# View metadata, citation and similar papers at core.ac.uk

brought to you by 🐰 CORE

Osteoarthritis and Cartilage 22 (2014) 1958-1988

# Osteoarthritis and Cartilage

# Osteoarthritis Year in Review 2014: rehabilitation and outcomes

# M.R. Maly <sup>†</sup><sup>\*</sup>, S.M. Robbins <sup>‡</sup>

† School of Rehabilitation Science, McMaster University, Canada

‡ Centre for Interdisciplinary Research in Rehabilitation, Constance Lethbridge Rehabilitation Centre, School of Physical and Occupational Therapy, McGill University, Canada

# A R T I C L E I N F O

Article history: Received 7 May 2014 Accepted 15 August 2014

Review

Keywords: Arthritis Hip Knee Outcome assessment (health care) Recovery of function Review literature as topic

#### SUMMARY

*Objective:* To highlight research studies examining rehabilitation for hip and knee osteoarthritis (OA), as well as the outcome measures used to assess treatment efficacy, published in 2013. *Design:* A systematic search was performed in Medline, CIHAHL and Embase databases from January to December 2013. The search was limited to 2013, human studies, and English. Rehabilitation intervention studies included were prospective controlled designs. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used to evaluate the quality of evidence. First, individual articles were rated for quality. Second, articles were grouped based on outcome: OA disease markers, pain, physical function (self-reported, performance), and health.

*Results:* Of 503 titles reviewed, 36 studies were included. The outcome measures related to OA disease markers were organized into subthemes of anthropometrics, biomechanics and physiology. The quality of evidence was of moderate, high, and low quality for anthropometric, biomechanical and physiological measures respectively. These studies supported the use of diet for weight loss combined with exercise. Bodies of evidence that showed the efficacy of exercise and passive strategies (thermal/electrical modalities, traction, manual therapy) for reducing pain were of low and moderate quality respectively. The evidence supporting diet and exercise, physiotherapy, and passive strategies to improve physical function was of moderate quality. Evidence supporting exercise to improve psychological factors was of moderate quality.

*Conclusions:* Exercise combined with diet for weight loss should be the mainstays of rehabilitation for people with knee and hip OA to provide benefit to OA disease markers, pain, physical function, and health.

© 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

# Introduction

There is no cure for knee or hip osteoarthritis (OA). The current gold standard treatment is joint replacement. However a tremendous need exists for non-surgical interventions to improve physical functioning and quality of life. Canadians with OA wait, on average, 4.4 years from diagnosis to joint replacement<sup>1</sup>. Unfortunately groups with the greatest need, specifically women and those of low socioeconomic status, experience even longer waits<sup>1</sup>. Most concerning, the demand for hip and knee replacements continues to rise in Canada as a result of our ageing and increasingly obese population<sup>2</sup>. This escalating demand for hip and knee arthroplasty

is mirrored in other Westernized countries, including Australia, the United Kingdom, and the United States<sup>3–5</sup>. Given that finite surgical resources are available, advancing conservative management is critical. Further, it is important to track the efficacy of conservative interventions using reliable and valid outcome measures. To this end, *Osteoarthritis and Cartilage* publishes a "Year in Review" focused on rehabilitation outcomes<sup>6,7,8,9</sup>. The purpose of this current year in review was to highlight research studies examining rehabilitation for hip and knee OA, as well as the outcome measures used to assess treatment efficacy, published in 2013. For the purpose of this review, rehabilitation techniques included all conservative strategies that aimed to enhance and restore physical ability and quality of life, therefore advancing OA treatment.

# Method

A systematic literature search was performed in Medline, CIHAHL and Embase databases from January, 2013 to December, 2013 inclusive. A single year was selected to enable quality ratings

1063-4584/© 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.





CrossMark

<sup>\*</sup> Address correspondence and reprint requests to: M.R. Maly, School of Rehabilitation Science, McMaster University, Room 435, Institutes of Applied Health Sciences, 1400 Main Street West, Hamilton, Ontario L8S 1C7, Canada. Tel: 1-905-525-9140x27823; Fax: 1-905-524-0069.

*E-mail addresses:* mmaly@mcmaster.ca (M.R. Maly), shawn.robbins@mcgill.ca (S.M. Robbins).

of articles by both authors. Some overlap exists with a previous "year in review"<sup>6</sup>. Key words included osteoarthritis, knee; osteoarthritis, hip; rehabilitation; physical therapy modalities; physical therapy; physiotherapy; and exercise. The search was limited to 2013, human studies, and English. Rehabilitation intervention studies included were prospective controlled designs, including both randomized and non-randomized designs, and studies that enrolled participants with a diagnosis of knee or hip OA. Uncontrolled, qualitative, and retrospective studies, protocols, as well as reviews, meta-analyses, and case studies were excluded. Abstracts without a full article and papers that replicated data from another article were excluded. Studies of outcomes after surgery (e.g., examining rehabilitation protocol following joint replacement), oral or injectable medications, and neutraceuticals were excluded. Publication titles and abstracts were reviewed for inclusion by both authors. Discrepancies for inclusion were discussed and full papers reviewed to reach agreement on inclusion.

Grading of Recommendations Assessment, Development and Evaluation (GRADE) was used to rate the quality of evidence<sup>10</sup>. This system separates decisions about quality of evidence from strength of recommendations. In GRADE, strength of recommendations reflects the extent to which desirable treatment effects, such as improvements in pain, mobility and quality of life, outweigh undesirable effects, such as muscle soreness after exercise<sup>11</sup>. Because this review focused on 1 year of published work, strength of recommendations was not pursued. Instead, emphasis was placed on rating the quality of evidence.

GRADE rates the quality of a body of evidence as high, moderate, low, and very low. First, a quality rating for each research article was assigned. Preliminary ratings were based on study design. Evidence gleaned from randomized controlled trials (RCT) was initially rated as high; other designs as low. Next, GRADE relies on explicit criteria for downgrading or upgrading quality ratings<sup>10</sup>. Ratings were downgraded based on the following criteria: study limitations (e.g., lack of blinding, large loss to follow-up), inconsistency of results (e.g., inadequate explanation for heterogeneity), indirectness (e.g., indirect comparison), imprecision (e.g., small sample size), and reporting bias (e.g., failure to report outcomes showing no effect)<sup>12</sup>. Ratings were downgraded by one quality category for each criterion identified. On the other hand, a large magnitude of effect or a dose-response relationship upgraded the quality rating. The authors reached consensus on quality of evidence ratings for each article.

Second, articles were grouped by outcomes of interest. This approach enabled quality ratings of a body of evidence for a desired outcome. We determined outcome measure groupings of OA disease markers; pain; physical function; and general health. Considering the consistency of findings between articles, size of the treatment effect, study limitations, precision, and probability of publication bias among all of the studies reporting on an outcome measure of interest, a quality level was reached through consensus.

## **Results and discussion**

Of 503 titles reviewed, 36 studies were included. Articles were excluded when reviewing abstracts due to the following criteria: design (n = 234), intervention (n = 116), diagnosis other than knee or hip OA (n = 95), humans (n = 4), abstract only (n = 3), duplicate study (n = 1), and data replicated from another study (n = 1). When reviewing full article text, additional articles were excluded due to the following criteria: design (n = 3), intervention (n = 1), abstract only (n = 8), and data replicated from another study (n = 1).

Of these 36 papers included in this review, only two papers were dedicated to hip OA. Five studies included participants with both knee and hip OA and 29 studies included only knee OA. Individual articles were of high (n = 2), moderate (n = 14), low (n = 10) and very low (n = 10) quality (Table I). Descriptions of studies in the following sections emphasize articles of high and moderate quality.

Papers were grouped based on outcome measures: OA disease markers, pain, physical function (self-reported, mobility performance), and other aspects of health (Table II). Interventions included exercise (strengthening, walking, yoga, gaming), physical agents and electrotherapy (ultrasound, phonophoresis, short wave diathermy, transcutaneous electrical nerve stimulation, neuromuscular electrical stimulation), manual therapy (mobilizations, traction), Chinese medicine (acupuncture, meridians) and other (pain coping, counselling, whole body vibration).

In this review, we utilize the same terms presented in the articles to describe interventions. In general, "exercise" reflected planned, structured physical activities aimed at improving health and well-being, such as aerobic, strengthening, balance, or other exercise modalities. Strengthening, strength training, and resistance exercise were considered synonyms. "Physical activity" reflected less structured activities intended to be integrated into daily life. "Physiotherapy" and "physical therapy" referred to any intervention or intervention series prescribed by a physiotherapist. Therefore, physiotherapy could include a number of interventions including exercise, physical agents and electrotherapy, manual therapy, and where permitted by jurisdiction, Chinese medicine. It is important to note that within each type of intervention, the specific parameters utilized by researchers varied substantially. In some cases, the descriptions of interventions are very scant. We contend that outcomes vary based on the type of intervention, and parameters utilized within each intervention. Thus, readers are encouraged to consult the original articles to enhance understanding of the actual interventions provided to study participants.

#### Disease markers of OA

Outcome measures that captured disease markers of OA were grouped into subthemes of anthropometrics, biomechanics, and physiology.

#### Anthropometrics

Because of the impact of obesity on the pathology and incidence of knee and hip OA through pathways of inflammation, joint loads, and movement strategies, anthropometric measures such as body size are one of the most important disease markers to target in rehabilitation for OA<sup>13</sup>. Three studies reported on anthropometrics in 855 participants with knee OA. Measures included body mass, body mass index, and waist circumference using traditional methods. Fat mass and lean mass were measured using dual X-ray absorptiometry. As a body of evidence, the papers provided moderate quality, consistent evidence that diet for weight loss and exercise were effective in reducing abnormal anthropometrics, such as body mass and fat mass, in people with knee OA.

Interventions for anthropometric outcome measures: diet and exercise. While diet for weight loss, exercise, and the combination of diet and exercise all improved body composition, dieting for weight loss was more effective than exercise alone in reducing body mass, waist circumference, and fat mass<sup>14,15</sup>. For example, a RCT (n = 192, knee OA) compared diet, exercise, and no intervention during a 12 month maintenance period subsequent to an intensive 4 month diet<sup>14</sup>. In the diet group, maintenance of weight loss was achieved through weekly meetings with a dietician and the provision of formula with the necessary macronutrients, vitamins and minerals. In the exercise group, circuit training, with a warm-up and cooldown period, lasted 1 h. The frequency of exercise each week was not reported. Adherence to these maintenance interventions was GRADE was used to rate the quality of evidence. Quality ratings were categorized as high, moderate, low or very low for each study of rehabilitation strategies for knee or hip OA published in 2013. Randomized controlled trials were initially provided a quality rating of high. Elements of study design, directness of evidence, explanation of heterogeneity, imprecision, and probability of publication bias resulted in a downgraded quality rating. Evidence of dose–response gradients resulted in an upgraded quality rating

| Primary author                  | Joint      | n              | Design                    | Downgrade quality                                                     |                                           |                                |                                                               |                                 | Upgrade           | Quality rating |
|---------------------------------|------------|----------------|---------------------------|-----------------------------------------------------------------------|-------------------------------------------|--------------------------------|---------------------------------------------------------------|---------------------------------|-------------------|----------------|
|                                 |            |                |                           | Design limitation(s)                                                  | Indirectness                              | Explanation o<br>heterogeneity | f Imprecision                                                 | Probability of publication bias | quality           |                |
| Abbott <sup>37</sup>            | Hip & Knee | 206            | RCT                       | Participants not blinded                                              | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Alpayci <sup>29</sup>           | Knee       | 98             | RCT                       | Participants not blinded                                              | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Ay <sup>40</sup>                | Knee       | 60             | RCT                       | Participants not blinded<br>Assessor not blinded                      | No head to head comparison                | No                             | No                                                            | Low                             | None              | LOW            |
| Barrios <sup>17</sup>           | Knee       | 38             | RCT                       | Assessor not blinded                                                  | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Bossen <sup>39</sup>            | Hip & Knee | 199            | RCT                       | Participants not blinded<br>Assessor not blinded                      | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Boyaci <sup>32</sup>            | Knee       | 101            | RCT                       | Participants not blinded<br>Assessor not blinded                      | No                                        | No                             | Two week follow up                                            | Low                             | None              | LOW            |
| Chen, L <sup>36</sup>           | Knee       | 214            | RCT                       | None                                                                  | Acupuncturists with extensive<br>training | No                             | Large loss to follow up                                       | Unlikely                        | None              | MODERATE       |
| Chen, W <sup>30</sup>           | Knee       | 50             | RCT                       | Participants not blinded<br>Assessor not blinded                      | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Christensen <sup>14</sup>       | Knee       | 192            | RCT                       | Adherence poor                                                        | Intense diet intervention                 | No                             | No                                                            | Low                             | None              | MODERATE       |
| Daskapan <sup>23</sup>          | Knee       | 40             | RCT                       | Adherence unclear                                                     | No head to head comparison                | No                             | Several comparisons                                           | Low                             | None              | LOW            |
| Elboim-Gabyzon <sup>26</sup>    | Knee       | 63             | RCT                       | Participants not blinded<br>Assessor not blinded                      | No                                        | No                             | Large loss to follow up                                       | Low                             | None              | VERY LOW       |
| French <sup>38</sup>            | Hip        | 131            | RCT (modified cross-over) | Participants not blinded                                              | No                                        | No                             | Unlikely                                                      | Low                             | None              | MODERATE       |
| Ghasemi <sup>22</sup>           | Knee       | 30             | Controlled trial          | No randomization<br>Participants not blinded<br>Assessor not blinded  | No head to head comparison                | No                             | Large loss to follow up                                       | Low                             | None              | VERY LOW       |
| Horng <sup>44</sup>             | Knee       | 28             | RCT                       | Participants not blinded<br>Assessor not blinded                      | No head to head comparison                | No                             | Three week follow up<br>Large loss to follow up               | Low                             | None              | VERY LOW       |
| Hunt <sup>16</sup>              | Knee       | 17             | RCT (pilot)               | Participants not blinded                                              | No                                        | No                             | Few participants                                              | Unlikely                        | None              | LOW            |
| Hunt <sup>27</sup>              | Knee       | 20             | RCT (pilot)               | None                                                                  | No                                        | No                             | Few participants                                              | Low                             | None              | MODERATE       |
| Imoto <sup>24</sup>             | Knee       | 100            | RCT                       | Participants not blinded                                              | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Imoto <sup>25</sup>             | Knee       | 100            | RCT                       | Participants not blinded                                              | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Katz <sup>35</sup>              | Knee       | 351            | RCT                       | Participants not blinded<br>Assessor not blinded<br>Large cross-over  | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Knoop <sup>20</sup>             | Knee       | 159            | RCT                       | Participants not blinded                                              | No                                        | No                             | No                                                            | Low                             | None              | MODERATE       |
| Kudo <sup>45</sup>              | Knee       | 209            | RCT                       | Participants not blinded<br>Assessor not blinded<br>Adherence unclear | No head to head comparison                | No                             | No                                                            | Low                             | None              | VERY LOW       |
| Kumar <sup>21</sup>             | Knee       | 44             | RCT                       | Participants not blinded                                              | Proprioceptive program unclear            | No                             | No                                                            | Low                             | None              | LOW            |
| Larose <sup>41</sup>            | Knee       | 115            | RCT                       | Participants not blinded<br>Subgroup analysis of larger study         | No                                        | No                             | Large loss to follow up; Few<br>participants in each category | Low                             | None              | LOW            |
| Luksurapan <sup>31</sup>        | Knee       | 46             | RCT                       | None                                                                  | No                                        | No                             | Two week follow up                                            | Low                             | None              | HIGH           |
| Malas <sup>18</sup>             | Knee       | 61             | RCT                       | Participants not blinded                                              | No head to head comparison                | No                             | Three week follow up                                          | Low                             | None              | LOW            |
| Mattiello-Sverzut <sup>19</sup> | Knee       | 18<br>26<br>21 | RCT                       | Different groups explored for each measure                            | No                                        | No                             | Few participants in each category                             | Low                             | None              | LOW            |
| Messier <sup>15</sup>           | Knee       | 454            | RCT                       | Participants not blinded                                              | No                                        | No                             | No                                                            | Low                             | Dose–<br>response | HIGH           |
| Nambi <sup>46</sup>             | Knee       | 30             | Controlled trial          | No randomization<br>Participants not blinded<br>Assessor not blinded  | No                                        | No                             | No                                                            | Low                             | None              | VERY LOW       |
| O'Brien <sup>42</sup>           | Hip & Knee | 27             | RCT (Pilot)               | Participants not blinded                                              | No                                        | No                             | Few participants<br>Large loss to follow up                   | Low                             | None              | VERY LOW       |

| Park <sup>28</sup>                                                                             | Knee                                                                      | 36 RCT                                                                                        | Participants not blinded                                                                    | No                                   | No  | Large loss to follow up | Low | None | VERY LOW |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|-----|-------------------------|-----|------|----------|
| Parsons <sup>47</sup>                                                                          | Hip & Knee                                                                | 336 RCT                                                                                       | Participants not blinded                                                                    | No                                   | No  | Large loss to follow up | Low | None | TOW      |
| Poulsen <sup>33</sup>                                                                          | Hip                                                                       | 118 RCT (proof                                                                                | Participants not blinded                                                                    | No                                   | No  | No                      | Low | None | MODERATE |
| Saleki <sup>48</sup>                                                                           | Knee                                                                      | 40 RCT                                                                                        | Participants not blinded                                                                    | No head to head comparison           | Yes | No                      | Low | None | VERY LOW |
| Schencking <sup>49</sup>                                                                       | Hip & Knee                                                                | 30 RCT (Pilot)                                                                                | Participants not blinded                                                                    | No head to head comparison           | No  | No                      | Low | None | VERY LOW |
| Wi <sup>43</sup>                                                                               | Knee                                                                      | 40 RCT                                                                                        | Participants not blinded                                                                    | Benefits of exercise program unclear | No  | No                      | Low | None | TOW      |
| Zhang <sup>50</sup>                                                                            | Knee                                                                      | 100 Controlled<br>trial                                                                       | Assessor not binned<br>No randomization<br>Participants not blinded<br>Assessor not blinded | No head to head comparison           | No  | No                      | Low | None | VERY LOW |
| A sample smaller the<br>Retention rates belov<br>Follow up periods sh<br>Statistical approache | an 30 participar<br>w 85% were not<br>orter than 4 we<br>s that do not co | tts was identified as<br>ted as a limitation.<br>eeks were identified<br>ompare the study arr | a limitation.<br>las a limitation.<br>ms directly were noted as a limitat                   | ion.                                 |     |                         |     |      |          |

M.R. Maly, S.M. Robbins / Osteoarthritis and Cartilage 22 (2014) 1958-1988

low: 59.1% in diet and 22% in exercise. Reductions in body mass. waist circumference, and fat mass assessed with dual energy X-ray absorptiometry were greater in the diet groups than exercise group (P < 0.01). A similar high quality study comparing diet for weight loss, exercise, and a combination of diet and exercise (Intensive Diet and Exercise for Arthritis (IDEA) trial) showed that the diet and diet combined with exercise groups lost more body mass and fat mass than the group engaged in exercise alone<sup>15</sup>. However, the total energy deficit induced by diet and exercise may not have been equivalent between groups. Further, interventions designed to reduce body mass may also cause a loss of lean mass<sup>14,15</sup>. During the 52 week maintenance period after an intense diet intervention, loss of lean mass was equivalent between diet, exercise and control groups<sup>14</sup>. In the larger RCT, the diet and exercise group combined with diet alone groups lost more lean mass than the exercise group (P < 0.01); but the percentage of lean mass at 18 months was no different between the three groups<sup>15</sup>.

