficients αk ∼ ak,nξn , the discriminant 
	 and the corresponding singularity type.

Group α1 α2 α3 α4 α6 	 Type

SU(2n) 0 1 n n 2n 2n Is
2n

SU(2n + 1) 0 1 n n + 1 2n + 1 2n + 1 I s
2n+1

SO(10) 1 1 2 3 5 7 I∗s
1

E6 1 2 2 3 5 8 IV∗s

E7 1 2 3 3 5 9 III∗s

E8 1 2 3 4 5 10 IIs

y2 + α1xyz + α3 yz3 = x3 + α2x2z2 + α4xz4 + α6z6 (11)

Comparing the two equations, we can extract the relations

α1 = ±2
b3

a2

α2 = b2 − b2
3

a2
2

α3 = ±b1a2

α4 = −b0a2
2

α6 = −
(

b2 − b2
3

a2
2

)
b0a2

2 (12)

Inspecting these equations, we can easily observe that the follow-
ing relation holds among the coefficients

α6 = α2α4 (13)

Notice now that each of the coefficients can be represented locally 
by an expansion in the ‘normal’ coordinate ξ

αn(ξ) = αn,0 + αn,1ξ + · · ·
As is well known, the type of the geometric singularity associated 
to the non-abelian gauge group is determined by the vanishing 
order of the coefficients αn(ξ) with respect to ξ . For the most 
common non-abelian symmetries these data are summarised in 
Table 1.

We can examine now whether a relation of the form (13) can 
be fulfilled.

• From the first row of the table we can read off the relations 
of the coefficients for the SU(2n) case. Indeed, the vanishing order 
of a2 is one, thus we may write a2 = a2,1ξ , meaning that a2,1 has 
a constant part plus possible ξ -dependent terms. Similarly, in the 
same notation we write a4 = a4,nξn and a6 = a6,2nξ2n . Hence,

α2α4 ∝ α2,1α4,nξ
n+1, α6 ∝ α6,2nξ

2n

therefore the equation a2a4 = a6 now reads

α2,1α4,nξ
n+1 = α6,2nξ

2n ⇒ n = 1

i.e., it is satisfied for n = 1, corresponding to the SU(2) group.
• For the SU(2n + 1) groups we have

α2α4 ∝ α2,1α4,n+1ξ
n+1, α6 ∝ α6,2n+1ξ

2n+1

therefore the equation yields

α2,1α4,n+1ξ
n+2 = α6,2n+1ξ

2n+1 ⇒ n = 1

which is satisfied for n = 1 implying an SU(3) group.
The above analysis shows that, in the context of Tate’s form 

for the P (1,1,2) case and the simple mapping to Weierstraß model 
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Table 2
The vanishing order of the coefficients bk ∼ bk,nξn , of Eq. (4) for the E6 and E7

models.

Group a2 b0 b1 b2 b3

E6 1 1 1 2 2
0 3 1 2 1

E7 1 1 2 2 2
0 3 3 2 1

P (1,2,3) described in Section 2, the only groups compatible with the 
constraints of one additional rational section are SU(3) and SU(2). 
Extending our investigation to SO(n) singularities, we infer that, if 
we restrict to the lower bounds on the vanishing orders of the co-
efficients αn(ξ) in Tate’s algorithm, the most common GUT groups 
such as SU(5) and SO(10) are not accommodated. To resolve this 
issue a more detailed treatment is required and a non-minimal 
version of the coefficients should be sought to meet these condi-
tions. In fact, such GUT models can appear within the so called 
‘top’ constructions of toric geometry, which have been studied 
in [21–33]. Recently, the implementation of the latter technique 
was shown to give rise to explicit constructions of various codi-
mension one singularities. However, we stress in this note that the 
familiar local Tate’s forms are not completely excluded. Indeed, re-
peating the analysis for the exceptional groups, we will find out 
immediately, that the required criteria are fulfilled by two of them.

• For E6 we have

α2α4 ∝ α2,2α4,3ξ
5, α6 ∝ α6,5ξ

5

i.e., the ξ powers match and therefore we only need to impose the 
equality constraint

α2,2α4,3 = α6,5

Once this condition is satisfied, we also need to check the remain-
ing coefficients constrained by Eqs. (12). To investigate these rela-
tions, we express all coefficients in terms of a2. Assuming that the 
latter is given in terms of an unspecified power of the coordinate, 
a2 ∝ ξn , we find that a consistent solution exists in accordance 
with

b0 = −α43ξ
3−2n, b1 = α32ξ

2−n

b2 = (
a22 + a2

11/2
)
ξ2, b3 = (a11/2)ξn+1 (14)

Requiring the b0 coefficient to be a positive power in ξ we see that 
this leaves two possibilities for the integer n, namely n = 0, 1.

