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SUMMARY

The RNA helicase eIF4A plays a key role in unwinding
of mRNA and scanning during translation initiation.
Free eIF4A is a poor helicase and requires the acces-
sory proteins eIF4G and eIF4H. However, the struc-
ture of the helicase complex and the mechanisms
of stimulation of eIF4A activity have remained
elusive. Here we report the topology of the eIF4A/
4G/4H helicase complex, which is built from multiple
experimentally observed domain-domain contacts.
Remarkably, some of the interactions are continu-
ously rearranged during the ATP binding/hydrolysis
cycle of the helicase. We show that the accessory
proteins modulate the affinity of eIF4A for ATP by in-
teracting simultaneously with both helicase domains
and promoting either the closed, ATP-bound confor-
mation or the open, nucleotide-free conformation.
The topology of the complex and the spatial arrange-
ment of the RNA-binding surfaces offer insights into
their roles in stimulation of helicase activity and the
mechanisms of mRNA unwinding and scanning.

INTRODUCTION

Control of translation is vital for cell proliferation and differenti-

ation. Translation initiation entails the process of locating the

correct translation start codon on the mRNA and the assembly

of an active ribosome. It requires a number of eukaryotic trans-

lation initiation factors (eIFs) and for the majority of mRNAs

consists of several steps: (1) preinitiation complex assembly

by binding of several factors to the small ribosomal subunit;

(2) recruitment of the preinitiation complex to the 50-cap of

the mRNA; (3) scanning along the mRNA in the 30 direction in

search of the start codon; (4) start codon recognition; and (5)

joining of the large ribosomal subunit to form a ribosome with

a bound initiator Met-tRNAi ready to translate the mRNA. Initi-

ation of translation is typically the rate-limiting step and is the
main target of regulation (reviewed in Marintchev and Wagner,

2004).

The eukaryotic translation initiation factor eIF4A is an ATP-

dependent RNA helicase, which unwinds RNA secondary struc-

tures in the 50-untranslated region (50-UTR) of mRNA and

promotes scanning by the translation preinitiation complex

toward the start codon. Unwinding secondary structures in the

50-cap proximal region of mRNA also serves to clear the ‘‘landing

pad’’ for recruitment of the small ribosomal subunit. eIF4A

(Figure 1A) has two domains, both of which are involved in

binding RNA and ATP. In the ‘‘closed,’’ active conformation,

the two domains form a contiguous RNA-binding surface (see

Figure 1D, left), and the ATP-binding site is at the interface

between the two domains (Andersen et al., 2006). ATP and

RNA bind to eIF4A cooperatively (Lorsch and Herschlag,

1998a). The ATPase and helicase activity of free eIF4A is low;

however it is greatly stimulated when eIF4A is part of a multipro-

tein complex that includes eIF4G, eIF4E, eIF4B and eIF4H (Grifo

et al., 1984; Pause et al., 1994; Richter-Cook et al., 1998). At the

center of this complex is eIF4G (Figure 1C), a large protein that

provides the platform for binding several initiation factors.

eIF4G recruits the small ribosomal subunit to mRNA through

interactions with the cap-binding protein eIF4E and eIF3. It

also promotes circularization of mRNA through interactions

with the 30-poly-A tail binding protein PABP.

eIF4B and eIF4H (Figure 1B) are RNA-binding proteins that

contain an RNA-recognition motif (RRM) domain and are homol-

ogous to each other over the entire sequence of eIF4H. eIF4B

contains additional N- and C-terminal domains and has at least

one additional RNA-binding region near its C terminus. Both

eIF4B and eIF4H stimulate the eIF4A helicase activity (reviewed

in Marintchev and Wagner, 2004). eIF4H was reported to bind

eIF4A, and its C-terminal region was found to be important for

the interaction (Feng et al., 2005).

Human eIF4G contains three HEAT repeat domains (Bellsolell

et al., 2006; Marcotrigiano et al., 2001) (Figure 1C). The first two

of them, HEAT-1/MIF4G and HEAT-2/MA3 bind to eIF4A (Ima-

taka and Sonenberg, 1997; Lamphear et al., 1995). HEAT-1 stim-

ulates the helicase activity of eIF4A, whereas HEAT-2 has only

a modulatory role (reviewed in Marintchev and Wagner, 2004).
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Figure 1. Domain Organization of eIF4G, eIF4A and eIF4H

(A–C) Domain organization of eIF4A (A), eIF4H and eIF4B (B), and eIF4G (C) and constructs used in this work. In panel (C), conserved sequence segments in eIF4G

are marked above the diagram. Sites of interaction with other proteins and RNA are marked with arrows below the diagram. Abbreviations: NTD, N-terminal

domain; CTD, C-terminal domain; RRM, RNA recognition motif domain; 4H-CT-long and 4H-CT-short, long and short C-terminal fragments of eIF4H; PAM-1,

PABP-binding motif-1; E, predicted extended eIF4E-binding region; S, RNA-binding region important for scanning, aa. 682-721 (Prevot et al., 2003); N,

H1-NT motif, aa. 722-741; C, H1-CT motif, aa. 994-1027; Y, y4G-CT motif, aa. 1118-1136 (Marintchev and Wagner, 2005).