#### **Biomechanics**

Three studies reported on biomechanical outcomes in 509 participants with knee OA. Investigators evaluated the efficacy of interventions to reduce joint compressive forces and the knee adduction moment. This moment is a surrogate for the distribution of loads across the medial and lateral knee. Together these studies provided high quality evidence that diet for weight loss combined with exercise is effective in reducing compressive knee loads.

Interventions for biomechanics outcome measures: diet and exercise. A high quality study, IDEA trial, investigated the impact of 18 months of dieting for weight loss, dieting and exercise, or exercise alone on joint compressive forces in men and women with radiographic knee OA<sup>15</sup>. The diet intervention provided an initial energyintake deficit of 800-1000 kcal/day to promote weight loss. Each exercise session involved aerobic walking (15 min), strengthening training (20 min), aerobic activity (15 min) and a cool-down, 3 days per week. Of the 454 that enrolled, 399 (88%) completed follow-up assessments at 18 months. Compared to groups that received just exercise, those who engaged in the diet program demonstrated reductions in joint compressive forces (95% CI, 55-345 N; P = 0.007). Participants with large (-32.5–10.0%), medium (-9.8-5.0%) and small (-4.9-9.9%) changes in body mass had knee compressive forces of 2402 N (95% CI 2397, 2568 N), 2708 N (2616, 2799 N) and 2842 N (2772, 2911 N) respectively. This dose-response relationship (P < 0.001) elevated the quality rating of this paper<sup>15</sup>.

The knee adduction moment does not appear to be easily modified by exercise. In a pilot RCT, 17 participants with radiographic medial knee OA were randomly allocated to receive a home program of strengthening exercise for the quadriceps, hamstrings and hip abductors, for 10 weeks, or no intervention<sup>16</sup>. The knee adduction moment peak and impulse were no different after strengthening<sup>16</sup>.

Intervention for biomechanical outcome measures: shoe orthoses. From 2013 data, the role of shoe orthoses in modifying the knee adduction moment was unclear. Thirty-eight participants with radiographic, symptomatic knee OA were randomly allocated to receive a lateral shoe orthoses, or a neutral (control) orthosis, for wear over 12 months<sup>17</sup>. In the treatment group, the magnitude of lateral wedging was individualized to achieve maximum pain relief. A nearly significant group by time interaction (P = 0.052) showed a reduction in the knee adduction moment with lateral shoe orthoses over 12 months<sup>17</sup>. However the small sample and lack of data on compliance are important limitations to consider.

#### Table II

Findings of 36 studies investigating rehabilitation interventions for knee and hip OA published in 2013, organized by outcome measure. Broad categories of outcome measures included OA disease markers, pain, physical function, and health. P-values are included in *italics*. N/A indicates a P-value was not available in the source article

| Outcome Sub-outcome                                                     | First author                                             | Sample size   | Number of study arms:                | Follow-up         | Results                                                        |                                                                                                                                                                                                      | Primary or                      |
|-------------------------------------------------------------------------|----------------------------------------------------------|---------------|--------------------------------------|-------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                                                         | Design<br>Sample<br>Quality rating                       | (retention)   | interventions for each arm           | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention | Differences between<br>study arms in<br>treatment effects                                                                                                                                            | secondary<br>outcome<br>measure |
| OA disease markers<br>Anthropometrics<br>Tissue composition<br>Eat mass |                                                          |               |                                      |                   |                                                                |                                                                                                                                                                                                      |                                 |
|                                                                         | Christensen <sup>14</sup><br>RCT<br>Knee OA<br>MODERATE  | n = 192 (91%) | 3: Diet/exercise/control             | 16, 68            | Diet/exercise/control (all groups $P = 0.001$ )                | Loss of fat mass greater<br>in diet group than<br>exercise group<br>(P < 0.001) or control<br>group $(P = 0.009)$                                                                                    | Primary                         |
| Loss mars                                                               | Messier <sup>15</sup><br>RCT<br>Knee OA<br>HIGH          | n = 454 (88%) | 3: Diet + exercise/diet/<br>exercise | 26, 78            | Diet + Exercise/Diet (P-<br>values N/A)                        | Diet and diet + exercise<br>groups lost more fat<br>mass than exercise<br>group ( $P < 0.001$ )                                                                                                      | Secondary                       |
| Leali illass                                                            | Christensen <sup>14</sup><br>RCT<br>Knee OA<br>MODERATE  | n = 192 (91%) | 3: Diet/exercise/control             | 16, 68            | Diet/exercise/control<br>(P-values N/A)                        | Change in lean mass<br>not different between<br>groups ( $P = 0.660$ )                                                                                                                               | Primary                         |
|                                                                         | Mobelen <sup>15</sup><br>RCT<br>Knee OA<br>HIGH          | n = 454 (88%) | 3: Diet + exercise/diet/<br>exercise | 26, 78            | Diet + exercise/diet ( <i>P-values N/A</i> )                   | Diet and diet + exercise<br>groups lost more lean<br>mass than exercise<br>group ( $P < 0.001$ ), but<br>percentage of lean<br>mass at 18 months did<br>not differ among<br>groups ( $P$ -value N/A) | Secondary                       |
| Bone marrow lesion<br>Basic measurements                                | Kudo <sup>45</sup><br>RCT<br>Knee OA (women)<br>VERY LOW | n = 209 (97%) | 2: Group exercise/home<br>exercise   | 12                | Not reported                                                   | No head to head<br>comparison of<br>treatment effect of<br>group vs home exercise<br>presented ( <i>P-value N/A</i> )                                                                                | Secondary                       |
| Waist circumference                                                     | Christensen <sup>14</sup><br>RCT<br>Knee OA<br>MODERATE  | n = 192 (91%) | 3: Diet/exercise/control             | 16, 68            | Diet/exercise/control<br>(all groups P = 0.007)                | Reduction in waist circumference greater in diet group than exercise group $(P = 0.002)$ . No difference between the diet group and the control group $(P = 0.220)$ .                                | Primary                         |
| Body mass                                                               | Christensen <sup>14</sup><br>RCT<br>Knee OA<br>MODERATE  | n = 192 (91%) | 3: Diet/exercise/control             | 16, 68            | Diet/exercise/control (all groups $P = 0.002$ )                | Loss of body mass<br>greater in diet group<br>than exercise group<br>(P < 0.001) and the<br>control group<br>(P = 0.039)                                                                             | Primary                         |

# M.R. Maly, S.M. Robbins / Osteoarthritis and Cartilage 22 (2014) 1958–1988

| Alignment                          | Messier <sup>15</sup><br>RCT<br>Knee OA<br>HIGH                    | n = 454 (88%) | 3: Diet + exercise/diet/<br>exercise             | 26, 78 | Diet + exercise/diet/<br>exercise ( <i>P-values N/A</i> ) | Diet and diet + exercise<br>groups lost more body<br>mass than exercise<br>group ( $P < 0.001$ )                                                                                     | Secondary |
|------------------------------------|--------------------------------------------------------------------|---------------|--------------------------------------------------|--------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Angiment                           | Kudo <sup>45</sup><br>RCTv<br>Knee OA (women)<br>VERY LOW          | n = 209 (97%) | 2: Group exercise/home<br>exercise               | 12     | Not reported                                              | No head to head<br>comparison of<br>treatment effect of<br>group vs home exercise<br>presented ( <i>P-value N/A</i> )                                                                | Secondary |
| Biomechanics<br>Internal forces    |                                                                    |               |                                                  |        |                                                           |                                                                                                                                                                                      |           |
| joint compression                  | Messier <sup>15</sup><br>RCT<br>Knee OA<br>HIGH                    | n = 454 (88%) | 3: Diet + exercise/diet/<br>exercise             | 26, 78 | Diet + exercise/diet/<br>exercise ( <i>P-values N/A</i> ) | Reduction in<br>compressive forces<br>greater in diet group<br>compared to exercise<br>group ( $P = 0.007$ );<br>other head-to-head<br>comparisons not<br>significant ( $P > 0.05$ ) | Primary   |
| Kinematics<br>Knee adduction angle | e excursion<br>Barrios <sup>17</sup><br>RCT<br>Knee OA<br>MODERATE | n = 38 (100%) | 2: Lateral wedge orthosis/<br>neutral orthosis   | 52     | No improvement<br>(P-value N/A)                           | Knee adduction angle<br>excursion group $\times$ time<br>interaction ( $P = 0.003$ );<br>increased angle<br>excursion in control<br>group ( $P = 0.001$ )                            | Secondary |
| Kinetics<br>Knee adduction mom     | ient peak                                                          | 20 (100%)     |                                                  | 52     | Takan Ing Jun                                             | Variation                                                                                                                                                                            | Duine and |
|                                    | Barrios<br>RCT<br>Knee OA<br>MODERATE                              | n = 38 (100%) | 2: Lateral Wedge orthosis/<br>neutral orthosis   | 52     | orthosis ( <i>P</i> < 0.001)                              | where adduction<br>moment peak<br>group $\times$ time<br>interaction ( $P = 0.052$ );<br>decreased knee<br>adduction moment<br>peak in treatment<br>group ( $P = 0.039$ )            | Primary   |
|                                    | Hunt <sup>16</sup><br>RCT (pilot)<br>Knee OA<br>LOW                | n = 17 (88%)  | 2: Strengthening/control                         | 10     | Strengthening/control<br>(P-values N/A)                   | Knee adduction<br>moment peak not<br>different between<br>groups after<br>intervention<br>(P = 0.910)                                                                                | Secondary |
| Knee adduction angu                | lar impulse<br>Barrios <sup>17</sup><br>RCT<br>Knee OA<br>MODERATE | n = 38 (100%) | 2: Lateral wedge<br>orthosis/neutral<br>orthosis | 52     | Lateral wedge orthosis $(P = 0.009)$                      | Knee adduction<br>angular impulse<br>group × time<br>interaction not<br>significant<br>( <i>P</i> -value N/A)<br>(continued o                                                        | Primary   |

| Table | (continued) |
|-------|-------------|
|       |             |

| Outcome Sub-outcome | First author                                                   | Sample size             | Number of study arms:                                                                                  | Follow-up         | Results                                                                                     |                                                                                                                                                   | Primary or                      |
|---------------------|----------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                     | Design<br>Sample<br>Quality rating                             | (retention)             | interventions for each arm                                                                             | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention                              | Differences between<br>study arms in<br>treatment effects                                                                                         | secondary<br>outcome<br>measure |
|                     | Hunt <sup>16</sup><br>RCT (pilot)<br>Knee OA<br>LOW            | n = 17 (88%)            | 2: Strengthening/control                                                                               | 10                | Strengthening/control<br>(P-values N/A)                                                     | Knee adduction<br>angular impulse not<br>different between<br>groups after<br>intervention<br>(P = 0.720)                                         | Secondary                       |
| Physiology          |                                                                |                         |                                                                                                        |                   |                                                                                             | (1 - 0.720)                                                                                                                                       |                                 |
| sCPII               | Hunt <sup>16</sup><br>RCT (pilot)<br>Knee OA                   | n = 17 (88%)            | 2: Strengthening/control                                                                               | 10                | Strengthening<br>(P-values N/A)                                                             | sCPII changes not<br>different between<br>exercise and control<br>groups $(P = 270)$                                                              | Primary                         |
| sHA                 | Hunt <sup>16</sup><br>RCT (pilot)<br>Knee OA<br>LOW            | n = 17 (88%)            | 2: Strengthening/control                                                                               | 10                | Strengthening<br>(P-values N/A)                                                             | sHA changes not<br>different between<br>exercise and control<br>groups ( $P = 0.100$ )                                                            | Primary                         |
| sCOMP               | Hunt <sup>16</sup><br>RCT (pilot)<br>Knee OA<br>LOW            | <i>n</i> = 17 (88%)     | 2: Strengthening/control                                                                               | 10                | Strengthening<br>(P-values N/A)                                                             | sCOMP reduction<br>greater in exercise<br>group compared to<br>control group ( $P = 0.04$ )                                                       | Primary                         |
| uCTXII              | Hunt <sup>16</sup><br>RCT (pilot)<br>Knee OA<br>LOW            | n = 17 (88%)            | 2: Strengthening/control                                                                               | 10                | Strengthening<br>(P-values N/A)                                                             | uCTXII changes not<br>different between<br>exercise and control<br>groups ( $P = 0.110$ )                                                         | Primary                         |
| uC2C                | Hunt <sup>16</sup><br>RCT (pilot)<br>Knee OA<br>LOW            | n = 17 (88%)            | 2: Strengthening/control                                                                               | 10                | Strengthening<br>(P-values N/A)                                                             | uC2C changes not<br>different between<br>exercise and control<br>groups ( $P = 0.730$ )                                                           | Primary                         |
| ММР3                | Zhang <sup>50</sup><br>Controlled study<br>Knee OA<br>VERY LOW | <i>n</i> = 100 (100%)   | 2: Exercise<br>+ diclofenacsodium/<br>diclofenac sodium                                                | 4                 | Exercise<br>+ diclofenac<br>sodium/diclofenac<br>Sodium ( <i>P-values N/A</i> )             | MMP3 lower in<br>exercise group than<br>control group at follow<br>up ( $P < 0.05$ )                                                              | Primary                         |
| Inflammation        | 15                                                             |                         |                                                                                                        |                   |                                                                                             |                                                                                                                                                   |                                 |
| IL-6                | Messier <sup>15</sup><br>RCT<br>Knee OA<br>HIGH                | n = 454 (88%)           | 3: Diet + exercise/diet/<br>exercise                                                                   | 26, 78            | Diet + exercise<br>( <i>P</i> = 0.008)/exercise ( <i>P</i> -<br>values N/A)                 | IL6 demonstrated<br>greater improvement<br>in diet group<br>(P = 0.006) and<br>diet + exercise group<br>(P = 0.007) compared<br>to exercise group | Primary                         |
| TNF-α               | Zhang <sup>50</sup><br>Controlled study<br>Knee OA<br>VERY LOW | n = 100 (100%)          | 2: Exercise + diclofenac<br>sodium/Diclofenac sodium                                                   | 4                 | Exercise + diclofenac<br>sodium/diclofenac<br>sodium ( <i>P-values N/A</i> )                | TNF- $\alpha$ lower in<br>exercise group<br>than control<br>group at follow<br>up ( $P < 0.05$ )                                                  | Primary                         |
| hsCRP               | Zhang <sup>50</sup><br>Controlled study<br>Knee OA<br>VERY LOW | n = 100 (100%)          | 2: Exercise + diclofenac<br>sodium/diclofenac sodium                                                   | 4                 | Exercise + diclofenac<br>sodium/diclofenac<br>sodium ( <i>P-values N/A</i> )                | hsCRP lower in<br>exercise group<br>than control<br>group at follow<br>up $(P < 0.05)$                                                            | Primary                         |
| RAGE                | Mattiello-Sverzut <sup>19</sup><br>RCT<br>Knee OA<br>LOW       | <i>n</i> = 21 (unclear) | 3: Resistance training/<br>resistance<br>training + ibuprofen/<br>resistance<br>training + glucosamine | 12                | Resistance training<br>(P < 0.05); other<br>improvements<br>insignificant (P-values<br>N/A) | RAGE marker number<br>reduced in<br>glucosamine group<br>compared to placebo<br>and ibuprofen groups<br>(P < 0.05)                                | Primary                         |

| Other              |                        |                                                           |                                              |                                                                                                                     |             |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                  |           |
|--------------------|------------------------|-----------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                    | Capillaries expression | Mattiello-Sverzut <sup>19</sup><br>RCT<br>Knee OA<br>LOW  | <i>n</i> = 26 (unclear)                      | 3: Resistance training/<br>resistance<br>training + ibuprofen/<br>resistance<br>training + glucocamine              | 12          | No improvement (P-<br>value N/A)                                                                                                                                                                  | Not different between<br>groups ( <i>P-value N/A</i> )                                                                                                                                                                                                           | Primary   |
|                    | Collagen               | Mattiello-Sverzut <sup>19</sup><br>RCT<br>Knee OA<br>LOW  | <i>n</i> = 26 (unclear)                      | 3: Resistance training/<br>resistance<br>training + ibuprofen/<br>resistance<br>training + glucosamine              | 12          | Not reported                                                                                                                                                                                      | Increased<br>immunoreactivity to<br>collage type IV after<br>training not different<br>between groups ( <i>P</i> -<br><i>value N</i> /A)                                                                                                                         | Primary   |
| <b>Pain</b><br>WOM | Muscle Architecture    | Malas <sup>18</sup><br>RCT<br>Knee OA<br>LOW              | n = 61 (92%)                                 | 6: Isometric right/isometric<br>left/isotonic right/isotonic<br>left/isokinetic right/<br>isokinetic left           | 3           | Isometric (muscle<br>thickness and fascicle<br>length $P < 0.01$ )/<br>Isotonic (muscle<br>thickness $P < 0.05$ )/<br>Isokinetic (muscle<br>thickness $P < 0.05$ ) all<br>in the strengthened leg | No head to head<br>comparison of<br>treatment effect of<br>isometric, isotonic,<br>isokinetic exercise<br>presented ( <i>P-value N/A</i> )                                                                                                                       | Secondary |
| Pain on            | Pain only              | Horng <sup>44</sup><br>RCT<br>Knee OA<br>VERY LOW         | n = 28 (89%)                                 | 2: Collateral meridian<br>therapy with electrical<br>stimulation (manipulate a<br>non-painful meridian)/<br>placebo | 1, 2, 3, 12 | CMT/placebo ( <i>P-values</i><br><i>N/A</i> )                                                                                                                                                     | CMT group had<br>significantly lower<br>WOMAC scores than<br>the placebo group at 2<br>weeks ( $P = 0.04$ ) and 3<br>weeks ( $P = 0.03$ )<br>follow-up, but not at<br>baseline ( $P = 0.660$ ), 1<br>week ( $P = 0.260$ ), or 12<br>weeks ( $P = 0.260$ ), or 12 | Primary   |
| Nume               | ric rating scale       | Luksurapan <sup>31</sup><br>RCT<br>Knee OA<br>HIGH        | n = 46 (100%)                                | 2: Phonophoresis of<br>piroxicam/ultrasound                                                                         | 2           | Phonophoresis of<br>piroxicam/ultrasound<br>(both groups P < 0.001)                                                                                                                               | Improvement in<br>WOMAC pain scores<br>greater in<br>phonophoresis group<br>compared to<br>ultrasound group<br>(P = 0.006)                                                                                                                                       | Primary   |
| Tume               |                        | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE | <i>n</i> = 199 (85% 3 months; 75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control                                             | 12, 52      | Web-based Physical activity intervention/<br>waiting list control ( <i>P-values N/A</i> )                                                                                                         | Pain NRS improved in<br>the intervention group<br>compared to control<br>group at 12 weeks<br>(P = 0.002) but not at<br>52 weeks $(P = 0.330)$                                                                                                                   | Secondary |
|                    |                        | Hunt <sup>27</sup><br>RCT<br>Knee OA<br>MODERATE          | n = 20 (95%)                                 | 2: Exercise + pain coping<br>skills training/exercise                                                               | 10          | Exercise + pain coping<br>skills training/<br>exercise + non-<br>directive counselling<br>(both groups P < 0.05)                                                                                  | Improvement in pain<br>NRS not different<br>between groups at<br>follow up $(P = 0.910)$                                                                                                                                                                         | Primary   |