Substituting (14) into Eqs. (12) we find

α1 = α11ξ, α2 = α2ξ
2, α3 = α32ξ

2

α4 = α43ξ
3, α6 = α65ξ

5

As can be checked in Table 2 this is just the requirement to obtain 
an E6 singularity. We compute the discriminant to find

	 = −27α4
32ξ

8 +O
(
ξ9)

which, as expected has vanishing order 8.
• Repeating the analysis of the E7 case, we end up with the 

conditions on bi ’s listed in the corresponding rows of Table 2. Here, 
compared to the previous case, we require also the vanishing of 
the coefficient α32 so that α3 = α3,3ξ

3. It is also straightforward to 
see that 	 ∝ ξ9 in accordance with Table 1. Finally, notice that for 
the E8 case, the condition a2a4 = a6 cannot be fulfilled.
4. E6 × U (1)

From the previous analysis, we have seen that in the presence 
of an additional rational section which is associated to an extra 
U (1) symmetry, as long as the minimal requirements on αn of 
Table 1 are implemented, the available non-abelian groups com-
patible with the restrictions are SU(3), SU(2) and the E6 and E7. 
From these, only the exceptional groups are adequate to include 
the complete gauge symmetry of the SM.

The E6 model has been extensively analysed in the literature. 
In the present context the corresponding effective model is based 
on the extended gauge group

GGU T = E6 × U (1)

In the resulting effective theory all available matter is included 
in 78 and 27 representations. We can reduce the gauge symme-
try down to the Standard Model using appropriate U (1) fluxes. 
We can reach the properties of the representations by succes-
sive decompositions of the E6 representations. The decomposition 
E6 → SO(10) × U (1)y gives

78 → 450 + 16−3 + 163 + 10

27 → 161 + 10−2 + 14

Under SO(10) → SU(5) × U (1)x the non-trivial representations ob-
tain the following quantum numbers

450 → 24(0,0) + 10(4,0) + 10(−4,0) + 1(0,0) (15)

16−3 → 10(−1,−3) + 5(3,−3) + 1(−5,−3) (16)

10−2 → 5(2,−2) + 5(−2,−2) (17)

and analogously for the other representations, while the SU(5) sin-
glet emerging from 27 is 1(0,4) .

Observe that 10, 5’s of SU(5) emerge from 27 as well as 78
so it is possible to accommodate families in both. In the sim-
plest scenario the third family fermions and the Higgs fields reside 
in 27q , 27q′ . To write down superpotential terms of the effective 
model, we need the charges q, q′ under the Mordell–Weil U (1). 
This computation is rather involved and goes beyond the scope of 
this short note. However, in analogy with SU(5) models, we might 
expect a solution where the allowed charges are multiples of 1/3
so that a tree level coupling of the form could be allowed

27 1
3

27 1
3

27− 2
3

→ 10M 10M 5hu + 10M 5̄M 5̄hd → mt,mb (18)

As indicated, this is suitable to derive the top and bottom 
quark entries, while higher order terms involving powers of 
the 78-representation can give higher order contributions to the 
fermion masses of the lighter generations

(
78 + 782)27 1

3
27 1

3
27− 2

3
→ muij ,mdij (19)

A detailed analysis of the E6 F-theory models is beyond the scope 
of this note and can be found in [35].

5. Conclusions

In this note we investigated constraints on GUTs in F-theory 
compactifications with an extra rational section which corresponds 
to an additional abelian factor in the gauge group of the final 
effective theory model. Elliptic fibrations with two sections can 
be represented by a quartic polynomial of definite form written 
in terms of three homogeneous coordinates in the ambient space 
P (1,1,2) . Converting the quadratic equation to a local Tate from we 
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find that the Tate coefficients are subject to constraints which re-
strict the number of non-abelian gauge groups that can be realised
in the local Tate form. Models emerging in this context which can 
accommodate the Standard Model gauge symmetry are based on 
E6 × U (1) and E7 × U (1). We discuss briefly the salient features of 
the E6 × U (1) case.
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