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1. Introduction 

In order to study the interactions between valyl- 
tRNA synthetase of yeast and the corresponding tRNAs, 
we have isolated tRNAyal from brewer’s yeast [l] . We 
have studied its degradation products obtained by 
pancreatic and Ti ribonuclease digestions. We ex- 
pected to find the mono- and oligonucleotides described 
by Bayev et al. [2] after ribonuclease digestions of 
tRNAyal from baker’s yeast, but observed several 
differences, which could be explained by building a 
nucleotide sequence analogous to that described by 
Bayev et al., but differing at four points. 

tRNAya’ was further purified either by reversed 
phase chromatography [l] according to Kelmers et 
al. [6] or by chromatography on BD-cellulose at pH 
3.5 according to Gillam et al. [7] (fig. 1). 

Structural analysis was accomplished by enzymatic 
fragmentation with subsequent resolution of the frag- 
ments by chromatography or electrophoresis. The 
methods for complete hydrolysis by T1 or pancreatic 
ribonucleases, subsequent separation of the oligo- 

2. Methods 

Commercial brewer’s yeast tRNA (Boehringer) was 
first subjected to countercurrent distribution in Holley’s 
phosphate-isopropanol-fonnamide solvent system 

[3] as previously described [4] 

5 

4 

The assay for 14C-valine accepting activity performed 
as reported elsewhere [ 1 ] shows three peaks [l] : 
tRNAya’, tRNAya’, tRNAy”; tRNAyaJ has the lowest 
solubility in the organic phase. The major component 
is tRNATa’, which corresponds to the tRNAyal of 
Bayev et al. [5] and was obtained by countercurrent 
distribution under the same conditions as we use. How- 
ever Bayev et al. [5] showed the existence of a tRNAVa’ 
less soluble in the organic phase than their tRNAya’ 
We confirmed the existence of this tRNA in brewer’s 
yeast [l] and prefer therefore to call the second 
tRNAvaJ peak in the countercurrent distribution 
tRNAya’, although it was called tRNAy” by Bayev et 
al. [5]. 
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Fig. 1. Chromatography on BDceBulose (2 cm X 120 cm) of 
fractions enriched in tRNAyaL by countercurrent distribution. 
225 mg tRNA were charged on the column. Elution by a 
linear gradient of NaCl O.&1 M in 5 X 10e3 M formate buffer 
pH 3.5,5 X 100~ M EDTA. Total volume of the gradient 
3,000 ml. Volume of the fractions 2.4 ml. - absorbance at 
260 mn; - - - --accepting activity expressed in nmoles of 

r4C valine/mg tRNA. 
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nucleotides, partial digestion with snake venom phos- 
phodiesterase, alkaline hydrolysis of oligonucleotides 
followed by separation of mononucleotides by thin- 
layer chromatography have been already described by 
Gangloff et al. [S] . 

Acidic hydrolysis of oligonucleotides was performed 
in HCIN tar I hr at 100’. 

3. Results 

3.1. Hydrolysis by T1 ribonuclease 
The products of complete Ti ribonuclease digests 

were separated by using DEAE-cellulose column 

chromatography. Fig. 2 shows such a separation. The 
fractions corresponding to the peaks 10,ll and 12 
were pooled and submitted to a further separation by 
chromatography on DEAE-cellulose at pH 3.0. The 
same procedure was used with the fractions corre- 
sponding to peak 13. 

The base composition was determined by alkaline 
hydrolysis for all the isolated oligonucleotides. 

Table 1 lists the composition of all the oligo- 
nucleotides obtained. Our data are completely con- 
sistent with the results of Bayev et al. [2] , except for 
the amount of G (about 6 instead of 7) and except for 
the structure of oligonucleotide 1.5. 

Among the alkaline hydrolysis products of oligo- 
nucleotide 15, a degradation product was found whose 
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Fig. 2. Chromatography of 44 A units of a T r ribonuclease 
digest of brewer’s yeast tRNAz val on DEAE-ceBulose (210 
cm X 0.5 cm). Elution by a linear gradient of NaClO.O15-0.3 
M in 2 X 10e2 M. Tris-HCl buffer pH 7.3,7 M urea. Total 
volume of the gradient 1,200 ml. Volume of the fractions 3 mL 

50 100 150 

TUBE NUMBER 

0.3 

a2 

0.1 

Fig. 3. Chromatography of a pancreatic ribonuclease digest of 
10 mg of brewer’s yeast tRNAyal on DEAE-cellulose (70 cm 
X 0.5 cm). Elution by a linear gradient of NaCl O-O.24 M in 
2 X lob2 M. Tris-HCl buffer pH 7.4, 7 M urea. Total volume 
of the gradient 360 ml. Volume of the fractions: 2.4 ml. 