(continued on next page)

# Table II (continued)

| outcome Sub-outcome   | First author                                                            | Sample size                                | Number of study arms:                                                                                                                                                    | Follow-up         | Results                                                                                                        |                                                                                                                                                                 | Primary or                      |
|-----------------------|-------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                       | Design<br>Sample<br>Quality rating                                      | (retention)                                | interventions for each arm                                                                                                                                               | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention                                                 | Differences between<br>study arms in<br>treatment effects                                                                                                       | secondary<br>outcome<br>measure |
|                       | Imoto <sup>24</sup><br>RCT<br>Knee OA<br>MODERATE                       | n = 100 (100%)                             | 2: Neuromuscular electrical stimulation/education                                                                                                                        | 8                 | NMES (P < 0.001)/<br>Education (non-<br>significant)                                                           | Pain NRS improved to a greater extent in the NMES group compared to control group $(P = 0.01)$                                                                  | Primary                         |
|                       | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE                       | n = 159 (97%)                              | 2: Stabilization<br>training + exercise/<br>exercise                                                                                                                     | 6, 12, 38         | Stabilization<br>training + exercise/<br>exercise ( <i>P-values N/A</i> )                                      | Improvement in<br>pain NRS not<br>different between<br>groups at follow up<br>(P = 0.300)                                                                       | Secondary                       |
|                       | Kumar <sup>21</sup><br>RCT<br>Knee OA<br>LOW                            | n = 44 (100%)                              | 2:Physiotherapy<br>+ proprioceptive<br>training/physiotherapy                                                                                                            | 4                 | Physiotherapy +<br>proprioceptive<br>training/physiotherapy<br>(both groups P < 0.001)                         | Improvement in pain<br>NRS greater in<br>proprioceptive group<br>compared to<br>physiotherapy only<br>group (P = 0.001)                                         | Primary                         |
|                       | Imoto <sup>25</sup><br>RCT<br>Knee OA<br>MODERATE                       | n = 100 (87%)                              | 2: NMES + exercise/<br>exercise                                                                                                                                          | 8                 | NMES + exercise/<br>exercise (both groups<br>P < 0.001)                                                        | Improvement in pain<br>NRS not different<br>between groups at<br>follow up ( $P = 0.520$ )                                                                      | Primary                         |
|                       | Park <sup>28</sup><br>RCT<br>Knee OA<br>VERY LOW                        | n = 44 (50%)                               | 2: Whole body<br>vibration + exercise/<br>exercise                                                                                                                       | 4, 8              | Whole body<br>vibration + exercise/<br>exercise (non-<br>significant P < 0.07)                                 | Improvement in pain<br>NRS greater in the<br>whole body vibration<br>group than exercise<br>only group at follow up<br>(P = 0.04)                               | Primary                         |
|                       | Poulsen <sup>33</sup><br>RCT (proof of principle)<br>Hip OA<br>MODERATE | n = 118 (94%)                              | 3: Manual<br>therapy + education/<br>education/minimal control<br>intervention (written<br>advice)                                                                       | 6, 52             | Not reported                                                                                                   | Pain NRS not different<br>between groups at<br>follow up ( $P = 0.058$ )                                                                                        | Primary                         |
| Pain inresnoia        | W. Chen <sup>30</sup><br>RCT<br>Knee OA<br>MODERATE                     | n = 54 (93%)                               | 2: TENS/hyaluronic acid injections                                                                                                                                       | 2, 8, 12          | No improvement (both groups $P \ge 0.520$ )                                                                    | Pain threshold not<br>different between<br>groups at all follow up<br>times ( $P \ge 0.07$ )                                                                    | Secondary                       |
| Briej pain inventory  | L. Chen <sup>36</sup><br>RCT<br>Knee OA<br>MODERATE                     | n = 214 (85% 12<br>weeks; 71% 26<br>weeks) | 2: Acupuncture/non-<br>penetrating acupuncture                                                                                                                           | 12, 26            | Acupuncture/non-<br>penetrating<br>acupuncture ( <i>P-values</i><br><i>N/A</i> )                               | Pain score change not<br>different between<br>groups at 12 weeks<br>(P = 0.703) and 26<br>weeks $(P = 0.780)$<br>follow up                                      | Secondary                       |
| Visual analogue scale | W. Chen <sup>30</sup><br>RCT<br>Knee OA<br>MODERATE                     | n = 54 (93%)                               | 2: TENS/hyaluronic acid<br>injections                                                                                                                                    | 2, 8, 12          | TENS/hyaluronic acid<br>(both groups P < 0.001)                                                                | Pain VAS improved to a greater extent in TENS group than HA group at 2 weeks follow up $(P = 0.03)$ , but not at 8 weeks $(P = 0.380)$ or 12 weeks $(P = 0.06)$ | Primary                         |
|                       | Alpayci <sup>29</sup><br>RCT<br>Knee OA<br>MODERATE                     | n = 98 (92%)                               | 3: Control (hot pack, short<br>wave diathermy)/<br>intermittent traction + hot<br>pack, short wave<br>diathermy/constant<br>traction + hot pack, short<br>wave diathermy | 3, 7              | Control/intermittent<br>traction/constant<br>traction (all groups<br>P < 0.001 across both<br>follow up times) | No improvements in<br>pain VAS between<br>groups at week 3<br>(P = 0.461);<br>improvements greater<br>in the intermittent<br>(P = 0.034) and                    | Secondary                       |

|                                                                  |                      |                                                                                                                    |             | Phonophoresis/<br>ultrasonography/short-<br>wave diathermy (all<br>groups P < 0.001)                                                   | constant traction $(P = 0.018)$ groups compared to control at week 7                                                                                                                                                                                         | Primary |
|------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Boyaci <sup>32</sup><br>RCT<br>Knee OA<br>LOW                    | n = 101 (100%)       | 3: Phonophoresis/<br>ultrasonography/short-<br>wave diathermy                                                      | 2           | g)                                                                                                                                     | Improvement in pain<br>VAS not different<br>between groups after<br>treatment period<br>(P = 0.362)                                                                                                                                                          |         |
| Daskapan <sup>23</sup><br>RCT<br>Knee OA<br>LOW                  | n = 40 (100%)        | 2: Mini squat/straight leg<br>raises                                                                               | 2, 6        | Mini squat/<br>straight Leg raises<br>( <i>both groups P</i> < 0.001)                                                                  | No difference between<br>mini squat and straight<br>leg raise groups<br>following the<br>intervention on pain<br>VAS scores ( $P = 0.149$ );<br>Mini squat group<br>significantly lower VAS<br>pain scores at 6 week<br>follow-up ( $P = 0.03$ )             | Primary |
| Elboim-Gabyzon <sup>26</sup><br>RCT<br>Knee OA<br>VERY LOW       | n = 63 (79%)         | 2: Exercise/<br>NMES + exercise                                                                                    | 12          | Exercise/NMES+<br>exercise (both groups<br>P < 0.001)                                                                                  | VAS pain group $\times$ time<br>interaction ( $P = 0.01$ );<br>greater decrease in VAS<br>pain in the NMES group                                                                                                                                             | Primary |
| Ghasemi <sup>22</sup><br>Controlled study<br>Knee OA<br>VERY LOW | n = 30 (83%)         | 2: Yoga exercise/control                                                                                           | 8           | Yoga exercise ( $P < 0.05$ )                                                                                                           | No head to head<br>comparison of yoga<br>exercise vs control<br>presented ( <i>P-value N/A</i> )                                                                                                                                                             | Primary |
| Horng <sup>44</sup><br>RCT<br>Knee OA<br>VERY LOW                | n = 28 (89%)         | 2: Collateral meridian<br>therapy with electrical<br>stimulation (manipulate a<br>nonpainful meridian)/<br>placebo | 1, 2, 3, 12 | CMT/placebo ( <i>P-values</i> N/A)                                                                                                     | CMT group had<br>significantly lower VAS<br>pain scores than the<br>placebo group at 2<br>weeks ( $P = 0.02$ ) and 3<br>weeks ( $P = 0.01$ )<br>follow-up, but not at<br>baseline ( $P = 0.780$ ), 1<br>week ( $P = 0.06$ ), or 12<br>weeks ( $P = 0.650$ ). | Primary |
| Luksurapan <sup>31</sup><br>RCT<br>Knee OA<br>HIGH               | <i>n</i> = 46 (100%) | 2: Phonophoresis of<br>piroxicam/ultrasound                                                                        | 2           | Phonophoresis of<br>piroxicam/ultrasound<br>(both groups P < 0.001)                                                                    | Improvement in pain<br>VAS greater in<br>phonophoresis group<br>than ultrasound group<br>(P = 0.009)                                                                                                                                                         | Primary |
| Nambi <sup>46</sup><br>Controlled study<br>Knee OA<br>VERY LOW   | n = 30 (100%)        | 2: lyengar yoga<br>+ biofeedback<br>+ strengthening<br>+ TENS/biofeedback<br>+ strengthening + TENS                | 8           | lyengar yoga<br>+ biofeedback<br>+ strengthening<br>+ TENS/biofeedback<br>+ strengthening<br>+ TENS ( <i>P</i> -values<br><i>N</i> /A) | Improvement in pain<br>VAS greater in yoga<br>group compared to<br>control ( $P < 0.05$ )                                                                                                                                                                    | Primary |

(continued on next page)

# Table II (continued)

| Outcome Sub-outcome                  | First author                                                  | Sample size                                | Number of study arms:                                                                                                                                                     | Follow-up         | Results                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Primary or                      |
|--------------------------------------|---------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                      | Design<br>Sample<br>Quality rating                            | (retention)                                | interventions for each arm                                                                                                                                                | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention                                                     | Differences between<br>study arms in<br>treatment effects                                                                                                                                                                                                                                                                                                                                                                                                                                  | secondary<br>outcome<br>measure |
|                                      | Saleki <sup>48</sup><br>RCT<br>Knee OA<br>VERY LOW            | <i>n</i> = 40 (unclear)                    | 2: Acupuncture/isometric exercise                                                                                                                                         | 4                 | Isometric exercise<br>(P < 0.01)                                                                                   | No head to head<br>comparison treatment<br>effect of acupuncture<br>and isometric exercise<br>presented ( <i>P-value N/A</i> )                                                                                                                                                                                                                                                                                                                                                             | Primary                         |
| Physical function                    | Schencking <sup>49</sup><br>RCT<br>Hip or knee OA<br>VERY LOW | n = 30 (100%)                              | 3: Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy                                                                                        | 10                | Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy<br>(P-values N/A)                  | No head to head<br>comparison of<br>treatment effect of<br>hydrotherapy,<br>hydrotherapy plus<br>physiotherapy alone<br>( <i>P-value N/A</i> )                                                                                                                                                                                                                                                                                                                                             | Primary                         |
| Self-reported<br>WOMAC<br>Full scale |                                                               |                                            |                                                                                                                                                                           |                   |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |
|                                      | Abbott <sup>37</sup><br>RCT<br>Hip or knee OA<br>MODERATE     | n = 206 (93%)                              | 4: Manual physiotherapy/<br>exercise therapy/<br>manual + exercise therapy/<br>usual care                                                                                 | 52                | Manual physiotherapy/<br>exercise therapy/<br>manual + exercise<br>therapy ( <i>P-values N/A</i> )                 | WOMAC scores<br>demonstrated greater<br>improvement in<br>manual therapy group<br>compared to usual care<br>(P = 0.03)                                                                                                                                                                                                                                                                                                                                                                     | Primary                         |
|                                      | Alpayci <sup>29</sup><br>RCT<br>Knee OA<br>MODERATE           | n = 98 (92%)                               | 3: Control (hot pack, short<br>wave diathermy)/<br>intermittent traction + hot<br>pack, short wave<br>diathermy)/constant<br>traction + hot pack, short<br>wave diathermy | 3, 7              | Control/intermittent<br>traction/constant<br>traction (all groups<br>$P \le 0.001$ across both<br>follow up times) | WOMAC pain<br>(P = 0.009) and total<br>(P = 0.021) score<br>improvements greater<br>in the constant traction<br>group compared to<br>control at week 3;<br>WOMAC physical<br>function ( $P < 0.001$ ) and<br>total ( $P < 0.001$ ) score<br>improvements greater<br>in intermittent and<br>constant traction<br>groups compared to<br>control at 7 weeks;<br>WOMAC stiffness<br>( $P = 0.014$ )<br>improvements greater<br>in constant traction<br>group compared to<br>control at 7 weeks | Primary                         |
|                                      | Boyaci <sup>32</sup><br>RCT<br>Knee OA<br>LOW                 | n = 101 (100%)                             | 3: Phonophoresis/<br>ultrasonography/short-<br>wave diathermy                                                                                                             | 2                 | Phonophoresis/<br>ultrasonography/short-<br>wave diathermy ( <i>all</i><br>groups P < 0.001)                       | Improvement in<br>WOMAC not different<br>between groups after<br>treatment period<br>(P = 0.515)                                                                                                                                                                                                                                                                                                                                                                                           | Primary                         |
|                                      | L. Chen <sup>36</sup><br>RCT<br>Knee OA<br>MODERATE           | n = 214 (85% 12<br>weeks; 71% 26<br>weeks) | 2: Acupuncture/non-<br>penetrating acupuncture                                                                                                                            | 12, 26            | Acupuncture/non-<br>penetrating<br>acupuncture ( <i>P-values</i><br><i>N/A</i> )                                   | WOMAC total score<br>change not different<br>between groups at 12<br>weeks ( $P = 0.193$ ) and<br>26 weeks ( $P = 0.148$ )<br>follow up                                                                                                                                                                                                                                                                                                                                                    | Primary                         |
|                                      | Elboim-Gabyzon <sup>26</sup><br>RCT<br>Knee OA<br>VERY LOW    | n = 63 (79%)                               | 2: Exercise/<br>NMES + exercise                                                                                                                                           | 12                | Exercise/<br>NMES + exercise (both<br>groups P < 0.001)                                                            | WOMAC change not<br>different between<br>groups after treatment<br>period ( $P = 0.260$ )                                                                                                                                                                                                                                                                                                                                                                                                  | Primary                         |

| Hunt <sup>27</sup><br>RCT<br>Knee OA<br>MODERATE               | <i>n</i> = 20 (95%)  | 2: Exercise + pain coping<br>skills training/exercise                                                                                                         | 10                             | Exercise + pain coping<br>skills training/<br>exercise + non-<br>directive counselling<br>(both groups P < 0.001)                                                  | WOMAC change not different between groups at follow up $(P \ge 0.120)$                                                                                                                                                                                                                              | Secondary |
|----------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Kudo45<br>RCT<br>Knee OA (women)<br>VERY LOW                   | n = 209 (97%)        | 2: Group exercise/home<br>exercise                                                                                                                            | 12                             | Group exercise $(P < 0.05)$                                                                                                                                        | WOMAC scores<br>demonstrated greater<br>improvement in group<br>exercise compared to<br>home exercise<br>(P < 0.05)                                                                                                                                                                                 | Primary   |
| Kumar <sup>21</sup><br>RCT<br>Knee OA<br>LOW                   | n = 44 (100%)        | 2:Physiotherapy<br>+ proprioceptive<br>training/physiotherapy                                                                                                 | 4                              | Physiotherapy<br>+ proprioceptive<br>training/<br>physiotherapy (both<br>groups P<br>< 0.05)                                                                       | Improvement in<br>WOMAC greater in<br>proprioceptive group<br>compared to<br>physiotherapy group<br>(P = 0.001)                                                                                                                                                                                     | Secondary |
| Luksurapan <sup>31</sup><br>RCT<br>Knee OA<br>HIGH             | <i>n</i> = 46 (100%) | 2: Phonophoresis of<br>piroxicam/ultrasound                                                                                                                   | 2                              | Phonophoresis of<br>piroxicam/ultrasound<br>(both groups p < 0.001)                                                                                                | No difference between groups at follow up $(p = 0.143)$                                                                                                                                                                                                                                             | Primary   |
| Malas <sup>18</sup><br>RCT<br>Knee OA<br>LOW                   | n = 61 (92%)         | 6: Isometric right/isometric<br>left/isotonic right/isotonic<br>left/isokinetic right/<br>isokinetic left                                                     | 3                              | Isometric ( $P < 0.01$ )/<br>isotonic ( $P < 0.01$ )/<br>isokinetic (pain and<br>function scales only;<br>P < 0.01)                                                | No head to head<br>comparison of<br>treatment effect of<br>isometric, isotonic,<br>isokinetic exercise<br>presented ( <i>P-value N/A</i> )                                                                                                                                                          | Primary   |
| Nambi <sup>46</sup><br>Controlled study<br>Knee OA<br>VERY LOW | n = 30 (100%)        | 2: lyengar yoga<br>+ biofeedback<br>+ strengthening<br>+ TENS/<br>biofeedback<br>+ strengthening<br>+ TENS                                                    | 8                              | lyengar yoga<br>+ biofeedback<br>+ strengthening<br>+ TENS/biofeedback<br>+ strengthening<br>+ TENS ( <i>P-values N/A</i> )                                        | Improvement in<br>WOMAC greater in<br>yoga group compared<br>to control ( $P < 0.05$ )                                                                                                                                                                                                              | Secondary |
| Parsons <sup>47</sup><br>RCT<br>Hip or knee OA<br>LOW          | n = 336 (74%)        | 2: Usual care (pre-operative<br>assessment)/usual<br>care + health maintenance<br>clinic (education,<br>individualized care)                                  | Control — 16.5;<br>Exper. — 18 | Not reported                                                                                                                                                       | WOMAC not different between groups at follow up ( $P = 0.690$ )                                                                                                                                                                                                                                     | Primary   |
| Ay <sup>40</sup><br>RCT<br>Knee OA<br>LOW                      | n = 60 (100%)        | 3: Home exercise<br>demonstration, supervision<br>and written material/home<br>exercise Supervision and<br>written material/home<br>exercise written material | 4, 12                          | Home exercise<br>demonstration,<br>Supervision and<br>written material/home<br>exercise supervision<br>and written material<br>( <i>both groups P &lt; 0.001</i> ) | WOMAC Pain scores<br>not different between<br>groups at 4 weeks<br>follow up ( $P = 0.930$ ),<br>but differences<br>between groups at 12<br>weeks ( $P = 0.001$ ) with<br>home- exercise<br>supervision group<br>showing the greatest<br>improvement; no<br>head-to-head group<br>comparisons given | Secondary |