(D) Starting model for the eIF4A/4G/4H interaction network. eIF4A-CTD is shown in surface representation and the eIF4G HEAT-1 contact surface (Oberer et al.,

2005) is yellow. The interdomain orientation between eIF4A-CTD and eIF4A-NTD (navy ribbon), and the RNA (red wire) are modeled based on the structure of

eIF4A3 (Andersen et al., 2006). The interdomain orientation of the HEAT domains of eIF4G (Marintchev and Wagner, 2005) is modeled based on the interdomain

orientation in CBP80 (Mazza et al., 2002). The HEAT domains are color-coded as in panel (C). Sites of mutations in eIF4G reported to affect eIF4A binding are

shown as light blue (top cluster) and navy (bottom cluster) wires. Residues relevant for this work are labeled. The predicted binding sites of eIF4H, eIF4A-NTD and

eIF4A-CTD are shown with arrows.
The functions of the eIF4A/4G/4E complex (eIF4F), eIF4B and

eIF4H in recruitment of the ribosome to the 50-cap of mRNA and

scanning have been known for over two decades. The structures
448 Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc.
of several individual components and isolated domains have

been solved. However, despite continuing efforts, it has not

been possible to solve the structure of the multiprotein



Cap-binding complex; and the underlying regulatory mecha-

nisms have remained elusive. The main challenge lies in the

dynamic nature of the complex, which has to move along the

50-UTR and unwind secondary structures in the mRNA (reviewed

in Jackson, 2000; Marintchev and Wagner, 2004, 2005). There-

fore, understanding the overall topology of the protein-protein

interaction network centered around eIF4A and eIF4G requires

alternative approaches.

We recently reported that the HEAT-1 domain of human eIF4G

binds mainly to the C-terminal domain of eIF4A (eIF4A-CTD), but

that the interaction with full-length eIF4A is stronger. We

proposed that HEAT-1 binds weakly to eIF4A-NTD in the context

of full-length eIF4A, promoting the formation of the closed, active

ATP-bound conformation of eIF4A (Oberer et al., 2005). Further-

more, we established a distant evolutionary relationship of eIF4G

and eIF4H with the CBP80 and CBP20 subunits, respectively, of

the nuclear Cap-binding complex (CBC) and proposed that the

domain organization of human eIF4G could be similar to that

found in CBP80 (Marintchev and Wagner, 2005).

In this work, we used solution NMR, site-directed mutagenesis

and biophysical assays to elucidate the topology of the human

eIF4A/4G/4H helicase complex and the mechanisms of regula-

tion of ATP binding to the helicase. We experimentally probed

numerous interactions between individual domains of eIF4A,

eIF4G and eIF4H, based on our previous studies on eIF4A and

eIF4G (Marintchev and Wagner, 2005; Oberer et al., 2005). Our

data show that the eIF4A/4G/4H complex is built by a dynamic

network of multiple weak, but specific interactions. The results

presented here provide insight into the mechanisms of regulation

of the eIF4A helicase activity by eIF4G and eIF4H.

RESULTS

Starting Model for the Organization
of the eIF4A/4G/4H Complex
We previously proposed that the domain organization of eIF4G

may be similar to that of its distant relative CBP80 (Marintchev

and Wagner, 2005). In the resulting model, shown in Figure 1D,

right, the two eIF4A-binding domains of eIF4G (HEAT-1 and

HEAT-2, painted yellow and orange, respectively) are positioned

adjacent to each other. A number of point mutations in the eIF4G

HEAT-1 and HEAT-2 domains have been reported to affect

eIF4A binding. Remarkably, if our hypothesis about the inderdo-

main orientation in eIF4G is correct, these mutations form two

clusters, each composed of residues from both eIF4G HEAT-1

and HEAT-2 (Figure 1D, right): circled in light blue (top) and in

navy (bottom), respectively. eIF4A has two domains and each

of them is too small to contact both clusters on the eIF4G surface

simultaneously. Therefore, it is logical to propose that each of the

two eIF4A domains contacts one of the clusters. Such arrange-

ment predicts that both eIF4A-NTD and eIF4A-CTD interact with

both eIF4G HEAT-1 and HEAT-2, forming four distinct contacts.

Our NMR studies on the interaction between eIF4A-CTD and

eIF4G HEAT-1 (Oberer et al., 2005) have shown that eIF4A-

CTD binds near the N-terminus of HEAT-1, which is part of the

top cluster in Figure 1D. Therefore, eIF4A-CTD should also

bind to the N-terminal region of HEAT-2. To account for the re-

maining mutations, eIF4A-NTD would bind to the bottom cluster
in Figure 1D. This arrangement also places eIF4A-CTD in prox-

imity to eIF4H, if the latter is positioned similar to CBP20 in the

CBP80/CBP20 complex. Finally, if the linker between the

eIF4G HEAT-1 and HEAT-2 domains (not shown in Figure 1D)

wraps around HEAT-1 as does the corresponding region of

CBP80 (Mazza et al., 2002), it would also come in proximity to

eIF4A-CTD, which would be a potential new eIF4A-binding

region in eIF4G (see also Figure S3 available with this article

online).