spectral characteristics were identical to that of 2,4- 
diamino-6-hydroxy-5-N-methyl formamido pyrimidine 
given by 7 MeG after alkaline treatment. The existence 
of 7 MeG was verified by an acidic hydrolysis of peak 
15. A digestion with pancreatic ribonuclease gave 
A-A-Cp, 7 MeG-hUp, A-Gp, 5 MeCp and Cp. After 
removal of the 3’-terminal phosphate by phospho- 
monoesterase two samples of peak 15 (15 A units) 

dissolved in 2 ml of triethylammonium bicarbonate 
buffer 0.05 M pH 8.5, MgC12 0.05 M, were submitted 
to a partial hydrolysis by 100 & of venom phospho- 
diesterase at 37’ respectively for 15 min and for 33 
min. This treatment gave mixtures of oligonucleotides 
which were chromatographed together on DEAE-cel- 
lulose. 7 peaks were obtained. Table 2 gives the results 
of the analyses of these peaks. These results led to the 
following sequence: 

A-A-C-7 MeG-hU-C-5 Me&C-C,-A-Gp 
\ 

It differs from the sequence proposed by Bayev et al. 
[2] for the corresponding oligonucleotide obtained 
from tRNAyal from baker’s yeast: 
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Table 1 
Composition and molar ratios of nucleotides and oligonucleotides obtained by T1 

% 
. estion of tRNAyal of brewer’s yeast com- 

pared with the results described by Bayev et al. [ 21 for tRNAy from baker’s yeast. 

Peak 

Composition 

According to Bayev et al. [ 21 Observed 

Molar ratios 

According to Observed 
Bayev et al. [ 21 

1 U-lMeG>p U-l MeG > p 1 0.99 
2 GP GP 7 5.6 
3 C-Gp C-Gp 1 1.32 
4 - A-Gp + A-Ap + (A, C)p + (A, U)p 0.52 
5 hU-C-Gp (hU, C)Gp 1 1.13 
6 C-A-Gp (C, AK+ 1 1.21 
7 c-*-u-Ip (C, *> U)IP 1 0.83 
7a PGP PGP 1 0.83 
8 T-q-C-Gp (T, 9, C)Gp 1 0.96 
9 1 MeA-U-C-C-U-Gp (1 Me.% Us, C&P 1 0.85 

10 hU-hU-A-U-Gp hU-hU-A-U-Gp 1 1.17 
11 U-U-U-C-Gp (Us C)GP t 1 0.82 
12 U-C-q--A-Gp (U, C, *, A)Gp 1 0.98 
13a A-C-A-C-Gp 642, C2 )GP 1 0.79 
13b C-A-q--C-U-Gp (A, C2, U, *)GP 1 1.13 
14 A-A-A-U-C-A-C-C-A L44, C3, U-4 1 0.80 
15 A-A-C-hU-5 MeC-C-C-C-A-Gp A-A-C-7 MeG-hU-C-5 MeC-C-C-A-Gp 1 0.75 

A-A-C-hU-5 MeC-C-C-C-A-Gp. 

3.2. Hydrolysis by pancreatic ribonuclease 
Total pancreatic ribonuclease digests were chromato- 

graphed on DEAE-cellulose (fig. 3). The oligonucleotides 
present in the peaks 1 to 5 were purified by high voltage 
electrophoresis or by chromatography on DEAE- 
cellulose at pH 3.0. 

Table 3 lists the composition of all the fragments 
formed by this digestion. There is an inconsistency 

between the data presented by Bayev et al. [2] and 
ours. The DEAE-cellulose chromatography shows a 

tetranucleotide peak (peak 4) which yields after 
alkaline hydrolysis 3.2 Gp and 1 Cp. After desalting, 
this product was submitted to an electrophoresis with 
a mixture of G-G-G-Cp and A-G-A-Cp derived 
from a pancreatic digestion of tRNAAsP which con- 
tams these two tetranucleotides [9] . Fig. 4 shows 
that the tetranucleotide obtained from tRNAyd 
migrated at the same place as G-G-G-Cp. This 
product was not obtained by Bayev et al. [2] . How- 
ever, we did not find the pentanucleotide 
G-G-G-G-Cp described by Bayev et al. in the peak 
5 of fig. 3. 

Table 2 
Analyses of the oligonucleotides produced by partial phosphodiesterase digestion of peak 15. 