(continued on next page)

| Outcome Sub-outcome | Sub-outcome       | First author                                                                   | Sample size                                                                             | Number of study arms:                                 | Follow-up         | Results                                                                                                              | Primary or                                                                                                                                                                                                                                                                                                                  |                                 |
|---------------------|-------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                     |                   | Design<br>Sample<br>Quality rating                                             | (retention)                                                                             | interventions for each arm                            | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention                                                       | Differences between<br>study arms in<br>treatment effects                                                                                                                                                                                                                                                                   | secondary<br>outcome<br>measure |
|                     | Function and pain | Messier <sup>15</sup><br>RCT<br>Knee OA<br>HIGH                                | n = 454 (88%)                                                                           | 3: Diet + exercise/diet/<br>exercise                  | 26, 78            | Diet + exercise<br>(P < 0.002)/diet/<br>exercise (P-values N/A)                                                      | Greater reductions in<br>pain demonstrated in<br>the diet + exercise<br>group compared to diet<br>group ( $P = 0.001$ ) and<br>exercise group<br>( $P = 0.004$ ). Greater<br>reductions in function<br>for the diet + exercise<br>group compared to diet<br>group ( $P = 0.003$ ) and<br>exercise group<br>( $P < 0.001$ ). | Secondary                       |
|                     |                   | French <sup>38</sup><br>RCT (modified cross over design)<br>Hip OA<br>MODERATE | n = 131 (86%)                                                                           | 3: Exercise/<br>exercise + manual therapy/<br>control | 9, 18             | Exercise/<br>exercise + manual<br>therapy ( <i>P</i> -values N/A)                                                    | WOMAC physical<br>function improvement<br>greater in exercise and<br>exercise + manual<br>therapy compared to<br>control at follow up<br>(P = 0.002)                                                                                                                                                                        | Primary                         |
|                     |                   | Katz <sup>35</sup><br>RCT<br>Knee OA<br>MODERATE                               | n = 351 (94% 6)<br>months; 91% at 12<br>months; 30% crossed<br>over from PT to surgery) | 2: Surgery/physiotherapy                              | 26, 52            | Surgery/physiotherapy<br>(P-values N/A)                                                                              | WOMAC physical<br>function scores not<br>different between<br>surgery and<br>physiotherapy groups<br>at both follow up times<br>( <i>P</i> -value <i>N</i> /A)                                                                                                                                                              | Primary                         |
|                     |                   | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE                              | n = 159 (97%)                                                                           | 2: Stabilization<br>training + exercise/exercise      | 6, 12, 38         | Stabilization<br>training + exercise/<br>exercise ( <i>P</i> -values N/A)                                            | Improvement in<br>WOMAC physical<br>function subscale<br>change not different<br>between groups at<br>follow up ( $P = 0.990$ )                                                                                                                                                                                             | Primary                         |
|                     | Function of a 100 | Park <sup>28</sup><br>RCT<br>Knee OA<br>VERY LOW                               | n = 44 (50%)                                                                            | 2: Whole body<br>vibration + exercise/<br>exercise    | 4, 8              | Whole body<br>vibration + exercise/<br>exercise ( <i>both groups</i><br><i>P</i> < 0.012)                            | Improvement in WOMAC not different between groups at follow up ( $P = 0.967$ )                                                                                                                                                                                                                                              | Primary                         |
| KOOS                | /HOOS             | Imoto <sup>25</sup><br>RCT<br>Knee OA<br>MODERATE                              | <i>n</i> = 100 (87%)                                                                    | 2: NMES + exercise/exercise                           | 8                 | NMES + exercise/<br>exercise (both groups<br>P < 0.001)                                                              | Improvement in WOMAC function, pain and stiffness subscales not different between groups at follow up $(P \ge 0.230)$                                                                                                                                                                                                       | Secondary                       |
| ,                   | Full scale — KOOS | Ghasemi <sup>22</sup><br>Controlled Study<br>Knee OA                           | n = 30 (83%)                                                                            | 2: Yoga exercise/control                              | 8                 | Yoga exercise ( <i>P</i> < 0.05)                                                                                     | No head to head<br>comparison of yoga<br>exercise vs control                                                                                                                                                                                                                                                                | Primary                         |
|                     |                   | Saleki <sup>48</sup><br>RCT<br>Knee OA<br>VERY LOW                             | <i>n</i> = 40 (unclear)                                                                 | 2: Acupuncture/isometric<br>exercise                  | 4                 | Acupuncture (change in<br>Pain, ADL, and QoL<br>scores, $P \le 0.02$ )/<br>isometric exercise<br>(change in Symptoms | KOOS Pain score<br>improved in the<br>acupuncture group<br>compared to the<br>isometric exercise                                                                                                                                                                                                                            | Primary                         |

Table II (continued)

M.R. Maly, S.M. Robbins / Osteoarthritis and Cartilage 22 (2014) 1958–1988

|      | VOOG asin sada anku  |                                                                                   |                                                                               |                                                                                                    |        | and QoL scores, $P \leq 0.04$ )                                                                                                                                   | group following<br>intervention ( $P = 0.03$ )<br>improved in over<br>isometric group                                                                                                  |           |
|------|----------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | E ll codo Hoos       | Katz <sup>35</sup><br>RCT<br>Knee OA<br>MODERATE                                  | n = 351 (94% 6 months; 91% at 12 months; 30% crossed over from PT to surgery) | 2: Surgery/physiotherapy                                                                           | 52     | Surgery/physiotherapy<br>(P-values N/A)                                                                                                                           | KOOS pain scores not<br>different between<br>surgery and<br>physiotherapy groups<br>at follow up ( <i>P</i> -value N/<br>A)                                                            | Secondary |
|      | Function - KOOS/HOOS | Poulsen <sup>33</sup><br>RCT (proof of principle)<br>Hip OA<br>MODERATE           | n = 118 (94%)                                                                 | 3: Manual<br>therapy + education/<br>education/minimal control<br>intervention (written<br>advice) | 6, 52  | Manual<br>therapy + education/<br>education/minimal<br>control intervention<br>(HOOS Pain, Sport/Rec,<br>and QoL subscale scores<br>for all groups $P \le 0.04$ ) | All HOOS subscales demonstrate greater improvement in the manual therapy group compared to control group ( $P < 0.05$ )                                                                | Primary   |
|      |                      | Bossen <sup>39</sup><br>RCT<br>Hip or Knee OA<br>MODERATE                         | n = 199 (85% 3 months;<br>75% 12 months)                                      | 2: Web-based physical<br>activity intervention/<br>waiting list control                            | 12, 52 | Web-based physical<br>activity intervention/<br>waiting list control ( <i>P</i> -<br>values N/A)                                                                  | Physical function<br>improved in the<br>intervention group<br>compared to the<br>control group at 3<br>months ( $P = 0.006$ ) but<br>not at 12 months<br>( $P = 0.100$ )               | Primary   |
| SF36 |                      | Daskapan <sup>23</sup><br>RCT<br>Knee OA<br>LOW                                   | n = 40 (100%)                                                                 | 2: Mini squat/straight Leg<br>Raises                                                               | 2, 6   | Mini squat ( <i>at follow</i><br><i>up</i> , <i>P</i> = 0.004)                                                                                                    | No difference between<br>mini squat and straight<br>leg raise groups<br>following intervention<br>(P = 0.398) and at<br>follow up $(P = 0.201)$                                        | Primary   |
|      | Full scale           | L. Chen <sup>36</sup><br>RCT<br>Knee OA<br>MODERATE                               | n = 214 (85% 12 weeks;<br>71% 26 weeks)                                       | 2: Acupuncture/non-<br>penetrating acupuncture                                                     | 12     | Acupuncture/non-<br>penetrating<br>acupuncture ( <i>P-values</i><br><i>N/A</i> )                                                                                  | SF-36 physical and<br>mental change scores<br>not different between<br>groups at 12 weeks<br>follow up ( $P > 0.169$ )                                                                 | Secondary |
|      |                      | French <sup>38</sup><br>RCT (modified<br>cross over design)<br>Hip OA<br>MODERATE | n = 131 (86%)                                                                 | 3: Exercise/<br>exercise + manual therapy/<br>control                                              | 9, 18  | Exercise/<br>exercise + manual<br>therapy/control<br>(mental only, P-values<br>N/A)                                                                               | SF-36 not different<br>between groups at<br>follow up [though<br>physical component<br>summary nearly better<br>in exercise group<br>compared to control at<br>9 weeks ( $P = 0.06$ )] | Secondary |
|      |                      | Messier <sup>15</sup><br>RCT                                                      | n = 454 (88%)                                                                 | 3: Diet + exercise/diet/<br>exercise                                                               | 26, 78 | Diet + exercise<br>(physical subscale,                                                                                                                            | SF36 physical subscale<br>demonstrated greater<br>improvement in the                                                                                                                   | Secondary |

1971

(continued on next page)

# Table II (continued)

| Outcome Sub-outcome    | First author                                                  | Sample size                                                                            | Number of study arms: Follow-up                                                    | Results           |                                                                                                                                                                     | Primary or                                                                                                                                                                                        |                                 |
|------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                        | Design<br>Sample<br>Quality rating                            | (retention)                                                                            | interventions for each arm                                                         | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention                                                                                                      | Differences between<br>study arms in<br>treatment effects                                                                                                                                         | secondary<br>outcome<br>measure |
|                        | Knee OA<br>HIGH                                               |                                                                                        |                                                                                    |                   | P = 0.01)/Diet/Exercise<br>(P-values N/A)                                                                                                                           | diet + exercise group<br>compared to exercise<br>group alone ( $P = 0.005$ )                                                                                                                      |                                 |
|                        | Schencking <sup>49</sup><br>RCT<br>Hip or knee OA<br>VERY LOW | n = 30 (100%)                                                                          | 3: Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy | 10                | Kneipp hydrotherapy<br>(PS only)/<br>physiotherapy/Kneipp<br>hydrotherapy<br>+ physiotherapy (P-<br>values N/A)                                                     | No head to head<br>comparison of<br>treatment effect of<br>hydrotherapy,<br>hydrotherapy plus<br>physiotherapy,<br>physiotherapy alone<br>( <i>P-value N/A</i> )                                  | Secondary                       |
| Physical activity scal | le<br>Katz <sup>35</sup><br>RCT<br>Knee OA<br>MODERATE        | n = 351 (94% 6 months;<br>91% at 12 months;<br>30% crossed over from<br>PT to surgery) | 2: Surgery/physiotherapy                                                           | 52                | Surgery/physiotherapy<br>(P-values N/A)                                                                                                                             | SF-36 Activity scores<br>not different between<br>surgery and<br>physiotherapy groups<br>at follow up ( <i>P-value N</i> /<br><i>A</i> )                                                          | Secondary                       |
| SF-8                   | Wi <sup>43</sup><br>RCT<br>Knee OA<br>LOW                     | <i>n</i> = 40 (unclear)                                                                | 2: Virtual gaming/control                                                          | 4                 | No improvement<br>( <i>P</i> > 0.05)                                                                                                                                | SF-8 change scores not<br>different between<br>groups at follow up<br>(P > 0.05)                                                                                                                  | Secondary                       |
| Lesquesne index        | W. Chen <sup>30</sup><br>RCT<br>Knee OA<br>MODERATE           | n = 54 (93%)                                                                           | 2: tens/Hyaluronic acid<br>injections                                              | 2,8,12            | TENS/hyaluronic acid<br>(both groups <i>P &lt; 0.001</i> )                                                                                                          | Lequesne index<br>improved to a greater<br>extent in TENS group<br>than HA group at 2<br>weeks follow up<br>(P = 0.01) and 12 weeks<br>follow up $(P = 0.03)$ ,<br>but not 8 weeks<br>(P = 0.160) | Primary                         |
|                        | Imoto <sup>24</sup><br>RCT<br>Knee OA<br>MODERATE             | <i>n</i> = 100 (100%)                                                                  | 2: NMES/education                                                                  | 8                 | NMES (P < 0.001)/<br>education (non-<br>significant)                                                                                                                | Lequesne index<br>improved to a greater<br>extent in the NMES<br>group compared to<br>control group $(B = 0.02)$                                                                                  | Secondary                       |
|                        | Schencking <sup>49</sup><br>RCT<br>Hip or knee OA<br>VERY LOW | n = 30 (100%)                                                                          | 3: Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy | 10                | Kneipp hydrotherapy<br>( <i>hip only</i> )/<br>physiotherapy<br>( <i>knee only</i> )/kneipp<br>hydrotherapy<br>+ physiotherapy<br>( <i>hip only, P-values N/A</i> ) | No head to head<br>comparison of<br>treatment effects of<br>hydrotherapy,<br>hydrotherapy plus<br>physiotherapy,<br>physiotherapy alone                                                           | Secondary                       |
| Lysholm scoring scale  | Park <sup>28</sup><br>RCT<br>Knee OA<br>VERY LOW              | n = 44 (50%)                                                                           | 2: Whole body<br>vibration + exercise/<br>exercise                                 | 4, 8              | Whole body<br>vibration + exercise/<br>exercise (non-<br>significant P = 0.054)                                                                                     | Improvement in LSS<br>not different between<br>groups at follow up<br>(P = 0.994)                                                                                                                 | Secondary                       |

M.R. Maly, S.M. Robbins / Osteoarthritis and Cartilage 22 (2014) 1958–1988

| Self-reported knee stability |                                                                |                       |                                                                                                                                                                           |           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |           |
|------------------------------|----------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                              | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE              | n = 159 (97%)         | 2: Stabilization<br>training + exercise/exercise                                                                                                                          | 6, 12, 38 | Stabilization<br>training + exercise/<br>exercise ( <i>P</i> -values N/A)                                                                                                                 | Self-reported knee<br>stability scores not<br>different between<br>groups at follow up<br>(P = 0.790)                                                                                                                                                    | Primary   |
| Self-made 'function scale'   | Zhang <sup>50</sup><br>Controlled study<br>Knee OA<br>VERY LOW | <i>n</i> = 100 (100%) | 2: Exercise + diclofenac<br>sodium/diclofenac sodium                                                                                                                      | 4         | Exercise + diclofenac<br>sodium ( $P < 0.05$ )/<br>diclofenac sodium<br>( $P < 0.05$ )                                                                                                    | Function was higher in the intervention group vs the control group at follow up ( $P = 0.033$ ).                                                                                                                                                         | Secondary |
| Performance<br>Balance       |                                                                |                       |                                                                                                                                                                           |           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |           |
| Standing Datance             | Daskapan <sup>23</sup><br>RCT<br>Knee OA<br>LOW                | n = 40 (100%)         | 2: Mini squat/straight leg<br>Raises                                                                                                                                      | 2, 6      | No improvement $(P \ge 0.117)$                                                                                                                                                            | No difference between<br>mini squat and straight<br>leg raise groups after<br>intervention<br>(P = 0.659) and at<br>following $(P = 0.327)$                                                                                                              | Primary   |
|                              | Malas <sup>18</sup><br>RCT<br>Knee OA<br>LOW                   | n = 61 (92%)          | 6: Isometric right/isometric<br>left/isotonic right/isotonic<br>left/isokinetic right/<br>isokinetic left                                                                 | 3         | lsometric ( <i>P</i> < 0.01)/<br>isokinetic ( <i>P</i> < 0.05)                                                                                                                            | No head to head<br>comparison of<br>treatment effect<br>isometric, isotonic,<br>isokinetic exercise                                                                                                                                                      | Primary   |
|                              | Park <sup>28</sup><br>RCT<br>Knee OA<br>VERY LOW               | n = 44 (50%)          | 2: Whole body<br>vibration + exercise/<br>exercise                                                                                                                        | 4, 8      | Whole body<br>vibration + exercise/<br>exercise ( <i>both groups</i><br><i>P</i> < 0.004)                                                                                                 | Improvement in<br>standing balance not<br>different between<br>groups at follow up<br>(P < 0.484)                                                                                                                                                        | Primary   |
| Range of motion<br>Knee      |                                                                |                       |                                                                                                                                                                           |           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |           |
|                              | Alpayci <sup>29</sup><br>RCT<br>Knee OA<br>MODERATE            | n = 98 (92%)          | 3: Control (hot pack, short<br>wave diathermy)/<br>intermittent traction + hot<br>pack, short wave<br>diathermy)/constant<br>traction + hot pack, short<br>wave diathermy | 7         | Intermittent traction<br>(P = 0.002  and  P = 0.021<br>at 3 and 7 weeks<br>respectively)/constant<br>traction $(P < 0.001 \text{ and } P$<br>P = 0.001  at 3 and 7<br>weeks respectively) | Knee ROM<br>improvements greater<br>in constant traction<br>group compared to<br>intermittent traction<br>(P = 0.006) and control<br>groups at week 3<br>(P = 0.001); no<br>differences among<br>groups in ROM from<br>baseline to week 7<br>(P = 0.300) | Secondary |
|                              | W. Chen <sup>30</sup><br>RCT<br>Knee OA<br>MODERATE            | <i>n</i> = 54 (93%)   | 2: TENS/hyaluronic acid<br>injections                                                                                                                                     | 2, 8, 12  | TENS ( <i>P</i> < 0.001)                                                                                                                                                                  | Passive knee range of<br>motion not different<br>between groups at all<br>follow up times<br>(P > 0.160)                                                                                                                                                 | Secondary |
|                              | Kudo <sup>45</sup><br>RCT<br>Knee OA (women)<br>VERY LOW       | n = 209 (97%)         | 2: Group exercise/home<br>exercise                                                                                                                                        | 12        | Not reported                                                                                                                                                                              | No head to head<br>comparison of group vs<br>home exercise<br>presented ( <i>P</i> -value N/A)                                                                                                                                                           | Secondary |
|                              | Schencking <sup>49</sup><br>RCT<br>Hip or knee OA<br>VERY LOW  | n = 30 (100%)         | 3: Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy                                                                                        | 10        | Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy<br>(flexion for all groups,<br>P-values N/A)                                                              | No head to head<br>comparison of<br>hydrotherapy group,<br>hydrotherapy plus<br>physiotherapy group,<br>physiotherapy alone<br>groups ( <i>P-value N/A</i> )                                                                                             | Secondary |