In summary, we hypothesize that the complex between the

C-terminal segment of eIF4G, eIF4H and eIF4A adopts the

topology outlined in Figure 1D. This model is based on homology

to the nuclear cap-binding complex CBP80/CBP20 and muta-

tional data. It predicts several interfaces between eIF4A and

eIF4G, as well as binding of eIF4A-CTD to eIF4H. The domain

orientations in the complex are expected to be dynamic and

dependent on multiple protein-protein interactions. In the

context of the multiprotein complex, even interactions that are

weak in isolation can contribute to the stability and function, if

the respective domains are brought in proximity by other interac-

tions. We expect that all but the weakest interactions can be

observed and studied in isolation, which would allow building

up the topology of the complex from multiple pairs of interac-

tions. In the following sections, we set out to experimentally

test and further refine this model.

eIF4A-NTD Binds to the C-Terminal Portion of the eIF4G
HEAT-1/MIF4G Domain
To test whether the C-terminal portion of eIF4G HEAT-1 contacts

eIF4A-NTD, we studied eIF4A binding to WT eIF4G HEAT-1 and

the F978A mutant using Surface Plasmon Resonance (SPR, see

Supplemental Data for details). The F978A mutation near the

C terminus of eIF4G HEAT-1 has been reported to affect eIF4A

binding (Imataka and Sonenberg, 1997; Morino et al., 2000),

and according to our model (Figure 1D), should affect eIF4A-

NTD binding.

Binding between HEAT-1 and the isolated eIF4A-NTD was too

weak to study by SPR (data not shown). Therefore, we compared

binding of WT eIF4G HEAT-1 and the F978A mutant to full-length

eIF4A and to eIF4A-CTD: if our prediction is correct, the mutation

would affect binding to full-length eIF4A, but not to eIF4A-CTD.

Consistent with previous work (Oberer et al., 2005), WT HEAT-1

bound with much higher affinity to full-length eIF4A (Figure 2C)

than to eIF4A-CTD (Figure 2D). The F978A mutation strongly

affected eIF4G HEAT-1 binding to full-length eIF4A, but had no

effect on the interaction of eIF4G HEAT-1 with eIF4A-CTD.

Based on these results, we concluded that the C-terminal region

of eIF4G HEAT-1 interacts with eIF4A-NTD. Consistent with our

results presented here, it was recently shown that in yeast, the

eIF4G HEAT-1 domain contacts eIF4A-NTD and the residue cor-

responding to F978 in human eIF4G contacts eIF4A-NTD

(Schutz et al., 2008).

Both Domains of eIF4A Bind to the eIF4G
HEAT-2/MA3 Domain
We used an NMR chemical shift perturbation assay to test

whether eIF4A-NTD and eIF4A-CTD bind to eIF4G HEAT-2.

This approach exploits the sensitivity of the peaks in NMR
Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc. 449
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Figure 2. The F978A Mutation in eIF4G HEAT-1 Affects Binding to eIF4A, But Not to eIF4A-CTD

(A and B) Overlay of SPR sensorgrams showing binding of eIF4A to immobilized WT eIF4G HEAT-1 (A) and eIF4G HEAT-1 F978A (B).

(C and D) SPR graphs showing binding of full-length eIF4A (C) and eIF4A-CTD (D) to immobilized WT eIF4G HEAT-1 (black) and HEAT-1 F978A (red). KD values

marked with a star should be considered only estimates, since concentrations higher than the KD could not be reached in the titration due to limited solubility.
spectra to the changes in the environment around the respective

nuclei. This method can detect specific interactions with KD

values as high as 10 mM, limited by the solubility of the interact-

ing partners (reviewed in (Marintchev et al., 2007), see Supple-

mental Data for details).

Using 15N-labeled HEAT-2 and unlabeled individual eIF4A

domains, we found that HEAT-2 binds to both eIF4A-NTD

(Figure 3A) and eIF4A-CTD (Figure 3B). The interaction with

eIF4A-NTD appeared stronger than that with eIF4A-CTD, which

was confirmed by SPR data (Figure S1 and data not shown).

To map the eIF4A-interacting surfaces on the crystal structure

of eIF4G HEAT-2 (Bellsolell et al., 2006), we assigned the back-

bone NMR resonances for eIF4G HEAT-2. NMR chemical shift

mapping showed that eIF4A-NTD and eIF4A-CTD do indeed

bind to HEAT-2 where predicted (Figure 3C, see Supplemental

Data for details). As predicted from our model, residues in

HEAT-2 where point mutations affected eIF4A binding (Yang

et al., 2004) lie within the mapped eIF4A contact surfaces. Resi-

dues D1329 and D1333 (bottom cluster in Figure 1D) are part of

the eIF4A-NTD contact surface, while residue D1259 (top cluster

in Figure 1D) is part of the eIF4A-CTD contact surface.

We used NMR chemical shift perturbation to map the residues

of eIF4A-CTD that are affected by binding to the eIF4G HEAT-2

domain (Figure 4A, dark orange). The results indicated that the
450 Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc.
HEAT-2 binding site is near the previously mapped HEAT-1

binding site (Figure 4A, yellow) (Oberer et al., 2005). The HEAT-2

binding site appears to be adjacent to the RNA-binding surface.