Peak Products of alkaline hydrolysis Molar ratios Structures 

1 AP, CP, 7 MeGp, hUoH 2.0:1.02:1.2 :0.6 (A-A-C-7 MeG)hUGH 
2 AP, CP, 7 MeGp, hUp, Q-J 2.O:l.O :0.7 :0.7:1.04 (A-A-C-7 MeG)hU-CGH 
3 AP, CP, 7 MeGp, hUp, 5 M~COH 2.0:2.02:1.38:0.8:1.08 (A-A-C-7 MeG)hU-C-5 MeCGU 
4 AP, CP, 7 MeGp, hUp, 5 MeCp, CGU 2.0:2.09:0.76:0.6:0.95t1.05 (A-A-C-7 MeG)hU-C-5 MeC-COJJ 
5 Ap, Cp, 7 MeGp, hUp, 5 MeCp. CGU 2.0:3.29:0.80:0.7:0.91:1.06 (A-A-C-7 MeG)hU-C-5 MeC-C-Cop 
6 AP, CP, 7 MeGp, hUp, 5 Me& AGU 2.0:4.3 :0.5 :0.8:0.8 :0.7 (A-A-C-7 MeG)hU-C-5 MeC-C-C-AOH 
7 AP, Cp, 7 MeGp, hUp, 5 MeCp, GOH 3.0:4.1 :0.9 :0.8:0.9 :1.05 (A-A-C-7 MeG)hU-C-5 MeC-C-C-A-GGR 
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Table 3 

.July 1971 

Composition and molar ratios of nucleosides, nucleotides and oligonucleotides obtained by pancreatic ribonuclease of tRNAYal 
from brewer’s yeast compared with the results described by Bayev et al. [ 21 for tRNAp’ from baker’s yeast. 

Composition Molar ratios 

Peak 
According to 
Bayev et al. [ 21 

Observed 
According to 
Bayev et al. [2] 

Observed 

Adenosine 
1 

la 

2a 
2A 

B 
C 
D 
E 

A 

CP 
5 MeCp 

UP 
*P 
hUp 
- 

A 

CP 
5 MeCp 

UP 
@P 
hUp 
7 MeG -hUp 

G-l MeA-Up (G, 1 MeA)Up 
G-Up G-Up 
A-Up A-Up 
A-9p A-Qp 
G-Cp G-Q 
A-Cp A-CP 

3A 
B 
C 
D 
E 
F 

4 

5 
A 
B 
C 

G-G-hUp 
1 MeG-G-Up 
A-G-Tp 
A-G-hUp 
G-G-Cp 
I-A-Cp 

- 

G-G-G-G-Cp 
pG-G-Up 
A-G-A-A-Cp 
G-A-A-A-Up 

G-G-hUp 
(1 MeG, G)Up 
(A, G)Tp 
(A, G)hUp 
G-G-Cp 

(1, NQ 

G-G-G-Cp 

- 
pG-G-Up 
(As, G)Cp 
M3, WJp 

1 
12 

1 
5 
3 
2 
0 

1 

1 

2 
2 

0 

1.10 
11.94 

1.20 
5.15 
2.10* 
1.00 
1.30 

1.39 

0.98 
1.03 
0.92 
1.85 
1.61 

0.81 
0.71 
0.93 
0.95 
0.96 
0.76 

1.07 

0 
0.71 
1.14 
0.88 

* Values for \Irp were systematically too low. For discussion see [ 81. 

4. Discussion 

The results of the investigation on the primary 
sequence of tRNAyal of brewer’s yeast lead to the 
following conclusions: the sequence of brewer’s 
yeast tRNAya’ differs from the sequence proposed 
by Bayev et al. [2] for baker’s yeast tRNAyalat four 
points: there is a supplementary 7 MeG at position 47 
from the 5’-terminal end, but no G between the stem 
containing the T\kC loop and the stem (position 12 
from the 3’-terminal end). In fact the presence of G 
between the two stems was rather strange, as no 
nucleotide has been found there in any other tRNA 
of known structure. Moreover there is an inversion in 

the position of 5 MeG and C in the extra-loop. We 
found the sequence, hU-C-5 MeC, instead of the 

sequence, hU-5 MeC-C. These results led us to 
propose the following structure of tRNAyal from 
brewer’s yeast (fig. 5). 

The sequence A-C-7 MeG-hU-C-5 MeC that 
we found for the region of the extra-loop, looks very 
similar to the sequences of the extra loops of tRNAPhe 
(yeast) A-G-7 MeG-U-C-5 MeC [lo] , of tRNAPhe 
(wheat germ) A-G-7 MeG-hU-C-G [ 1 l] and of 
tRNAVd (E. coZi) G-G-7 MeG-U-C-G [ 121. 
tRNAMet and tRNAFMet (E. coli) also have similar 
structures in the extra-loop. It is surprising that 
tRNAvd of baker’s yeast [2] and that of Torula 
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I G-G-G-Cp 

0 A-G-A-Up 

Fig. 4. High voltage electrophoresis of peak 4 in fig. 3 in 7% 
HCOOH at 1,000 V for 12 hr in conditions described in [ 141. 
A = peak 4; B = mixture of G-C-G-Cp and A-G-A-Up. 
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Fig. 5. Structure of tRNAyal from brewer’s yeast. According 
to Bayev et al. [2] an additional G in*(l) and sequence 

hU-5 MeC-C in position* (2). 

[ 131 do not show a sequence 7 MeG-hU or 7 MeG-U. 
Reinvestigation of the structure of tRNAya’ from 

baker’s yeast will be performed in collaboration with 

Dr. Bayev. 
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