M.R. Maly, S.M. Robbins / Osteoarthritis and Cartilage 22 (2014) 1958–1988

(continued on next page) 1973

| Outcome Sub-outcome  | First author                                                                      | Sample size   | Number of study arms:                                                                                     | Follow-up | Results                                                                                                                       | Results                                                                                                                                                       |                                 |
|----------------------|-----------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                      | Design<br>Sample<br>Quality rating                                                | (retention)   | interventions for each arm                                                                                | (weeks)   | Study arm(s) resulting<br>in improvement after<br>intervention                                                                | Differences between<br>study arms in<br>treatment effects                                                                                                     | secondary<br>outcome<br>measure |
| Hip                  | French <sup>38</sup><br>RCT (modified cross<br>over design)<br>Hip OA<br>MODERATE | n = 131 (86%) | 3: Exercise/<br>exercise + manual therapy/<br>control                                                     | 9, 18     | Exercise/<br>exercise + manual<br>therapy ( <i>P-values N/A</i> )                                                             | Active hip range of<br>motion greater in<br>exercise and<br>exercise + manual<br>therapy groups<br>compared to control<br>(P = 0.001) at 9 weeks<br>follow up | Secondary                       |
|                      | Poulsen <sup>33</sup><br>RCT (proof of principle)<br>Hip OA<br>MODERATE           | n = 118 (94%) | 3: Manual<br>therapy + education/<br>education/minimal control<br>intervention (written<br>advice)        | 6, 52     | No improvement ( <i>P-value N/A</i> )                                                                                         | Hip range of motion<br>was not different<br>between groups at<br>follow up ( <i>P-value N/A</i> )                                                             | Primary                         |
|                      | Schencking <sup>49</sup><br>RCT<br>Hip or knee OA<br>VERY LOW                     | n = 30 (100%) | 3: Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy                        | 10        | Kneipp hydrotherapy/<br>physiotherapy/<br>kneipp hydrotherapy<br>+ physiotherapy<br>(flexion for all groups,<br>P-values N/A) | No head to head<br>comparison of<br>hydrotherapy group,<br>hydrotherapy plus<br>physiotherapy group,<br>physiotherapy alone<br>groups ( <i>P-value N/A</i> )  | Secondary                       |
| Joint position sense | v 21                                                                              | 11 (100%)     |                                                                                                           |           |                                                                                                                               | • .•••.                                                                                                                                                       | c 1                             |
|                      | RCT<br>Knee OA<br>LOW                                                             | n = 44 (100%) | <ul> <li>2: physiotherapy</li> <li>+ proprioceptive training/</li> <li>physiotherapy</li> </ul>           | 4         | <ul> <li>+ proprioceptive</li> <li>training/physiotherapy</li> <li>(both groups P &lt; 0.001)</li> </ul>                      | mprovement in joint<br>position sense greater<br>in proprioceptive<br>group compared to<br>physiotherapy group<br>(P < 0.05)                                  | Secondary                       |
| Strength             |                                                                                   |               |                                                                                                           |           |                                                                                                                               | (1 < 0.05)                                                                                                                                                    |                                 |
| Isometric quadrice   | ps/hamstrings strength                                                            | C2 (70%)      |                                                                                                           | 10        | Encouries /                                                                                                                   | Terretain and discuss                                                                                                                                         | <b>D</b>                        |
|                      | EIDOIM-GADyzon-<br>RCT<br>Knee OA<br>VERY LOW                                     | n = 63 (79%)  | 2: Exercise/<br>NMES + exercise                                                                           | 12        | Exercise/<br>NMES + exercise (both groups $P < 0.001$ )                                                                       | strength not different<br>between groups at<br>follow up $(P = 0.730)$                                                                                        | Primary                         |
|                      | Hunt <sup>27</sup><br>RCT<br>Knee OA<br>MODERATE                                  | n = 20 (95%)  | 2: Exercise + pain coping skills training/exercise                                                        | 10        | Exercise + pain coping<br>skills training/exercise<br>(both improvements<br>non-significant)                                  | Isometric quadriceps<br>and hamstrings<br>strength not different<br>between groups at<br>follow up $(P > 0.200)$                                              | Secondary                       |
|                      | Hunt <sup>16</sup><br>RCT (pilot)<br>Knee OA<br>LOW                               | n = 17 (88%)  | 2: Strengthening/control                                                                                  | 10        | Strengthening ( <i>P-value</i><br><i>N/A</i> )                                                                                | Knee strength not<br>different between<br>groups after<br>intervention<br>$(P \ge 0.120)$                                                                     | Secondary                       |
|                      | Kudo <sup>45</sup><br>RCT<br>Knee OA (women)<br>VERY LOW                          | n = 209 (97%) | 2: Group exercise/home<br>exercise                                                                        | 12        | Not reported                                                                                                                  | No head to head<br>comparison of<br>treatment effect of<br>group vs home exercise<br>presented ( <i>P-value N/A</i> )                                         | Secondary                       |
|                      | Malas <sup>18</sup><br>RCT<br>Knee OA<br>LOW                                      | n = 61 (92%)  | 6: Isometric right/isometric<br>left/isotonic right/isotonic<br>left/isokinetic right/<br>isokinetic left | 3         | lsometric (knee<br>extension, P < 0.01)                                                                                       | No head to head<br>comparison of<br>treatment effect of<br>isometric, isotonic,<br>isokinetic exercise                                                        | Primary                         |

presented (P-value N/A)

|                          | Park <sup>28</sup><br>RCT<br>Knee OA<br>VERY LOW                     | n = 44 (50%)  | 2: Whole body<br>vibration + exercise/<br>exercise                                                                                                            | 4, 8      | Whole body<br>vibration + exercise/<br>exercise (both groups<br>P < 0.01 at 1 and 2<br>months follow up)                                                                                                                                                                                                                                                                                         | Improvement in<br>isometric knee<br>extensor strength for<br>both knees not<br>different between<br>groups at follow up<br>$(P \ge 0.377)$                                                                                       | Primary   |
|--------------------------|----------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| lsokinetic quadriceps/ha | mstrings strength<br>Daskapan <sup>23</sup><br>RCT<br>Knee OA<br>LOW | n = 40 (100%) | 2: Mini squat/straight leg<br>Raises                                                                                                                          | 2, 6      | Mini squat [Right knee<br>extensor torque at 60°/<br>sec, 90°/sec, 120°/sec,<br>and 180°/sec<br>$(P \le 0.029)$ ; Left knee<br>extensor torque at 90°/<br>sec ( $P \le 0.03$ ); Left knee<br>flexor torque at 120°/sec<br>(P = 0.029)]/straight leg<br>raises [Right knee flexor<br>torque at 90°/sec<br>(P < 0.001); Left knee<br>flexor torque at 90°/sec<br>and 120°/sec<br>$(P \le 0.042)$ ] | No differences<br>between groups at<br>follow up ( $P = 0.091$ )                                                                                                                                                                 | Primary   |
|                          | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE                    | n = 159 (97%) | 2: Stabilization<br>training + exercise/exercise                                                                                                              | 6, 12, 38 | Stabilization<br>training + exercise/<br>exercise ( <i>P-values N/A</i> )                                                                                                                                                                                                                                                                                                                        | Isokinetic quadriceps<br>and hamstrings<br>strength not different<br>between groups at<br>follow up $(P = 0.790)$                                                                                                                | Secondary |
| Stair test               | Park <sup>28</sup><br>RCT<br>Knee OA<br>VERY LOW                     | n = 44 (50%)  | 2: Whole body<br>vibration + exercise/<br>exercise                                                                                                            | 4, 8      | Whole body<br>vibration + exercise/<br>exercise (both groups<br><i>P</i> < 0.001 for the right<br>limb only)                                                                                                                                                                                                                                                                                     | Improvement in right<br>and left isokinetic knee<br>extensor strength not<br>different between<br>groups at follow up<br>(P = 0.377)                                                                                             | Primary   |
|                          | Ay <sup>40</sup><br>RCT<br>Knee OA<br>LOW                            | n = 60 (100%) | 3: Home exercise<br>demonstration, supervision<br>and written material/home<br>exercise supervision and<br>written material/home<br>exercise written material | 4, 12     | Home exercise<br>demonstration,<br>supervision and<br>written material/home<br>exercise supervision<br>and written material/<br>home exercise written<br>material (all groups at<br>12 weeks follow up<br>P < 0.043)                                                                                                                                                                             | Difference between<br>groups at 4 ( $P = 0.029$ )<br>and 12 ( $P = 0.004$ )<br>weeks with the home-<br>exercise supervision<br>group having<br>decreased stair<br>climbing times; no<br>head-to- head group<br>comparisons given | Secondary |
|                          | Elboim-Gabyzon <sup>26</sup><br>RCT<br>Knee OA<br>VERY LOW           | n = 63 (79%)  | 2: Exercise/<br>NMES + exercise                                                                                                                               | 12        | Exercise/<br>NMES + exercise (both<br>groups P < 0.001)                                                                                                                                                                                                                                                                                                                                          | Stair ascent and descent time not different between groups at follow up $(P = 0.630)$                                                                                                                                            | Primary   |
|                          | Hunt <sup>27</sup><br>RCT<br>Knee OA<br>MODERATE                     | n = 20 (95%)  | 2: Exercise + pain coping<br>skills training/exercise                                                                                                         | 10        | Exercise + pain coping<br>skills training<br>(P = 0.008)/exercise<br>(P = 0.01)                                                                                                                                                                                                                                                                                                                  | Improvement in step<br>test performance not<br>different between<br>groups at follow up<br>(P = 0.900)                                                                                                                           | Secondary |

(continued on next page)

 Table II (continued)

| Outcome Sub-outcome    | First author                                                                   | Sample size    | Number of study arms:                                                                                                                                         | Follow-up         | Results                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      | Primary or                      |
|------------------------|--------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                        | Design<br>Sample<br>Quality rating                                             | (retention)    | interventions for each arm                                                                                                                                    | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention                                                                                                                                                                   | Differences between<br>study arms in<br>treatment effects                                                                                                                                                                                                            | secondary<br>outcome<br>measure |
| Stair climbing questic | O'Brien <sup>42</sup><br>RCT (feasibility)<br>Hip or knee OA<br>VERY LOW       | n = 27 (56%)   | 2: Exercise + action and coping plans/exercise                                                                                                                | 12                | Exercise $+$ action and<br>coping plans/exercise<br>(both groups $P < 0.001$ )                                                                                                                                                   | Step test was not<br>different between<br>groups at follow up<br>(P = 0.420)                                                                                                                                                                                         | Primary                         |
|                        | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE                              | n = 159 (97%)  | 2: Stabilization<br>training + exercise/exercise                                                                                                              | 6, 12, 38         | Stabilization<br>training + exercise/<br>exercise (6 and 12<br>weeks, P-values N/A)                                                                                                                                              | Self-reported stair<br>climbing not different<br>between groups at<br>follow up ( $P = 0.930$ )                                                                                                                                                                      | Secondary                       |
| Sit to stana           | Ay <sup>40</sup><br>RCT<br>Knee OA<br>LOW                                      | n = 60 (100%)  | 3: Home exercise<br>demonstration, supervision<br>and written material/home<br>exercise supervision and<br>written material/home<br>exercise written material | 4, 12             | Home exercise<br>demonstration,<br>supervision and<br>written material/home<br>Exercise supervision<br>and written material/<br>home exercise written<br>material ( <i>all groups</i><br>$P \le 0.038$ by 12 weeks<br>follow up) | Differences in sit-to-<br>stand time was<br>significant between<br>groups at 4 weeks<br>(P = 0.001) and 12<br>weeks $(P < 0.001)$ with<br>the home-exercise<br>supervision group<br>having the quickest<br>time; no head- to- head<br>group comparisons<br>presented | Secondary                       |
| THC                    | French <sup>38</sup><br>RCT (modified cross over design)<br>Hip OA<br>MODERATE | n = 131 (86%)  | 3: Exercise/<br>exercise + manual therapy/<br>control                                                                                                         | 9, 18             | Exercise/<br>exercise + manual<br>therapy/control ( <i>P-values N/A</i> )                                                                                                                                                        | Sit-to-stand time not<br>different between<br>groups at follow up<br>(P = 0.950)                                                                                                                                                                                     | Secondary                       |
|                        | Abbott <sup>37</sup><br>RCT<br>Hip or knee OA<br>MODERATE                      | n = 206 (93%)  | 4: Manual physiotherapy/<br>exercise therapy/<br>manual + exercise therapy/<br>usual care                                                                     | 52                | Manual physiotherapy/<br>exercise therapy/<br>manual + exercise<br>therapy ( <i>P</i> -values N/A)                                                                                                                               | TUG demonstrated<br>greater improvement<br>in exercise therapy<br>group compared to<br>usual care ( <i>P-value N/A</i> )                                                                                                                                             | Secondary                       |
|                        | Daskapan <sup>23</sup><br>RCT<br>Knee OA<br>LOW                                | n = 40 (100%)  | 2: Mini squat/straight leg<br>raises                                                                                                                          | 2, 6              | Mini squat $(P < 0.001)$ /<br>Straight Leg Raises<br>(P = 0.001)                                                                                                                                                                 | TUG scores improved<br>in the mini squat group<br>following intervention<br>(P = 0.015) but no<br>difference between<br>groups at follow up<br>(P = 0.327)                                                                                                           | Primary                         |
|                        | Elboim-Gabyzon <sup>26</sup><br>RCT<br>Knee OA<br>VERV LOW                     | n = 63 (79%)   | 2: Exercise/<br>NMES + exercise                                                                                                                               | 12                | Exercise/<br>NMES + exercise (both<br>groups P < 0.001)                                                                                                                                                                          | TUG was not different<br>between groups at<br>follow up ( $P = 0.660$ )                                                                                                                                                                                              | Primary                         |
|                        | Imoto <sup>24</sup><br>RCT<br>Knee OA<br>MODERATE                              | n = 100 (100%) | 2: NMES/education                                                                                                                                             | 8                 | NMES ( <i>P</i> < 0.001)/<br>education ( <i>non-significant</i> )                                                                                                                                                                | TUG improved to a greater extent in the NMES group compared to control group $(P = 0.05)$                                                                                                                                                                            | Primary                         |
|                        | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE                              | n = 159 (97%)  | 2: Stabilization<br>training + exercise/exercise                                                                                                              | 6, 12, 38         | Stabilization<br>training + exercise/<br>exercise ( <i>P</i> -values N/A)                                                                                                                                                        | Improvement in Get Up<br>and Go no different<br>between groups at<br>follow up ( $P = 0.08$ )                                                                                                                                                                        | Secondary                       |

|        |                   | Imoto <sup>25</sup><br>RCT<br>Knee OA<br>MODERATE                        | n = 100 (87%)  | 2: NMES + exercise/exercise                                                                                                                                   | 8         | NMES + exercise/<br>exercise (both groups<br>P < 0.001)                                                                                                                                                  | Improvement in TUG<br>not different between<br>groups at follow up<br>(P = 0.120)                                                                                                                                                                      | Primary   |
|--------|-------------------|--------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|        |                   | O'Brien <sup>42</sup><br>RCT (feasibility)<br>Hip or knee OA<br>VFRY LOW | n = 27 (56%)   | 2: Exercise + action and coping plans/exercise                                                                                                                | 12        | Exercise + pain coping<br>skills training/exercise<br>(both groups $P = 0.02$ )                                                                                                                          | TUG not different<br>between groups at<br>follow up ( $P = 0.260$ )                                                                                                                                                                                    | Primary   |
|        |                   | Schencking <sup>49</sup><br>RCT<br>Hip or knee OA<br>VERY LOW            | n = 30 (100%)  | 3: Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy                                                                            | 10        | Kneipp hydrotherapy/<br>physiotherapy/kneipp<br>hydrotherapy<br>+ physiotherapy<br>( <i>P-values N/A</i> )                                                                                               | No head to head<br>comparison of<br>hydrotherapy group,<br>hydrotherapy plus<br>physiotherapy group,<br>physiotherapy alone<br>groups                                                                                                                  | Primary   |
|        | TUG questionnaire | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE                        | n = 159 (97%)  | 2: Stabilization<br>training + exercise/<br>exercise                                                                                                          | 6, 12, 38 | Stabilization<br>training + exercise (6<br>and 12 weeks only)/<br>exercise (all time points,<br>P-values N/A)                                                                                            | Self-reported rising<br>from sitting not<br>different between<br>groups at follow up<br>(P = 0.320)                                                                                                                                                    | Secondary |
| Walkin | g tests           |                                                                          |                |                                                                                                                                                               |           |                                                                                                                                                                                                          | (*)                                                                                                                                                                                                                                                    |           |
|        | 10-111            | O'Brien <sup>42</sup><br>RCT (feasibility)<br>Hip or knee OA<br>VERY LOW | n = 27 (56%)   | 2: Exercise + action and coping plans/exercise                                                                                                                | 12        | Exercise + pain coping<br>skills training/exercise<br>(both groups $P = 0.01$ )                                                                                                                          | 10 m walk time was<br>not different between<br>groups at follow up<br>(P = 0.360)                                                                                                                                                                      | Primary   |
|        | 15-m              | Boyaci <sup>32</sup><br>RCT<br>Knee OA<br>LOW                            | n = 101 (100%) | 3: Phonophoresis/<br>ultrasonography/short-<br>wave diathermy                                                                                                 | 2         | Phonophoresis/<br>ultrasonography/short-<br>wave diathermy ( <i>all</i><br><i>groups P</i> < 0.001)                                                                                                      | Improvement in 15 m walk time no different between groups after treatment period $(P = 0.505)$                                                                                                                                                         | Primary   |
|        | 30-m              | W. Chen <sup>30</sup><br>RCT<br>Knee OA<br>MODERATE                      | n = 54 (93%)   | 2: TENS/hyaluronic acid<br>injections                                                                                                                         | 2, 8, 12  | TENS/hyaluronic acid (both group $P \le 0.01$ )                                                                                                                                                          | Walking time<br>improvement greater<br>in TENS vs HA group at<br>8 weeks ( $P = 0.03$ ), but<br>not at 2 weeks<br>( $P = 0.06$ ) or 12 weeks<br>( $P = 0.07$ ) follow up                                                                               | Secondary |
|        | 40-m              | Abbott <sup>37</sup><br>RCT<br>Hip or knee OA<br>MODERATE                | n = 206 (93%)  | 4: Manual physiotherapy/<br>exercise therapy/<br>manual + exercise therapy/<br>usual care                                                                     | 52        | Manual physiotherapy/<br>exercise therapy/<br>manual + exercise<br>therapy ( <i>P</i> -values N/A)                                                                                                       | Walking demonstrated<br>greater improvement<br>in exercise therapy<br>group compared to                                                                                                                                                                | Secondary |
|        | 100-m             | Ay <sup>40</sup><br>RCT<br>Knee OA<br>LOW                                | n = 60 (100%)  | 3: Home exercise<br>demonstration, supervision<br>and written material/home<br>exercise supervision and<br>written material/home<br>exercise written material | 4, 12     | Home exercise<br>demonstration,<br>supervision and<br>written material/Home<br>exercise supervision<br>and written material/<br>Home exercise written<br>material ( <i>all groups</i><br>$P \le 0.025$ ) | Differences in walking<br>between groups at 4<br>weeks ( $P = 0.003$ ) and<br>12 weeks ( $P < 0.001$ )<br>with home-exercise<br>supervision group<br>having the quickest<br>completion time; no<br>head- to- head<br>comparison of groups<br>presented | Secondary |