HEAT-2 binding also affected individual residues on the

periphery of the interface with the eIF4A-NTD and ATP.

eIF4A-CTD Binds to the Linker between eIF4G HEAT-1
and HEAT-2
We used NMR to test whether the N-terminal two-thirds of the

linker between HEAT-1 and HEAT-2 interact with any of the

eIF4A domains. This construct (called here eIF4G-CY, see

Figure 1C) spans from the end of HEAT-1 (the H1-CT motif) to

the region corresponding to the C terminus of yeast eIF4G (the

y4G-CT motif Marintchev and Wagner, 2005). The remainder of

the interdomain linker shows little conservation among eIF4G

proteins from different species. The linker region was soluble,

but its 15N-HSQC spectrum showed little dispersion (data not

shown), indicating that it is unfolded, at least in the absence of

the rest of eIF4G. Titration of 15N-labeled eIF4A-CTD with unla-

beled eIF4G-CY showed weak binding between the two

proteins. Mapping of the residues affected by the interaction

on the surface of eIF4A-CTD (Figure 4A, orange) indicated that

the linker contacts a stretch of residues spanning from the

vicinity of the HEAT-1 contact surface to near the eIF4A-NTD
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Figure 3. eIF4G HEAT-2 Binds to Both Domains of eIF4A

(A) Overlay of 15N TROSY-HSQC spectra of 0.4 mM 15N-labeled eIF4G HEAT-2 alone (black) and in the presence of 0.15 mM (blue) or 0.4 mM (red) unlabeled

eIF4A-NTD.

(B) Overlay of 15N HSQC spectra of 0.15 mM 15N-labeled eIF4G HEAT-2 alone (black) and in the presence of 0.15 mM unlabeled eIF4A-CTD (red).

(C) eIF4A binding surfaces of eIF4G HEAT-2. The orientation of HEAT-2 in the left panel is the same as that in Figure 1D, whereas in the middle panel it is rotated

180� along the y axis. The right panel shows the HEAT-2 domain in ribbon, in the same orientation as in the middle panel. Residues affected by eIF4A-NTD binding

are painted in dark blue; residues affected by eIF4A-CTD binding are painted in light blue.
interface. No obvious binding was observed by NMR titration

between eIF4A-NTD and eIF4G-CY (data not shown). The

eIF4G linker appears to wrap on the outside of eIF4A, away

from its interfaces with the HEAT domains (Figure 4A). The loca-

tion of the linker-binding site on eIF4A-CTD is consistent with the

proposed wrapping of the linker around eIF4G HEAT-1 (Mar-

intchev and Wagner, 2005).

eIF4H Binds to eIF4A-CTD
Using NMR chemical shift perturbation, we observed binding of

eIF4H to eIF4A-CTD (Figures 4B and S2B), but not to eIF4A-

NTD (data not shown). Interestingly, while the eIF4H-binding

surface on eIF4A-CTD does not overlap with the binding sites

for eIF4G HEAT-1 and HEAT-2, it does partially overlap with

the binding site for the eIF4G interdomain linker (Figure 4C).

Consistent with this observation, eIF4H can partially displace

the eIF4G linker from eIF4A-CTD in NMR titration experiments

(data not shown). No obvious binding was observed between

eIF4H and any of the three eIF4G HEAT domains, or between

the individual HEAT domains (data not shown), indicating that

if these domains do interact in the context of full-length
eIF4G, the binding of the isolated domains to each other is

too weak to detect. The C-terminal 72-residue region of

eIF4H was sufficient for the interaction with eIF4A-CTD,

although eIF4A-CTD appeared to contact the N-terminal

portion of eIF4H as well (Figure S2).

Topology of the eIF4A/4G/4H Helicase Complex
As seen in Figure 4A, the surfaces of eIF4A-CTD affected by

binding of eIF4G HEAT-1, HEAT-2 and the linker are adjacent,

but not overlapping, indicating that all three interactions can

occur simultaneously. Thus eIF4A can act as a nucleation center

bringing these three segments of eIF4G together. The mapped

interaction interfaces of eIF4A with the eIF4G HEAT-1 and

HEAT-2 domains (Figures 3 and 4) not only support the predicted

overall topology of the complex, but more importantly provide

sufficient information to orient the individual domains with

respect to each other. We used our NMR data to build a rough

model of the topology of the eIF4A/4G/4H helicase complex

(Figure 4D). eIF4A is at the core of this assembly and holds the

entire complex together through multiple interactions with

eIF4H and eIF4G domains.
Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc. 451
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Figure 4. Topology of the eIF4A/4G/4H Heli-

case Complex

(A) eIF4G-binding surfaces of eIF4A-CTD. The

eIF4A structure is as in Figure 1D. Residues of

eIF4A-CTD affected by binding of eIF4G are

painted in yellow (for eIF4G HEAT-1), light orange

(the linker between the eIF4G HEAT-1 and HEAT-

2 domains) and dark orange (eIF4G HEAT-2). Resi-

dues in eIF4A-CTD not affected by any of the

interactions are in blue; residues that could not

be used for mapping (e.g., due to spectral overlap)

are in gray.

(B) eIF4H-binding surface of eIF4A-CTD. eIF4A is

shown in the same orientation as in the right panel

in (A), above. Residues in eIF4A-CTD affected by

eIF4H binding are in magenta.

(C) Overlap between the eIF4H- and the eIF4G

linker-binding surfaces of eIF4A-CTD. Coloring of

residues affected by eIF4H binding is as in panel

(B), and coloring of residues affected by eIF4G

binding is as in panel (A), except the residues

affected by both eIF4H and eIF4G linker binding,

which are painted in purple. The overlap is shown

schematically by superimposing cartoons repre-

senting eIF4H-CTD (magenta oval) and the eIF4G

interdomain linker (orange line).

(D) Topology of the eIF4A/4G/4H helicase

complex. The mutual orientation of the eIF4G

domains and eIF4H is modeled after the structure

of the nuclear CBP80/CBP20 complex (Mazza

et al., 2002). The orientation of eIF4A with respect

to eIF4G is based on NMR chemical shift mapping

(this work and Oberer et al., 2005). Domains,

whose structures are known or could be modeled,

are displayed as solid bodies with size and shape

corresponding to their structures, providing the

overall topology of the complex. eIF4H-CTD,

whose structure is not known, is shown as a circle.

The eIF4G interdomain linker (not shown) is ex-

pected to be wrapping around the eIF4G HEAT-1

domain (as does the corresponding linker in

CBP80 (Mazza et al., 2002), see Figure S3A), and

around eIF4A-CTD (as shown in this work).

The position of the RNA on eIF4A is modeled

based on the structure of eIF4A3 (Andersen

et al., 2006). The RNA-binding site of the eIF4H

RRM domain is based on that of its homolog

CBP20 in the CBP80/CBP20 complex (Mazza

et al., 2002). The RNA-binding site of the eIF4G

HEAT-1 domain (marked with a star) is based on

mutation data (Marcotrigiano et al., 2001).
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the overall affinity of eIF4A for ATP varies by an order of magni-

tude, depending on whether it is bound to the HEAT-1 or HEAT-2

domain of eIF4G, with free eIF4A having intermediate affinity

for ATP.

The binding of eIF4H to eIF4A-CTD or full-length eIF4A was

too weak to study by SPR. However, eIF4H binding to full-length

eIF4A could be observed in the presence of ATP (Figure 5C).

Remarkably, the SPR curves are biphasic with a fast initial asso-

ciation followed by a slow process, and dissociation also exhibits

a fast and a slow phase (Figures 5C and S2E, see Supplemental

Data for more details). ADP also stimulated eIF4H binding to

eIF4A, but unlike ATP, it did not cause formation of the slowly
eIF4G HEAT-1, eIF4H, and RNA All Stimulate ATP
Binding to eIF4A
We used SPR to compare the binding of eIF4G HEAT-1 to eIF4A

in the presence of ATP, ADP, and in the absence of nucleotide.

ATP increased the affinity of eIF4A for eIF4G HEAT-1 fourfold.

ADP also stimulated the interaction between eIF4A and HEAT-1,

although to a lesser extent than ATP (Figure 5A). In contrast,

ATP and ADP both decreased the affinity of eIF4A for eIF4G

HEAT-2 threefold (Figure 5B). This implies that eIF4G HEAT-1

increases the affinity of eIF4A for ATP fourfold, compared to

nucleotide-free eIF4A, whereas eIF4G HEAT-2 decreases it

threefold (principle of detailed balance [Fersht, 1999]). Therefore,



dissociating complex (Figure 5C). Stable binding of eIF4H to the

eIF4A/eIF4G complex also requires the presence of ATP (see

Figure S4).

We used Fluorescence anisotropy (Fluorescence polarization)

to study the effect of ATP and ADP on eIF4A binding to an RNA

oligonucleotide labeled with Fluorescein Isothiocyanate (FITC).

Fluorescence anisotropy allows distinguishing the free FITC-

labeled RNA that tumbles faster from the protein-bound FITC-

labeled RNA, which is part of a larger complex and tumbles

slower in solution. The effects of ATP and ADP on eIF4A binding

to RNA (Figure 5D) were essentially the same as their effects on

eIF4A binding to eIF4G HEAT-1 (Figure 5A): ATP stimulated RNA

binding several-fold and ADP had a smaller effect. These results

indicate that eIF4G HEAT-1, eIF4H and RNA all bind coopera-

tively with ATP, whereas eIF4G HEAT-2 does not (summarized

in Figure 5E).

eIF4G HEAT-1 and eIF4G HEAT-2 Have Opposite Effects
on eIF4A Binding to RNA
We used Fluorescence anisotropy to study the effects of eIF4G

HEAT-1 and HEAT-2 on the affinity of eIF4A for RNA. Since

eIF4G HEAT-1 itself binds RNA and its affinity for eIF4A is rela-

tively weak, it was not possible to form a stable HEAT-1/eIF4A

complex and ensure that eIF4A and eIF4G HEAT-1 bind RNA

only as a complex and not also independently. Therefore, we

used a larger eIF4G HEAT-1 containing construct, called here

eIF4G SY (see Figure 1C). This construct corresponds to the

minimal eIF4G fragment sufficient to support scanning; contains

an additional RNA-binding region as well as two extra eIF4A-

binding sites (see Figure 1C and Figure 4A); and binds to eIF4A

with nanomolar affinity (Korneeva et al., 2001). The complex of

eIF4G SY and eIF4A binds to RNA with higher affinity than the

individual proteins (Figure 6A). In contrast, eIF4G HEAT-2 does

not bind RNA at the concentrations used (data not shown) and

competes with RNA for binding to eIF4A (Figure 6B). We also

tested the effect of eIF4G HEAT-1 on the binding of eIF4A to

eIF4G HEAT-2. The Isothermal Titration Calorimetry experiments

in Figures 6C and 6D show that eIF4A binding to eIF4G HEAT-2 is

reduced by at least an order of magnitude in the presence of

eIF4G HEAT-1.