| Outcome           | Sub-outcome              | First author                                                                      | Sample size                              | Number of study arms:                                                                                     | Follow-up         | Results                                                                                                          |                                                                                                                                                 | Primary or                      |
|-------------------|--------------------------|-----------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 50-foot           |                          | Design<br>Sample<br>Quality rating                                                | (retention)                              | interventions for each arm                                                                                | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention                                                   | Differences between<br>study arms in<br>treatment effects                                                                                       | secondary<br>outcome<br>measure |
|                   | 50-foot                  | French <sup>38</sup><br>RCT (modified<br>cross over design)<br>Hip OA<br>MODEPATE | n = 131 (86%)                            | 3: Exercise/<br>exercise + manual therapy/<br>control                                                     | 9, 18             | Exercise + manual<br>therapy ( <i>P</i> -value N/A)                                                              | 50 foot walk not<br>different between<br>groups at follow up<br>(P = 0.720)                                                                     | Secondary                       |
|                   |                          | Malas <sup>18</sup><br>RCT<br>Knee OA<br>LOW                                      | n = 61 (92%)                             | 6: Isometric right/isometric<br>left/isotonic right/isotonic<br>left/isokinetic right/<br>isokinetic left | 3                 | Isometric $(P < 0.01)$ /<br>isotonic $(P < 0.05)$ /<br>isokinetic $(P < 0.05)$                                   | No head to head<br>comparison of<br>treatment effect of<br>isometric, isotonic,<br>isokinetic exercise<br>presented                             | Primary                         |
|                   | Six minute walk test (SN | /WT)<br>L. Chen <sup>36</sup><br>RCT<br>Knee OA<br>MODERATE                       | n = 214 (85% 12 weeks;<br>71% 26 weeks)  | 2: Acupuncture/non-<br>penetrating acupuncture                                                            | 12                | Acupuncture/non-<br>penetrating<br>acupuncture ( <i>P-values</i><br><i>N/A</i> )                                 | SMW not different<br>between groups at 12<br>weeks follow up<br>(P = 0.562)                                                                     | Secondary                       |
|                   |                          | Messier <sup>15</sup><br>RCT<br>Knee OA<br>HIGH                                   | n = 454 (88%)                            | 3: Diet + exercise/diet/<br>exercise                                                                      | 26, 78            | Diet + exercise<br>( <i>P</i> < 0.001)/diet/<br>exercise ( <i>P</i> -values N/A)                                 | Changes in SMW<br>greater in<br>diet + exercise group<br>compared to exercise<br>group ( $P = 0.005$ ) and<br>the diet group<br>( $P < 0.001$ ) | Secondary                       |
|                   | Accelerometry            | O'Brien <sup>42</sup><br>RCT (feasibility)<br>Hip or knee OA<br>VERY LOW          | n = 27 (56%)                             | 2: Exercise + action and coping plans/exercise                                                            | 12                | No improvement $(P = 0.730)$                                                                                     | SMW was not different between groups at follow up ( $P = 0.480$ )                                                                               | Primary                         |
|                   | Wellvier succeiver size  | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE                         | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>Waiting list control                                   | 12, 52            | No improvement;<br>control group<br>digressed ( <i>P-values N/</i><br><i>A</i> )                                 | Accelerometry showed that the intervention group had higher objective PA than the control group at 12 months ( $P = 0.045$ )                    | Secondary                       |
| Health<br>Aerobic | fitness                  | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE                                 | n = 159 (97%)                            | 2: Stabilization<br>training + exercise/exercise                                                          | 6, 12, 38         | Stabilization<br>training + exercise (6<br>and 12 weeks only)/<br>exercise (6 and 12<br>weeks only, P-value N/A) | Self-reported walking<br>not different between<br>groups at follow up<br>(P = 0.600)                                                            | Secondary                       |
| Systol            | ic blood pressure        | Christensen <sup>14</sup><br>RCT<br>Knee OA<br>MODERATE                           | n = 192 (91%)                            | 3: Diet/exercise/control                                                                                  | 16, 68            | Diet/exercise/control<br>(P-values N/A)                                                                          | Reduction in systolic<br>blood pressure not<br>different between diet<br>and exercise groups<br>(P = 0.600)                                     | Secondary                       |

| Maximal oxygen uptake (VO <sub>2</sub> pe | eak)                                                                     |               |                                                                                                      |        |                                                                                                                    |                                                                                                                                                                                                                                                                                                                  |                         |
|-------------------------------------------|--------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Workland                                  | Larose <sup>41</sup><br>RCT<br>Knee OA<br>LOW                            | n = 222 (52%) | 3: Supervised<br>walking + behavioural<br>intervention/supervised<br>walking/unsupervised<br>walking | 26     | Supervised<br>walking + behavioural<br>intervention/<br>supervised walking/( <i>all</i><br>groups P < 0.01)        | Increase in peak<br>oxygen consumption<br>no different between<br>groups after<br>walking + behavioural<br>or walking<br>interventions<br>$(P \le 0.110)$ . Men in<br>unsupervised and<br>behavioural groups had<br>greater increment in<br>maximal oxygen<br>consumption than<br>supervised group<br>(P = 0.01) | Primary                 |
| Workload                                  | Larose <sup>41</sup><br>RCT<br>Knee OA<br>LOW                            | n = 222 (52%) | 3: Supervised<br>walking + behavioural<br>intervention/supervised<br>walking/unsupervised<br>walking | 26     | No improvement $(P \ge 0.05)$                                                                                      | Workload at maximal<br>aerobic effort not<br>different between<br>groups after<br>walking + behavioural<br>or walking<br>interventions<br>$(P \ge 0.180)$                                                                                                                                                        | Primary                 |
| Heart rate maximum                        | Larose <sup>41</sup><br>RCT<br>Knee OA<br>LOW                            | n = 222 (52%) | 3: Supervised<br>walking + behavioural<br>intervention/supervised<br>walking/unsupervised<br>walking | 26     | No improvement $(P \ge 0.110)$                                                                                     | Maximal heart rate not different between groups after walking + behavioural or walking interventions $(P \ge 0.160)$                                                                                                                                                                                             | Primary                 |
| Ventilation                               | Larose <sup>41</sup><br>RCT<br>Knee OA<br>LOW                            | n = 222 (52%) | 3: Supervised<br>walking + behavioural<br>intervention/supervised<br>walking/unsupervised<br>walking | 26     | Women only:<br>supervised<br>walking + behavioural<br>intervention/<br>supervised walking/(all<br>groups P < 0.01) | Increase in ventilation<br>at maximum aerobic<br>effort not different<br>between groups after<br>walking + behavioural<br>or walking<br>interventions<br>$(P \ge 0.770)$                                                                                                                                         | Primary                 |
| Test duration                             | Larose <sup>41</sup><br>RCT<br>Knee OA<br>LOW                            | n = 222 (52%) | 3: Supervised<br>walking + behavioural<br>intervention/supervised<br>walking/unsupervised<br>walking | 26     | No improvement $(P \ge 0.520)$                                                                                     | Men in unsupervised<br>group had greater<br>increment in test<br>duration than<br>supervised group<br>(P = 0.04)                                                                                                                                                                                                 | Primary                 |
| Physical activity questionnaire (         | MET score)<br>Christensen <sup>14</sup><br>RCT<br>Knee OA<br>MODERATE    | n = 192 (91%) | 3: Diet/exercise/control                                                                             | 16, 68 | Not reported                                                                                                       | Physical activity<br>changes not different<br>between groups at<br>follow up ( $P = 0.340$ )                                                                                                                                                                                                                     | Secondary               |
| Exercise danerence                        | O'Brien <sup>42</sup><br>RCT (feasibility)<br>Hip or knee OA<br>VERY LOW | n = 27 (56%)  | 2: Exercise + action and coping plans/exercise                                                       | 12     | N/A (cross-sectional<br>measure)                                                                                   | Adherence was not<br>different between<br>groups at follow up<br>$(P \ge 0.210)$<br>(continued o                                                                                                                                                                                                                 | Primary<br>n next page) |

age) 1979

| Outcome Sub-outcome              | First author                                                            | Sample size                              | Number of study arms:                                                                              | Follow-up         | Results                                                               | Results                                                                                                                                                                                    |                                 |
|----------------------------------|-------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                  | Design<br>Sample<br>Quality rating                                      | (retention)                              | interventions for each arm                                                                         | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention        | Differences between<br>study arms in<br>treatment effects                                                                                                                                  | secondary<br>outcome<br>measure |
| Global measures                  |                                                                         |                                          |                                                                                                    |                   |                                                                       |                                                                                                                                                                                            |                                 |
| Patient and physician commen     | tt<br>Boyaci <sup>32</sup><br>RCT<br>Knee OA<br>LOW                     | n = 101 (100%)                           | 3: Phonophoresis/<br>ultrasonography/short-<br>wave diathermy                                      | 2                 | N/A (cross-sectional measure)                                         | Patient ( $P = 0.667$ ) or<br>physician ( $P = 0.315$ )<br>evaluation of treatment<br>efficacy not different<br>between groups after<br>treatment period                                   | Secondary                       |
| Patient giobai assessment        | W. Chen <sup>30</sup><br>RCT<br>Knee OA<br>MODERATE                     | n = 54 (93%)                             | 2: TENS/hyaluronic acid<br>injections                                                              | 12                | TENS/hyaluronic acid<br>(both groups P < 0.001)                       | Global assessment<br>(reflecting satisfaction<br>with treatment)<br>greater in TENS than<br>HA group at 2 weeks<br>(P = 0.01) and 12 weeks<br>(P = 0.03), but not 8<br>weeks $(P = 0.160)$ | Secondary                       |
| Overall perceived change         | Hunt <sup>27</sup><br>RCT<br>Knee OA<br>MODERATE                        | n = 20 (95%)                             | 2: Exercise + pain coping<br>skills training/exercise                                              | 10                | N/A (cross-sectional measure)                                         | Overall perceived<br>change (ordinal scale 1<br>-5) not different<br>between groups at<br>follow up ( <i>P</i> -value N/A)                                                                 | Secondary                       |
| Perceived effect of intervention | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE               | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control                            | 12, 52            | Web-based physical<br>activity intervention<br>( <i>P-value N/A</i> ) | Perceived effect of intervention demonstrated significant differences at 12 weeks ( <i>P</i> < 0.001) with an improvement in the intervention group compared to the control group.         | Primary                         |
|                                  | L. Chen <sup>36</sup><br>RCT<br>Knee OA<br>MODERATE                     | n = 214 (85% 12 weeks;<br>71% 26 weeks)  | 2: Acupuncture/non-<br>penetrating acupuncture                                                     | 12, 26            | N/A (no baseline score<br>for true comparison)                        | Patient global<br>assessment not<br>different between<br>groups at both follow<br>un times ( $P > 0.278$ )                                                                                 | Secondary                       |
|                                  | Knoop <sup>20</sup><br>RCT<br>Knee OA<br>MODERATE                       | n = 159 (97%)                            | 2: Stabilization<br>training + exercise/exercise                                                   | 6, 12, 38         | N/A (cross-sectional<br>measure)                                      | Global perceived effect<br>was greater in<br>experimental group at<br>12 weeks follow up<br>compared to the<br>control group ( $P = 0.04$ )                                                | Secondary                       |
| Dischiller                       | Poulsen <sup>33</sup><br>RCT (proof of principle)<br>Hip OA<br>MODERATE | n = 118 (94%)                            | 3: Manual<br>therapy + education/<br>education/minimal control<br>intervention (written<br>advice) | 6, 52             | Not reported                                                          | Greater proportion of<br>manual therapy group<br>reported effectiveness<br>compared to education<br>and control groups<br>(P < 0.001)                                                      | Secondary                       |
| <b>Disability</b><br>Disability  | W. Chen <sup>30</sup><br>RCT<br>Knee OA<br>MODERATE                     | n = 54 (93%)                             | 2: TENS/hyaluronic acid<br>injections                                                              | 12                | TENS/hyaluronic acid (both groups $P \le 0.02$ )                      | Disability (single item,<br>scored on 5 point scale)<br>not different between<br>TENS and HA groups at<br>all follow up times<br>$(P \ge 0.09)$                                            | Secondary                       |

| ADL scale                       |                                                                          |                                          |                                                                                                                              |                             |                                                                                                                                                                                               |                                                                                                                                                                                                                           |                         |
|---------------------------------|--------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                 | Imoto <sup>24</sup><br>RCT<br>Knee OA<br>MODERATE                        | <i>n</i> = 100 (100%)                    | 2: NMES/education                                                                                                            | 8                           | NMES (P < 0.001)/<br>education (non-<br>significant)                                                                                                                                          | ADL improved to a greater extent in the NMES group compared to control group $(P = 0.01)$                                                                                                                                 | Secondary               |
| LLTQ ADL scale                  | O'Brien <sup>42</sup><br>RCT (feasibility)<br>Hip or knee OA<br>VERY LOW | n = 27 (56%)                             | 2: Exercise + action and coping plans/exercise                                                                               | 12                          | No improvement<br>( <i>P</i> = 0.940)                                                                                                                                                         | LLTQ-ADL change was<br>no different between<br>groups at follow up<br>(P = 0.590)                                                                                                                                         | Primary                 |
| Psychological                   |                                                                          |                                          |                                                                                                                              |                             |                                                                                                                                                                                               | (                                                                                                                                                                                                                         |                         |
| Coping strategies questionnaire |                                                                          |                                          |                                                                                                                              |                             |                                                                                                                                                                                               |                                                                                                                                                                                                                           |                         |
|                                 | Hunt <sup>27</sup><br>RCT<br>Knee OA<br>MODERATE                         | n = 20 (95%)                             | 2: Exercise + pain coping<br>skills training/exercise                                                                        | 10                          | Exercise + pain coping skills training ( $P = 0.04$ )                                                                                                                                         | CSQ changes not<br>different between<br>groups at follow up<br>(P = 0.07)                                                                                                                                                 | Primary                 |
| AIMS2                           | Hunt <sup>27</sup><br>RCT<br>Knee OA<br>MODERATE                         | n = 20 (95%)                             | 2: Exercise + pain coping<br>skills training/exercise                                                                        | 10                          | Exercise + pain coping<br>skills training/<br>exercise + non-<br>directive counselling<br>(both groups $P = 0.03$ )                                                                           | AIMS2 changes not different between groups at follow up $(P \ge 0.120)$                                                                                                                                                   | Secondary               |
| ASES                            | Hunt <sup>27</sup><br>RCT<br>Knee OA<br>MODERATE                         | n = 20 (95%)                             | 2: Exercise + pain coping<br>skills training/exercise                                                                        | 10                          | Exercise + pain coping<br>skills training/<br>exercise + non-<br>directive counselling<br>( <i>P</i> -values N/A)                                                                             | ASES changes not different between groups at follow up $(P \ge 0.530)$                                                                                                                                                    | Secondary               |
| Patient satisfaction            | Parsons <sup>47</sup><br>RCT<br>Hip or knee OA<br>LOW                    | n = 336 (74%)                            | 2: Usual care (pre-operative<br>assessment)/usual<br>care + health maintenance<br>clinic (education,<br>individualized care) | Control – 16.5; Exper. – 18 | Not reported                                                                                                                                                                                  | Patient satisfaction was greater in the experimental group compared to control group ( $P < 0.001$ )                                                                                                                      | Primary                 |
| Medications                     | Poulsen <sup>33</sup><br>RCT (proof of principle)<br>Hip OA<br>MODERATE  | n = 118 (94%)                            | 3: Manual<br>therapy + education/<br>education/minimal control<br>Intervention (written<br>advice)                           | 6, 52                       | Not reported                                                                                                                                                                                  | Medication use not<br>different between<br>groups at follow up ( <i>P</i> -<br><i>values N/A</i> )                                                                                                                        | Secondary               |
| Self-efficacy                   | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE                | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control                                                      | 12, 52                      | Web-based PHYSICAL<br>activity intervention/<br>waiting list control ( <i>at</i><br><i>3 months</i> ); Web-based<br>physical activity<br>intervention ( <i>at</i> 12<br>months; P-values N/A) | Self-efficacy (other<br>symptoms subscale of<br>arthritis self-efficacy<br>scale) improved in the<br>intervention group<br>compared to control<br>group at 3 months<br>(P = 0.008), but not at<br>12 months $(P = 0.350)$ | Secondary               |
|                                 | O'Brien <sup>42</sup><br>RCT (feasibility)<br>Hip or knee OA<br>VERY LOW | n = 27 (56%)                             | 2: Exercise + action and<br>coping plans/exercise                                                                            | 12                          | Exercise + pain coping<br>skills training/exercise<br>(Maintenance self-<br>efficacy only, P = 0.03)                                                                                          | Recovery self-efficacy<br>improved to a greater<br>extent in the exercise<br>alone group compared<br>to the exercise + action<br>and coping skills group<br>(P = 0.02)<br>(continued of                                   | Primary<br>n next page) |

| Outcome Sub-outcome        | First author                                                                                | Sample size                              | Number of study arms:                                                   | Follow-up         | Results                                                                                      |                                                                                                                                                 | Primary or                      |
|----------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                            | Design<br>Sample<br>Quality rating                                                          | (retention)                              | interventions for each arm                                              | period<br>(weeks) | Study arm(s) resulting<br>in improvement after<br>intervention                               | Differences between<br>study arms in<br>treatment effects                                                                                       | secondary<br>outcome<br>measure |
| Tiredness                  | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE                                   | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control | 12, 52            | Web-based physical<br>activity intervention/<br>waiting List control ( <i>P-values N/A</i> ) | Tiredness NRS<br>improved in the<br>intervention group<br>compared to control<br>group at 3 months<br>(P = 0.04) and 12<br>months $(P = 0.008)$ | Secondary                       |
| Anxiety                    | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE                                   | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control | 12, 52            | Web-based physical activity intervention/ waiting list control ( <i>P-values N/A</i> )       | Anxiety improved in<br>the intervention group<br>compared to control<br>group at 12 months<br>(P = 0.007)                                       | Secondary                       |
| Depression                 | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE                                   | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control | 12, 52            | Web-based physical activity intervention/<br>waiting list control ( <i>P-values N/A</i> )    | Depressive symptoms<br>not different between<br>groups at 3 months<br>(P = 0.09) and 12<br>months $(P = 0.09)$<br>follow up                     | Secondary                       |
| Quality of life            | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE                                   | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control | 12, 52            | Web-based physical<br>activity intervention/<br>waiting list control ( <i>P-values N/A</i> ) | Quality of life not<br>different between<br>groups at 3 months<br>(P = 0.280) and 12<br>months $(P = 0.680)$<br>follow up                       | Secondary                       |
| Pain coping                | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE                                   | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control | 12, 52            | Web-based physical activity intervention ( <i>P-values N/A</i> )                             | Pain coping improved<br>in the intervention<br>group compared to<br>control group only at<br>12 months ( $P = 0.008$ )                          | Secondary                       |
| Locus of control           | Bossen <sup>39</sup><br>RCT<br>Hip or knee OA<br>MODERATE                                   | n = 199 (85% 3 months;<br>75% 12 months) | 2: Web-based physical<br>activity intervention/<br>waiting list control | 12, 52            | Web-based physical<br>activity intervention/<br>waiting list control ( <i>P-values N/A</i> ) | Locus of control changes not different between groups at 3 months ( $P = 0.410$ ) and 12 months ( $P = 0.610$ ) follow up                       | Secondary                       |
| Hospital anxiety & depress | ion scale<br>French <sup>38</sup><br>RCT (modified cross over design)<br>Hip OA<br>MODERATE | n = 131 (86%)                            | 3: Exercise/<br>exercise + manual therapy/<br>control                   | 9, 18             | Exercise + manual<br>therapy ( <i>anxiety only</i> ,<br><i>P-value N/A</i> )                 | Anxiety ( $P = 0.920$ ) and<br>depression ( $P = 0.260$ )<br>not different between<br>groups at follow up                                       | Secondary                       |
| Depression                 | Wi <sup>43</sup><br>RCT<br>Knee OA<br>LOW                                                   | <i>n</i> = 40 (unclear)                  | 2: Virtual gaming/control                                               | 4                 | Virtual gaming<br>( <i>P</i> < 0.05)                                                         | Depressive symptoms<br>lower in the<br>experimental group<br>than the control group<br>(P < 0.05)                                               | Primary                         |

LLTQ ADL = Lower Limb Tasks Questionnaire-Activities of daily living subscale. AIMS2 = Arthritis Impact Measurement Scale 2. ASES = Arthritis Self Efficacy Scale.