DISCUSSION

Topology of the eIF4A/eIF4G/eIF4H Helicase Complex
eIF4A is the prototypic member of the DEAD box family of heli-

cases, a subset of the Superfamily 2 (SF2) helicases. It exem-

plifies a minimal helicase, containing only the two RecA-like

domains, where the conserved helicase motifs are located,

and requires the accessory proteins eIF4G, eIF4H and eIF4B

for function. Although the existence of a complex of eIF4A with

other translation initiation factors was first reported almost

30 years ago, it has not so far been possible to solve its structure

(reviewed in Gingras et al., 1999; Marintchev and Wagner, 2004;

Rogers et al., 2002). Here, we combined modeling, NMR, site-

directed mutagenesis, and quantitative binding assays to eluci-

date the topology of the eIF4A/4G/4H helicase complex

(Figure 4D).
The eIF4H-binding surface of eIF4A-CTD does not overlap

with the HEAT-1 or HEAT-2 binding surfaces (Figure 4) and

eIF4H forms a complex with eIF4A and eIF4G (see Figure S4D).

Stable association of eIF4H with eIF4A and eIF4G requires the

presence of ATP (compare Figure S4 panels C and D), consis-

tent with the stabilizing effect of ATP on the eIF4A/eIF4H inter-

action (Figure 5C). These results are in line with the ability of

eIF4G and eIF4H to simultaneously stimulate the helicase

activity of eIF4A (reviewed in Rogers et al., 2002). Although

we could not detect binding between eIF4H and eIF4A-NTD,

the ability of ATP and ADP to stimulate binding of eIF4H to

full-length eIF4A (Figure 5C), but not eIF4A-CTD (data not

shown) indicates that eIF4H binds to both domains of eIF4A,

although its interaction with eIF4A-NTD appears to be depen-

dent on the presence of nucleotide. This interpretation is

consistent with a recent report that implicated eIF4A-NTD in

eIF4H binding in the presence of RNA and AMPPNP (Rozovsky

et al., 2008). While in this work we have focused our attention

on eIF4H, our findings are likely also applicable to its homolog

eIF4B (see Figure 1B), which appears to bind to the same site

on eIF4A (Rozovsky et al., 2008).

A comparison of the arrangement of individual domains in the

eIF4A/4G/4H complex (Figure 4D) with the structure of the

CBP80/CBP20 complex (Mazza et al., 2002) shows that eIF4A

clashes with the two C-terminal helical hairpins of the CBP80

HEAT-3 domain (shown semitransparent in Figure S3A). In the

nuclear Cap-binding complex these hairpins of HEAT-3 contact

the CBP80 HEAT-1 and HEAT-2 domains (Figure S3A). The

eIF4G HEAT-3 domain is shorter than the HEAT-3 domain of

CBP80: it has 4, instead of 6 helical hairpins. Therefore, if the

eIF4G HEAT-3 domain is oriented as the CBP80 HEAT-3 domain,

it would not clash with eIF4A. The central position of eIF4A and

its multiple interactions with eIF4G and eIF4H allow it to serve

as the nucleation core that holds the entire eIF4A/4G/4H

complex together.

The newly identified eIF4A-binding site in the linker region

between the two known eIF4A-binding domains of eIF4G could

help explain the previously observed cooperative binding of

eIF4A and eIF3. While eIF3 was reported to bind to the linker

between eIF4G HEAT-1 and HEAT-2 (Korneeva et al., 2000),

eIF4G HEAT-1 may also bind eIF3, since point mutations and

deletions in this domain affect binding to eIF3 (Imataka and

Sonenberg, 1997; Morino et al., 2000). If the linker wraps around

both eIF4G HEAT-1 and eIF4A, there are multiple opportunities

for coupling the eIF4G:eIF4A and eIF4G:eIF3 interactions.

Whereas no direct binding has been reported between eIF3

and eIF4A, the proximity of their binding sites on eIF4G suggests

that they could contact each other at least weakly in the context

of a ternary eIF4A/eIF4G/eIF3 complex.

eIF4G and eIF4H Modulate the Affinity of eIF4A
for Nucleotides
We were also able to get insights into the mechanisms of regu-

lation of the eIF4A helicase activity by eIF4G and eIF4H. A

common trend is observed among RNA, eIF4H and the two

eIF4A-binding domains of eIF4G: they all bind to both eIF4A

domains and bind most strongly to full-length eIF4A. In all cases,

the interactions influence the affinity of eIF4A for ATP: eIF4H and
Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc. 453
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Figure 5. Effects of ATP and ADP on the eIF4A/eIF4G and eIF4A/eIF4H Interactions

(A and B) SPR graphs of eIF4A binding to immobilized eIF4G HEAT-1 (A) or eIF4G HEAT-2 (B) in the absence of nucleotide (black) and in the presence of 1 mM ATP

(red) or 1 mM ADP (blue).

(C) Overlay of SPR sensorgrams showing binding of 10 mM eIF4A to immobilized eIF4H in the absence of nucleotide (black), in the presence of 1 mM ATP (red) and

1 mM ADP (blue).

(D) Fluorescence anisotropy graphs of eIF4A binding to FITC-labeled U40 RNA oligonucleotide in the absence of nucleotide (black) and in the presence of 1 mM

ATP (red) or 1 mM ADP (blue).
454 Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc.
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Figure 6. Opposing Effects of eIF4G SY and eIF4G HEAT-2 on RNA Binding to eIF4A

(A) Fluorescence anisotropy graphs showing binding of FITC-labeled U40 RNA oligonucleotide to eIF4A in the presence of 1 mM ATP (red); eIF4G SY (cyan); and

the eIF4A/eIF4G SY complex (purple).

The eIF4G SY fragment (see Figure 1C) consists of the HEAT-1 domain and additional RNA- and eIF4A-binding segments.

(B) Fluorescence anisotropy graphs showing inhibition by eIF4G HEAT-2 of the binding of 10 mM eIF4A to 50 nM FITC-labeled U40 RNA in the absence of nucle-

otide (black) and 2.5 mM eIF4A to 50 nM FITC-labeled U40 RNA in the presence of 1mM ATP (red).

(C, D) Isothermal Titration Calorimetry (ITC) graphs of eIF4G HEAT-2 binding to eIF4A in the absence (C) and presence (D) of eIF4G HEAT-1.

Note that in the experiment shown in panel (D), the concentration of eIF4G HEAT-1 (50 mM) is not saturating: it is only �4 times higher than the KD of the eIF4A/

HEAT-1 interaction (12 mM, Figure 2C). Therefore, a fraction of eIF4A is not bound to HEAT-1 and the calculated apparent KD for the interaction between eIF4A and

eIF4G HEAT-2 in the presence of HEAT-1 (marked with a star on panel (D) should be considered a lower limit of the actual KD.
It is well established that eIF4A has different conformations in

the ATP-bound state, the ADP-bound state and in the nucleo-

tide-free state (Lorsch and Herschlag, 1998a, 1998b).
eIF4G HEAT-1 stimulate the helicase activity of eIF4A in part by

increasing its affinity for ATP, whereas eIF4G HEAT-2 lowers the

affinity of eIF4A for nucleotides.
The KD values in panel (D), marked with a star, should be considered estimates because of the tendency of eIF4A to aggregate at higher concentrations. Binding

curves at lower eIF4A concentrations are shown since those are least affected by eIF4A aggregation.

(E) Summary of the effects of eIF4G, eIF4H and RNA on the affinity of eIF4A for nucleotides. RNA, eIF4H, and eIF4G HEAT-1 (left) favor the closed ATP-bound

conformation, whereas eIF4G HEAT-2 (right) prefers the open nucleotide-free conformation of eIF4A.
Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc. 455



Presumably, the nucleotide-free form of eIF4A is open with no

stable contacts between the two domains. The ATP- and ADP-

bound states are both closed, but different from each other.

The ADP-bound state could be ‘‘less closed,’’ which could in

turn affect the formation of a contiguous RNA binding surface

(Figure 5E). Accordingly, while RNA, eIF4G HEAT-1 and eIF4H

favor the ATP-bound conformation of eIF4A over the nucleo-

tide-free form, they have intermediate affinity for the ADP-bound

conformation. It was recently suggested for yeast eIF4G that the

domain corresponding to HEAT-1 in human may only contact

eIF4A-NTD when eIF4A is nucleotide-free or bound to ADP,

but would separate from the NTD when ATP is bound to eIF4A

(Schutz et al., 2008). However, this idea clearly contradicts our

results showing that HEAT-1 has even higher affinity for ATP-

bound eIF4A than for ADP-bound or nucleotide-free eIF4A

(Figure 5A). Therefore, eIF4G HEAT-1 appears to contact both

domains of ATP-bound eIF4A, as well as ADP-bound and nucle-

otide-free eIF4A. It remains to be seen whether the conformation

of eIF4A is identical or somewhat different when bound to ATP,

eIF4G HEAT-1 or both.

We show that the interactions of eIF4A with eIF4G HEAT-1 and

HEAT-2 are anti-cooperative (Figures 6C and 6D), even though

there is no overlap between the surfaces of eIF4A that bind

HEAT-1 and HEAT-2 (Figure 3 and KE & GW, unpublished

data). The opposite effects of ATP on HEAT-1 and HEAT-2

binding to eIF4A (Figure 5) indicate that this anticooperativity is

mediated by the eIF4A conformation. HEAT-1 requires the

closed, ATP-bound interdomain orientation in eIF4A for optimal

binding, whereas HEAT-2 prefers the open, nucleotide-free

conformation. Therefore, only one eIF4G HEAT domain at

a time would be able to bind both eIF4A domains with high

affinity, whereas the other HEAT domain would either be bound

to only one of the eIF4A domains or its binding to the second

domain would be suboptimal.

The interplay between the dynamics of the eIF4A/eIF4G inter-

actions and the ATP binding/hydrolysis cycle of eIF4A is sche-

matically represented by the model in Figure 7A (see also Movie

S1). In the absence of nucleotide, eIF4A binds to eIF4G HEAT-2

about an order of magnitude tighter than to HEAT-1 (Figures 5A

and 5B), which would favor the open eIF4A state shown in the

right panel of Figure 7A. ATP binds cooperatively with eIF4G

HEAT-1 and anticooperatively with HEAT-2 (see Figures 5A and

5B) and could partly shift the equilibrium toward the closed state

shown on the left. Since RNA also binds cooperatively with ATP

(Figure 5D) and competes with HEAT-2 (Figure 6B), RNA binding

to eIF4A would displace HEAT-2 and drive the equilibrium toward

the closed ATP-bound state of eIF4A (left panel of Figure 7A).