Table II (continued)

M.R. Maly, S.M. Robbins / Osteoarthritis and Cartilage 22 (2014) 1958–1988

#### Physiology

Five investigations, involving 697 participants with knee OA, reported physiological outcome measures. These markers included biomarkers derived from serum and urine that reflect the synthesis and degradation of articular cartilage, biomarkers of systemic inflammation from blood, and the morphological presence of collagen, capillaries, and muscle architecture using muscle biopsy and ultrasound techniques. A mix of high and low quality studies provided inconsistent findings regarding the impact of diet and exercise on OA pathophysiology, owing in large part to the variety of measures used. Thus, this body of work supporting exercise to manage OA pathophysiology was rated as low quality evidence.

Interventions for physiological outcome measures: diet and exercise. Exercise alone altered muscle characteristics. Ultrasound measurements of knee extensors after 15 sessions of strengthening exercise increased muscle thickness in knee OA<sup>18</sup>. Exercise combined with diet for weight loss was effective in addressing cartilage turnover and inflammation in knee OA in some studies. In a high quality study, diet and diet combined with exercise resulted in greater improvements in plasma interleukin 6 (IL-6), an inflammatory cytokine implicated in OA pathology, compared to exercise alone<sup>15</sup>. Strengthening was associated with reductions in serum cartilage oligomeric matrix protein (COMP) in a feasibility trial of 17 people with knee OA<sup>16</sup>. COMP is involved in cell proliferation and apoptosis and therefore. COMP is a marker of cartilage turnover. This work adds some confidence that joint loads associated with exercise are not necessarily associated with increased cartilage turnover in people with radiographic evidence of knee OA, though more work is required.

On the other hand, a study that examined muscle tissue from biopsy presented low level evidence that exercise may yield a negative effect on OA pathophysiology. Chronic inflammation is associated with age-related accumulations of advanced glycation end products. These end products are thought to promote stiffness and reduce muscle function. The receptor of advanced glycation end product (RAGE) has been implicated in prolonging inflammation. A double-blind RCT examined the impact of resistance training, resistance training with ibuprofen, and resistance training with glucosamine sulphate on the presence of RAGE in 21 people with knee OA<sup>19</sup>. Twelve weeks of resistance training increased the presence of RAGE in vastus lateralis in the group receiving only exercise (P < 0.05). In comparison, glucosamine combined with resistance training lowered the labelling of intra- and extra-cellular RAGE (P < 0.05), suggesting a protective effect of glucosamine<sup>19</sup>.

These discrepancies between studies published in 2013 may reflect the differences in duration of the follow up period, intervention, and type of inflammatory marker. Further research is necessary to clarify the impact of exercise on inflammation.

## Pain

Twenty studies, including 1558 participants with hip and knee OA, reported on pain. The pain subscale of the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), numeric pain rating, and visual analogue scales were the most common tools. One study examined pain threshold.

Eleven studies reported on the impact of exercise on pain intensity, ranging from very low to moderate quality. This body of evidence suggested a consistent positive response of pain to exercise; however many had limitations in design, particularly around blinding, sample size, and a lack of head-to-head comparison of study arms. Together, these studies provide low quality evidence that exercise reduces pain as a result of hip and/or knee OA. Also, consistent evidence from seven studies showed the benefits of passive interventions, such as phonophoresis, ultrasound, acupuncture, manual therapy, traction, and transcutaneous electrical stimulation (TENS), on pain intensity in people with hip and knee OA. The majority of these studies were of moderate quality.

#### Intervention for pain outcome measures: exercise

While the articles were not all of the highest quality, exercise was consistently effective for pain management. A RCT examined the efficacy of exercises targeting the knee laxity that results from the ligamentous, muscular, and proprioceptive deficits caused by  $OA^{20}$ . Participants with clinical knee OA(n = 159) were randomized into two arms. The control group completed a 12-week supervised program of strengthening and functional activities. The experimental group received the same program with the addition of joint stabilization training (low load proprioception, neuromuscular control activities). Both groups completed two supervised sessions each week, and completed a home program on the remaining 5 days each week. Both groups reported substantial reductions in pain on the numeric pain rating scale<sup>20</sup>. Another study randomized 44 participants to receive 4 weeks of proprioceptive training, or 4 weeks of traditional physiotherapy (ultrasound, cycling, stretching, resistance exercise). Proprioceptive training resulted in greater reductions in pain than traditional physiotherapy  $(P = 0.001)^{21}$ . However details of the proprioceptive training were limited<sup>21</sup>. Other forms of exercise useful in reducing pain included yoga in a sample with knee OA<sup>22</sup> and mini squats and straight leg raises in women with bilateral knee OA<sup>23</sup>.

# Interventions for pain outcome measures: exercise combined with neuromuscular electrical stimulation

Evidence of the usefulness of neuromuscular electrical stimulation (NMES) in reducing pain was inconsistent. NMES applies an electrical current to the muscle fibres and neuromuscular junction to produce contraction. NMES stimulated exercises were superior to education alone in 100 participants with radiographic knee OA  $(P < 0.01)^{24}$ . However, in two studies where NMES was compared head-to-head with exercise, findings were conflicting. One hundred people with radiographic knee OA were randomized to receive either exercise, or exercise with NMES<sup>25</sup>. The control group received exercise including stationary cycling, stretching, and isometric quadriceps strengthening in sitting. In the experimental group, NMES placed on rectus femoris and vastus medialis facilitated isometric quadriceps strengthening. After treatment two times each week for 8 weeks, both groups improved in pain (P < 0.05). No difference was noted between groups  $(P = 0.52)^{25}$ . In contrast, greater improvement in pain was noted in a group receiving NMES with exercise compared to exercise alone  $(P = 0.01)^{26}$ . This study randomized 50 people with symptomatic and radiographic knee OA to receive 12 treatments, over 6 weeks, of either (1) group exercise of range of motion, strengthening, functional activities and balance training, or (2) group exercise with additional NMES stimulation of rectus femoris and vastus medialis in sitting. This study experienced a loss to follow-up (81% retention) and lacked blinding of the participants and assessors at the follow up time point $^{26}$ .

# Interventions for pain outcome measures: exercise combined with other strategies

Exercise was combined with other rehabilitation strategies, including pain coping skills training<sup>27</sup> or whole body vibration<sup>28</sup>. Pain coping skills training is an element of cognitive behavioural therapy that includes three components: education about pain and the role of pain coping skills, training in cognitive and behavioural coping skills, and applying coping skills to real-life situations. In a

feasibility RCT, 20 participants with knee OA were randomized to a group receiving exercise and pain coping skills training, or exercise and non-directive counselling over 10 weeks<sup>27</sup>. Both reported improvement in pain (P < 0.05) and no differences were noted between groups at follow up (P = 0.91). Specialized training of physiotherapists was required to deliver these interventions<sup>27</sup>.

# Interventions for pain outcome measures: passive rehabilitation strategies

Other rehabilitation strategies producing statistically significant improvements in pain included traction<sup>29</sup>, TENS<sup>30</sup>, thermal agents (ultrasound, phonophoresis and shortwave diathermy)<sup>31,32</sup> and manual therapy<sup>33</sup>. In a randomized, double-blind, controlled trial of 46 people with symptomatic knee OA, phonophoresis was superior to traditional ultrasound in reducing pain over 2 weeks of therapy<sup>31</sup>. Phonophoresis is a technique that uses ultrasonic waves to enhance percutaneous absorption of drugs, in this case, piroxicam. Phonophoresis was delivered with the ultrasound delivering continuous, 1.0 W/cm<sup>2</sup>, 1 MHz wave over 0.5% piroxicam gel. The ultrasound group received the same ultrasound dosage, with an unmedicated coupling gel (i.e., no piroxicam). Advantages of phonophoresis include avoiding the adverse side effects of system administration of non-steroidal anti-inflammatories and the combined effect of ultrasound<sup>31</sup>.

A three-arm RCT compared manual therapy combined with education, education alone, and controls in 118 participants with radiographic hip OA<sup>33</sup>. Manual therapy is a hands-on technique that addresses abnormal arthrokinematics and pain by stimulating joint mechanoreceptors. The education group received two one-on-one sessions and three group sessions on hip anatomy, hip OA, mobility and pain management. The manual therapy group received this education in addition to manual therapy (trigger point release, muscle stretching using segmental inhibition/excitation, manipulation) twice a week for 6 weeks. The control group received a pamphlet. Compared to the control group, the manual therapy group experienced reduced pain intensity immediately after 6 weeks of treatment. Though treatment ceased, this effect that was maintained 12 months later. Education alone was not superior to the control group<sup>33</sup>.

## Physical function

The majority of studies reported at least one outcome measure of physical function. The outcomes were subdivided into self-report or performance-based measures.

# Self-reported physical function

Self-reported physical function is a critically important outcome from the perspective of the patient, though sometimes these measures are subject to recall error and may not be appropriate for those with impaired cognition<sup>34</sup>. Twenty-nine studies showed self-reported outcomes on 3466 participants with hip and knee OA. The most common measurements used included the WOMAC, the Knee or Hip injury and Osteoarthritis Outcome Scores (KOOS/HOOS) and the Short Form-36 (SF36).

Physical function outcome measures reported by people with hip and/or knee OA improved as a result of physiotherapy. Physiotherapy programs included exercise for flexibility and strength, manual therapy, and diet combined with exercise. These studies ranged in quality from very low to high. Several were limited by challenges blinding participants and/or outcome assessors from the treatment arm, a lack of direct head-to-head comparisons of study arms, and small samples. Nonetheless, this body of work presented moderate quality evidence that physiotherapy improved self-reported physical function in people with hip and knee OA. Intervention for self-reported function outcome measures: physiotherapy. Physiotherapy was equally effective to arthroscopic surgery for a majority of people with knee OA. A large, multi-center, RCT compared surgery to physiotherapy for 351 people with a meniscal tear and knee OA detected on radiographs or magnetic resonance imaging<sup>35</sup>. The arthroscopy group received partial meniscectomy and removal of loose fragments of cartilage and bone. Post-surgically, participants received physiotherapy equivalent to the physiotherapy only group. This physiotherapy protocol was approximately 6 weeks involving an individualized program of one or two one-on-one visits with a physiotherapist and a home program each week. Goals were to address inflammation, range of motion, strength, flexibility, aerobic fitness, proprioception, and balance. At 6 months, of the 330 active participants, no difference was found between the surgical and physiotherapy groups in the WOMAC physical function subscale. However several participants in the physiotherapy group crossed over to the surgical group by 6 months (30.2%) and 12 months (5.6%). These cross-over participants experienced little improvement in functional status from the point of randomization to the time of cross-over. Their WOMAC physical function scores were equivalent to those assigned to the surgical group at 12 months follow up<sup>35</sup>. While the cross-over of patients from physiotherapy to surgery was a limitation, one important strength of the study was its design to assess effectiveness in a real-world application.

Other physiotherapy techniques included acupuncture, manual therapy, and exercise combined with diet. In a randomized, doubleblind, controlled trial of 214 people with radiographic knee OA, the integration of acupuncture into an exercise-based physiotherapy program was compared with a control group receiving exercise and non-penetrating acupuncture<sup>36</sup>. After 12 sessions, both groups reported improvements on the WOMAC; however no difference existed between groups at follow up. Thus acupuncture did not add to the effects of exercise<sup>36</sup>. In a sample (n = 206) with clinical hip or knee OA, a RCT compared manual therapy, exercise, manual therapy and exercise, or usual care provided by their existing healthcare team<sup>37</sup>. The manual therapy group demonstrated greater improvement in WOMAC scores than the usual care group at 1-year follow up (P = 0.03). Similar findings were noted in a sample of 131 people with clinical and radiographic hip OA<sup>38</sup>. Relative to a waitlist control group, improvement in WOMAC scores after a 9 week intervention period were the same for a group receiving exercise (strength, flexibility) and another group receiving exercise and manual therapy<sup>38</sup>. Further, dieting for weight loss and exercise together proved more effective in improving WOMAC physical function compared to dieting alone (P = 0.003) or exercise alone (P = 0.001) in the IDEA trial<sup>15</sup>.

Intervention for self-reported function outcome measures: electronic coaching. Electronic coaching facilitated OA self-management. A web-based intervention, entitled "Join2move," was evaluated in comparison to a wait list control group in 199 people with self-reported knee and/or hip  $OA^{39}$ . In this RCT, the 9-week behavioural graded activity aimed to gradually increase physical activity. This intervention included a baseline test, goal setting, time-contingent physical activity objectives, and text messaging to promote physical activity. Physical function captured on either the KOOS or HOOS showed a 15% improvement in the intervention group relative to the control group at 3 months (P = 0.006). The treatment effect was lost at 12 months follow up<sup>39</sup>.

#### Performance

Performance measures were further divided into impairments (e.g., balance, range of motion, and strength) and mobility limitations (e.g., sit-to-stand, stairs, walking). Twelve papers that included 827 participants reported on performance measures related to impairments in hip and knee OA. The majority of these investigations examined the impact of exercise on impairments. Together these investigations provide low quality evidence that exercise alone improves balance, range of motion, and strength tasks. Also, moderate quality evidence from two studies demonstrated the benefits of passive strategies including traction and TENS on impairments.

Sixteen research articles, including 1856 participants, used mobility performance measures to assess the efficacy of rehabilitation in knee and/or hip OA. Measurements included a variety of walking, transferring from sit-to-stand and stair climbing performance tasks. This body of work provided moderate quality, consistent evidence of the efficacy of exercise and diet for weight loss in improving mobility performance in knee and hip OA. Passive strategies included TENS and thermal agents such as phonophoresis, ultrasound, and short-wave diathermy. The evidence supporting the efficacy of passive rehabilitation techniques in improving mobility performance was consistent and of moderate quality.

Intervention for performance outcome measures: exercise. Balance and strength were improved after resistance training. Sixty-six people with knee OA were randomized to receive one of six different resistance-training protocols. These protocols involved 20 min of one of isometric, isokinetic, or isotonic contractions, on either their left or right leg, 5 days a week for 3 weeks. All six groups demonstrated the ability to spend a longer time period in single-leg stance at follow up<sup>18</sup>. More sophisticated measurements of balance could be incorporated in future research; however it is important to note that 3 weeks was likely inadequate to produce appreciable improvements in muscle strength. Increased isometric quadriceps strength resulted from protocols of mini-squats<sup>23</sup>, and isometric exercise<sup>18</sup>. However, supplementing exercise with whole body vibration<sup>28</sup> or NMES<sup>26</sup> resulted in no further benefit over exercise alone.

Exercise improved performance of stair-climbing, transferring tasks such as the Timed Up and Go, and walking performance in samples with knee and/or hip OA<sup>20,23,26,27,37,40</sup>. An 8 week program combining strengthening exercise with NMES improved Time Up and Go (TUG) scores in a sample with radiographic knee  $OA^{24}$ . After a warm-up on an exercise bike, participants performed a seated strengthening exercise against the resistance provided by an ankle weight. NMES was applied to the rectus femoris and vastus medialis (time on: 10 s, time off: 30 s, pulse duration 250  $\mu$ s, 50 Hz) for 20 min. Time to complete the TUG, which requires a participant to stand up from a standard chair, walk 3 m, turn, return to the chair and sit, was reduced by over 1 s (P < 0.001), an improvement greater than that observed in the control group  $(P = 0.05)^{24}$ . The control group received only education: thus it is unclear whether the treatment effect is attributed to the combination of strengthening and NMES, or either treatment alone. Similarly, exercise was more effective in improving performance of the 40 m walk test amongst 206 people with hip or knee OA than usual care; that is, care administered by their general practitioner and other health care providers  $(P = 0.03)^{37}$ .

Electronic coaching improved quantity of physical activity<sup>39</sup>. Exercise in combination with other therapies such as NMES<sup>26</sup>, pain coping skills<sup>27</sup>, and stability training<sup>20</sup> improved mobility performance. However, these additional interventions provided no greater benefit to mobility performance over exercise alone<sup>20,26,27</sup>. One addition to exercise that was successful in boosting improvements to mobility performance over exercise alone was dieting for weight loss. Data from the IDEA trial showed that diet combined with exercise improved Six Minute Walk scores to a greater extent

than exercise alone or diet alone in people with knee OA at 18 month follow  $up^{15}$ .

Interventions for performance outcome measures: passive strategies. TENS is a technique that applies an electrical current to stimulate analgesia through activation of a spinal segment, and/or supraspinal centres<sup>30</sup>. A RCT of 54 participants with clinical knee OA were randomized to a group receiving intra-articular hyaluronic acid injections or TENS. The injections were 2.5 mL of 1% sodium hyaluronate solution, administered via a lateral parapatellar approach once per week for five consecutive weeks. The TENS was applied with silver spike point electrodes, positioned on acupuncture points for knee problems, to best replicate an acupuncture-like effect without the use of needles. The TENS parameters were a mixed frequency of 3 Hz and 20 Hz with a pulse width of 200 µs and this treatment was applied three times each week for 20 min, over a 4 week period. Data from 50 people who completed the trial showed that walking time improved in the TENS group to a greater extent than the hyaluronic acid group  $(P = 0.03)^{30}$ . While the TENS group received more attention than the hyaluronic acid group, this paper provides moderate level evidence that TENS is effective in improving walking performance.

A RCT compared phonophoresis of ketoprofen with ultrasound and short-wave diathermy in 101 people with bilateral radiographic knee OA<sup>32</sup>. Each group received intervention from the same physiotherapist 5 days a week for 2 weeks. Each treatment session started with a hot pack. In the experimental group, phonophoresis of ketoprofen, an anti-inflammatory, was administered at a frequency of 1 MHz, with a power of 1.5 W/cm<sup>2</sup> for 8 min to both knees. The ultrasound group received ultrasound with the same parameters without any drug. The group receiving short-wave diathermy received the intervention via electrodes placed on the knees in parallel, at 27.12 MHz, for 20 min. Walking time for a 15 m span was improved in all three groups. No differences between groups were noted<sup>32</sup>. It would be interesting to note whether this improvement in mobility performance was maintained beyond the 2-week intervention period.

#### Health

The theme of health included subthemes of aerobic fitness, disability, psychological measures and other global health outcome measures. Global health outcome measures were varied and as a result, summarized only in Table II.

#### Aerobic fitness

Three studies documented aerobic fitness in 441 participants with knee or hip OA. These studies formed a body of evidence showing consistent but low quality evidence of efficacy of exercise for fitness in OA. A RCT of 222 adults with knee OA compared three programs: (1) structured, supervised walking program with a behavioural intervention, (2) structured, supervised walking program, or (3) unsupervised, self-directed walking program<sup>41</sup>. All interventions were 12 months in duration. Both groups receiving structured walking met three times per week with a physical activity specialist who led increases in intensity and duration. The behavioural intervention involved 20 sessions of 2 h each to discuss short-term goals, barriers to walking, and strategies to address barriers, as well as education. The participants in the behavioural intervention also received monthly face-to-face counselling. The self-directed group was instructed to avoid walking with the supervised groups. The study had a 52% retention rate. Measures of cardiorespiratory fitness were derived from a graded treadmill stress test: maximal oxygen consumption, workload, maximum heart rate, ventilation, and duration. Women that received structured walking (with or without the behavioural intervention) experienced an improvement in maximal ventilation at follow up (P < 0.01). Men and women in all groups experienced an increase in peak oxygen consumption (P < 0.01). No group differences were noted in the outcome measures. Participants did not tolerate the maximal stress test on the treadmill<sup>41</sup>; therefore future work may consider submaximal stress tests on a cycle ergometer to avoid weight-bearing related pain from interfering with performance on a fitness test.

#### Disability

Only three studies, reporting on 181 participants included a measure of disability. In one of these studies, the measurement was a single item. Thus no quality rating was determined for this small body of evidence. TENS produced improvements in a single item measure of disability in activities of daily living (ADL)<sup>30</sup>. ADL improved to a greater extent in people with knee OA after NMES with strengthening exercise compared to control<sup>24</sup>.

#### Psychological

Seven investigations involving 871 participants with hip and knee OA measured a variety of psychological outcomes, including anxiety, self-efficacy and depression. Exercise studies in people with hip and knee OA produced consistent, moderate quality evidence of its efficacy in improving psychological outcomes.

In a study involving 199 participants with hip or knee OA, a 9 week behavioural graded activity aimed to gradually increase physical activity improved several psychological outcomes<sup>39</sup>. Tiredness rated on a numerical scale was reduced relative to a waitlist control group at 3 months (P = 0.04) and 12 months (P = 0.007). The anxiety dimension of the Hospital Anxiety and Depression Scale showed the intervention group, compared to the control group, experienced less anxiety at 3 month (P = 0.05) and 12 month (P = 0.008) follow ups. Scores on the pain coping inventory improved in the intervention group compared to the control group at 12 months  $(P = 0.008)^{39}$ .

Self-efficacy is the belief that one has the capacity to execute the necessary actions to satisfy the demands of a given situation. Selfefficacy for exercise maintenance was improved after a 12 week gym and home exercise program combined with individual counselling to develop plans for action and coping with challenges associated with their hip or knee OA  $(P = 0.03)^{42}$ . This RCT was a small feasibility study and therefore further work is necessary to understand the impact of exercise and goal-setting for coping skills in knee OA.

Finally, 40 older women with knee OA were randomized to an experimental group who participated in an exercise game using an Xbox 360 for 30 min per session, three times per week for 4 weeks<sup>43</sup>. The control group received no intervention. The experimental group demonstrated a reduction in scores on the Short Geriatric Depression Scale from baseline to follow up (P < 0.05). This treatment effect was greater compared to the control group  $(P < 0.05)^{43}$ .

#### **Key messages**

In 2013, papers investigating the efficacy and effectiveness of rehabilitation strategies used outcome measures spanning from markers of OA disease to overall health. The largest bodies of evidence focused on physical function and pain intensity. Exercise combined with dieting to manage body mass should be the mainstays of rehabilitation for people with hip and knee OA. Evidence published in 2013 showed that these strategies provided benefit to OA disease markers, pain, physical function and health. More research is necessary regarding the impact of reduced lean mass associated with dieting.

Moderate quality evidence supported physiotherapy to improve self-reported physical function. Physiotherapy was as useful as surgery for OA-related meniscal tears. No repercussions were noted in cases where physiotherapy failed and the patient moved on to arthroscopic surgery. To improve performance of balance, strength, and joint range of motion, low and moderate quality evidence supported the use of exercise and passive strategies such as TENS. Similarly, moderate quality evidence showed that mobility performance was improved by exercise combined with diet, and passive strategies including TENS, phonophoresis, ultrasound, and short-wave diathermy. To reduce pain intensity, moderate level evidence supported the use of thermal and/or electrical modalities, traction, and manual therapy in people with hip and knee OA.

A large body of evidence evaluated markers of OA disease. Moderate and high quality evidence supported the use of dieting for weight loss combined with exercise in reducing body mass and fat mass, along with compressive knee forces, in people with knee OA. However, the role of exercise in addressing OA pathophysiology was less clear. The majority of studies showed that exercise imparted a positive effect on cartilage turnover and inflammation; however findings from one investigation suggested that exercise increased inflammation within muscle. Given the variety of measurements used to understand the mechanisms involved in OA, it is not surprising that findings regarding OA markers were inconsistent. This inconsistency resulted in a low quality rating for the body of evidence supporting exercise for OA pathophysiology.

Though a variety of psychological measures were included in rehabilitation intervention studies published in 2013, the body of evidence supporting the use of exercise to improve psychological factors such as anxiety and depression was of moderate quality.

Examining the 2013 rehabilitation literature by outcome measure highlighted areas for future research. Few studies focus on hip OA. Most measurements of pain focused on pain intensity. Further, few studies measured the impact of rehabilitation on disability as a result of OA. The majority of exercise intervention studies were limited by challenges in blinding. By comparison, studies of physical agents generally had higher quality ratings because of relative ease in blinding both participants and research staff. Other common study limitations were losses to follow up greater than 15% of the baseline sample, and, in some cases, indirect statistical comparisons of study arms. Further, future work must address inconsistencies present in rehabilitation intervention protocols, which present challenges in grouping outcome data. Many of these findings are consistent with previous annual reviews of rehabilitation strategies for  $OA^{6-9}$ .

In summary, conservative intervention is a critical component of care for people with OA. The evidence from 2013 shows that diet for weight loss and exercise should be the mainstays of rehabilitation for people with hip and knee OA. These interventions improve OA disease markers, pain, physical function and general health.

#### Contributions

Maly: literature review, data abstraction, interpretation, drafting and finalizing manuscript.

Robbins: literature review, data abstraction, interpretation, reviewing and finalizing manuscript.

#### Role of funding source Not applicable.

# **Competing interests**

None.

# Acknowledgements

The authors thank Elora Brenneman and Genevieve Gore for their assistance in compiling materials for this manuscript.

# References

- 1. Rahman M, Kopec J, Sayre E, Greidanus N, Aghajanian J, Anis A, *et al.* Effect of sociodemographic factors on surgical consultations and hip or knee replacements among patients with osteoarthritis in British Columbia, Canada. J Rheumatol 2011;38:503–9.
- **2.** Research ClfH. Wait Time for Priority Procedures in Canada 2013. Ottawa.
- **3.** Board NJR. In: Porter M, Ed. 10th Annual Report 2013: National Joint Registry for England, Wales and Northern Ireland Surgical Data to 31 December 2012. Hertfordshire, UK: National Joint Registry; 2013.
- **4.** Association AO. In: Davidson D, Ed. Hip and Knee Arthroplasty: National Joint Replacement Registry. Adelaide: University of Adelaide; 2012.
- 5. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007;89: 780–5.
- **6.** Davis A, MacKay C. Osteoarthritis year in review: outcome of rehabilitation. Osteoarthritis Cartilage 2013;21:1414–24.
- 7. Roos E, Juhl C. Osteoarthritis 2012 year in review: rehabilitation and outcomes. Osteoarthritis Cartilage 2012;20:1477–83.
- **8.** Davis A. Osteoarthritis year in review: rehabilitation and outcomes. Osteoarthritis Cartilage 2012;20:201–6.
- **9.** Hawker G, Mian S, Bednis K, Stanaitis I. Osteoarthritis year 2010 in review: non-pharmacologic therapy. Osteoarthritis Cartilage 2010;19:366–74.
- Guyatt G, Oxman A, Vist G, Kunz R, Falck-Ytter Y, Alonso-Coello P, *et al.* GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6.
- 11. Guyatt G, Oxman A, Kunz R, Falck-Ytter Y, Vist G, Liberati A, *et al.* GRADE: going from evidence to recommendations. BMJ 2008;336:1049–51.
- **12.** Guyatt G, Oxman A, Vist G, Kunz R, Falck-Ytter Y, Schunemann HGRADE. What is "quality of evidence" and why is it important to clinicians? BMJ 2008;336:995–8.
- **13.** Messier S. Obesity and osteoarthritis: disease genesis and nonpharmacologic weight management. Rheum Dis Clin North Am 2008;34:713–29.
- **14.** Christensen P, Frederiksen R, Bliddal H, Riecke B, Bartels E, Henriksen M, *et al.* Comparison of three weight maintenance programs on cardiovascular risk, bone and vitamins in sedentary older adults. Obesity 2013;21:1982–90.
- **15.** Messier S, Mihalko S, Legault C, Miller G, Nicklas B, DeVita P, *et al.* Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis. JAMA 2013;310: 1263–73.
- **16.** Hunt M, Pollock C, Kraus V, Saxne T, Peters S, Huebner J, *et al.* Relationships amongst osteoarthritis biomarkers, dynamic knee joint load, and exercise: results from a randomized controlled pilot study. BMC Musculoskelet Disord 2013;14:115.

- **17.** Barrios J, Butller R, Crenshaw J, Royer T, Davis I. Mechanical effectiveness of lateral foot wedging in medial knee osteoar-thritis after 1 year of wear. J Orthop Res 2013;31:659–64.
- **18.** Malas F, Ozcakar L, Kaymak B, Ulasli A, Guner S, Kara M, *et al.* Effects of different strength training on muscle architecture: clinical and ultrasonographic evaluation in knee osteoarthritis. PMR 2013;5:655–62.
- Mattiello-Sverzut A, Petersen S, Kjaer M, Mackey A. Morphological adaptation of muscle collagen and receptor of advanced glycation end product (RAGE) in osteoarthritis patients with 12 weeks of resistance training: influence of antiinflammatory or glucosamine treatment. Rheumatol Int 2013;33:2215–24.
- **20.** Knoop J, Dekker J, vanderLeeden M, van der Esch M, Thorstensson C, Gerritsen M, *et al.* Knee joint stabilization therapy in patients with knee osteoarthritis of the knee: a randomized controlled trial. Osteoarthritis Cartilage 2013;21:1025–34.
- Kumar S, Kumar A, Kumar R. Proprioceptive training as an adjunct in osteoarthritis of knee. J Musculoskelet Res 2013;16:10.
- 22. Ghasemi G, Golkar A, Marandi S. Effects of Hata yoga on knee osteoarthritis. Int J Prev Med 2013;4:S133–8.
- 23. Daskapan A, Anaforoglu B, Ozunlu Pekyavas N, Tuzun E, Nur Cosar S, Karatas M. Comparison of mini-squats and straight leg raises in patients with knee osteoarthritis: a randomized controlled clinical trial. Turk J Rheumatol 2013;28:16–26.
- 24. Imoto A, Peccin M, Teixeira L, Silva K, Abrahao M, Trevisani V. Is neuromuscular electrical stimulation effective for improving pain, function and activities of daily living of knee osteoarthritis patients? A randomized clinical trial. Sao Paulo Med J 2013;131:80–7.
- **25.** Imoto A, Peccin S, Silva K, Teixeira L, Abrahao M, Trevisani V. Effects of neuromuscular electrical stimulation combined with exercises versus an exercise program on the pain and function in patients with knee osteoarthritis: a randomized controlled trial. Biomed Res Int 2013;2013:7.
- **26.** Elboim-Gabyzon M, Rozen N, Laufer Y. Does neuromuscular electrical stimulation enhance the effectiveness of an exercise programme in subjects with knee osteoarthritis? A randomized controlled trial. Clin Rehabil 2013;27:246–57.
- 27. Hunt M, Keefe F, Bryant C, Metcalf B, Ahamed Y, Nicholas M, *et al.* A physiotherapist-delivered combined exercise and pain coping skills training intervention for individuals with knee osteoarthritis: a pilot study. Knee 2013;20:106–12.
- 28. Park Y, Kwon B, Park J, Cha D, Nam K, Sim K, *et al*. Therapeutic effect of whole body vibration on chronic knee osteoarthritis. Ann Rehabil Med 2013;37:505–15.
- **29.** Alpayci M, Ozkan Y, Yazmalar L, Hiz O, Ediz L. A randomized controlled trial on the efficacy of intermittent and continuous traction for patients with knee osteoarthritis. Clin Rehabil 2013;27:347–54.
- **30.** Chen W, Hsu W, Lin Y, Hsieh L. Comparison of intra-articular hyaluronic acid injections with transcutaneous electric nerve stimulation for the management of knee osteoarthritis: a randomized controlled trial. Arch Phys Med Rehabil 2013;94: 1482–9.
- Luksurapan W, Boonhong J. Effects of phonophoresis of piroxicam and ultrasound on symptomatic knee osteoarthritis. Arch Phys Med Rehabil 2013;94:250–5.
- **32.** Boyaci A, Tutoglu A, Boyaci N, Aridici R, Koca I. Comparison of the efficacy of ketoprofen phonophoresis, ultrasound, and short-wave diathermy in knee osteoarthritis. Rheumatol Int 2013;33:2811–8.
- **33.** Poulsen E, Hartvigsen J, Christensen H, Roos E, Vach W, Overgaard S. Patient education with or without manual

therapy compared to a control group in patients with osteoarthritis of the hip. A proof-of-principle three-arm parallel group randomized clinical trial. Osteoarthritis Cartilage 2013;21:1494–503.

- **34.** Maly M, Costigan P, Olney S. Determinants of self-report mobility outcome measures in people with knee osteoar-thritis. Arch Phys Med Rehabil 2006;87:96–104.
- **35.** Katz J, Brophy R, Chaisson C, Chaves L, Cole B, Dahm D, *et al.* Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med 2013;368:1675–84.
- **36.** Chen L, Mao J, Fernandes S, Galantino M, Guo W, LaRiccia P, *et al.* Integrating acupuncture with exercise-based physical therapy for knee osteoarthritis. A randomized controlled trial. J Clin Rheumatol 2013;19:308–16.
- **37.** Abbott J, Robertson M, Chapple C, Pinto D, Wright A, Barra S, *et al.* Manual therapy, exercise therapy, or both, in addition to usual care, for osteoarthritis of the hip or knee: a randomized controlled trial. 1: clinical effectiveness. Osteoarthritis Cartilage 2013;21:525–34.
- **38.** French H, Cusack T, Brennan A, Caffrey A, Conroy R, Cuddy V, *et al.* Exercise and manual physiotherapy arthritis research trial (EMPART) for osteoarthritis of the hip: a multicenter randomized controlled trial. Arch Phys Med Rehabil 2013;94: 302–14.
- **39.** Bossen D, Veenhof C, VanBeek K, Spreeuwenberg P, Kekker J, DeBakker D. Effectiveness of a web-based physical activity intervention in patients with knee and/or hip osteoarthritis: randomized controlled trial. J Med Internet Res 2013;15: e257.
- **40.** Ay S, Koldas Dogan S, Evcik D. Is there an effective way to prescribe a home-based exercise program in patients with knee osteoarthritis? A randomized controlled study. Turk J Phys Med Rehabil 2013;59:1–6.
- **41.** Larose J, King J, Brosseau L, Wells G, Reid R, Maetzel A, *et al.* The effect of walking on cardiorespiratory fitness in adults

with knee osteoarthritis. Appl Physiol Nutr Metab 2013;38: 886–91.

- **42.** O'Brien D, Bassett S, McNair P. The effect of action and coping plans on exercise adherence in people with lower limb osteoarthritis: a feasibility study. N Z J Physiother 2013;41:49–57.
- **43.** Wi S, Kang J, Jang J. Clinical feasibility of exercise game for depression treatment in older women with osteoarthritis: a pilot study. J Phys Ther Sci 2013;25:165–7.
- **44.** Horng H, Kuo C, Cherng C, Yeh C, Wang T, Liaw W, *et al.* The effects of collateral meridian therapy for knee osteoarthritis pain management: a pilot study. J Manipulative Physiol Ther 2013;36:51–6.
- **45.** Kudo M, Watanabe K, Otsubo H, Kamiya T, Kaneko F, Katayose M, *et al.* Analysis of effectiveness of therapeutic exercise for knee osteoarthritis and possible factors affecting outcome. J Orthop Sci 2013;18:932–9.
- **46.** Nambi G, Shah A. Additional effect of iyengar yoga and EMG biofeedback on pain and functional disability in chronic unilateral knee osteoarthritis. Int J Yoga 2013;6:123–7.
- **47.** Parsons G, Jester R, Godfrey H. A randomised controlled trial to evaluate the efficacy of a health maintenance clinic intervention for patients undergoing elective primary total hip and knee replacement. Int J Orthop Trauma Nurs 2013;17:171–9.
- **48.** Saleki M, Ahadi T, Razi M, Raeisi G, Forough B, Ali M. Comparison of the effects of acupuncture and isometric exercises on symptom of knee osteoarthritis. Int J Prev Med 2013;4: S73–7.
- **49.** Schencking M, Wilm S, Redaelli M. A comparison of Kneipp hydrotherapy with conventional physiotherapy in the treatment of osteoarthritis: a pilot trial. J Integr Med 2013;11: 17–25.
- **50.** Zhang S, Liu H, Xu X, Zhi J, Geng J, Chen J. Effects of exercise therapy on knee joint function and synovial fluid cytokine levels in patients with knee osteoarthritis. Mol Med Rep 2013;7:183–6.