ATP hydrolysis and ADP release would reduce the affinity of

eIF4A for RNA and eIF4G HEAT-1, while increasing the affinity

for HEAT-2 (see Figure 5). Therefore, ATP hydrolysis would shift

the equilibrium toward the open state of eIF4A (Figure 7A, right

panel). Binding of a new molecule ATP would again promote

the closed eIF4A conformation (Figure 7A, left panel) and

complete the cycle. This mechanism outlined in Figure 7A is

enhanced by eIF4H. ATP bound to eIF4A causes formation of

a tight complex with eIF4H while hydrolysis of ATP and displace-

ment of nucleotide weakens the eIF4H/eIF4A interaction

(Figure 5C). While the mechanism described above fits well
456 Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc.
with the known data about the functions of eIF4A and eIF4G,

the observed effects on nucleotide binding should only be

considered qualitative, because the exact binding affinities

could be significantly different in the context of full-length eIF4G.

The changes in the eIF4A domain orientation during the ATP

binding/hydrolysis cycle of the helicase would cause movements

in the domains of eIF4G and eIF4H that interact with the helicase.

Thus, the entire eIF4A/4G/4H complex is a dynamic structure

that cycles among three distinct states: ATP-bound, ADP-bound,

and nucleotide-free (see also Figure 5E). eIF4G HEAT-2 prefers

the open nucleotide-free conformation of eIF4A (Figure 5B), but

the binding sites for eIF4A-NTD and eIF4A-CTD on the surface

of HEAT-2 are adjacent to each other (Figure 3C). This indicates

that while the eIF4A interdomain orientation in the eIF4A/HEAT-2

complex is open enough to disrupt the nucleotide-binding

pocket, eIF4A-NTD and eIF4A-CTD remain in proximity to each

other, instead of being far apart as in the crystal structure of yeast

eIF4A (Caruthers et al., 2000). Therefore, the overall domain

orientation in the eIF4A/4G/4H complex, shown on Figure 4D

would remain roughly similar in all three states.

It must be pointed out that eIF4G HEAT-2 only serves a

modulatory role in mammals, but is not essential for translation

initiation (Morino et al., 2000) and has even been lost during

the evolution of a number of fungal species, including budding

yeast (reviewed in Marintchev and Wagner, 2004). Therefore,

the ATP binding/hydrolysis cycle shown in Figure 7A can operate

without HEAT-2 stabilizing the open nucleotide-free state of

eIF4A. The effects of eIF4G HEAT-2 on nucleotide binding to

eIF4A reported here suggest a possible modulatory role for

HEAT-2. In the absence of RNA, the function of eIF4G HEAT-2

could be to lower the affinity of eIF4A for ATP and thus suppress

idle ATPase activity in the eIF4A/eIF4G complex that would

otherwise be partially stimulated by eIF4G HEAT-1.

The eIF4A/eIF4G/eIF4H Helicase Complex
and the Mechanism of mRNA Unwinding
The RNA-binding surfaces of eIF4A are well-known from the

structures of eIF4A homologs in complex with ATP and RNA

(e.g., see Andersen et al., 2006). In the closed active conforma-

tion, the two RecA-like domains come in contact with each other,

forming the ATP-binding pocket, and a contiguous RNA-binding

surface. In all available structures of eIF4A homologs in complex

with RNA, the NTD of the protein is oriented toward the 30 end of

the RNA, and the CTD is oriented toward the 50 end. Therefore,

when eIF4A is translocating from the 50-cap of the mRNA in the

30-direction, eIF4A-NTD would be on the front. eIF4G HEAT-1

also binds RNA and its N-terminal region is important for binding

(Marcotrigiano et al., 2001). Since the HEAT-1 binding surface of

eIF4A-CTD is opposite to its RNA-binding surface (Figure 4D),

the eIF4G HEAT-1 and eIF4A likely do not bind to adjacent

regions of the mRNA. Interestingly, the binding site of eIF4H on

eIF4A (Figure 4D) indicates that its RRM domain can contact

the mRNA immediately 50 from eIF4A, which would place it

behind the helicase with respect to the direction of translocation

(Figure 7B, left panels). This suggests that while both eIF4G

HEAT-1 and eIF4H stabilize ATP and RNA binding to eIF4A,

they may employ different mechanisms for stimulation of

eIF4A activity. The topology of the complex described here
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Figure 7. Models for the Mechanisms of Unwinding of mRNA and Scanning

(A) Model for the dynamics of the eIF4A/eIF4G interactions. eIF4G HEAT-1 (yellow) stimulates ATP binding and the helicase activity of eIF4A by simultaneous

binding to both eIF4A domains in the closed ATP-bound conformation (left). eIF4G HEAT-2 (orange) favors the nucleotide-free state by simultaneous binding

to both eIF4A domains in an open conformation (right). The interdomain linker of eIF4G (light orange) also binds eIF4A and stabilizes the complex. The arrows

indicate directions of rearrangements during the ATP hydrolysis/nucleotide exchange cycle. ATP (not shown) binds at the interface between the two eIF4A

domains. HEAT-2 is shown semi-transparent to emphasize that it is not required for the ATP-binding/hydrolysis cycle.

(B) Hypothetical model for the organization of the cap-binding complex and the scanning complex.

State1.Modelof the cap-binding complexboundat the 50-cap. Theorientationandcoloring ofeIF4A,eIF4GandeIF4H isas inFigure4D. The linker between theeIF4G

HEAT-1 and HEAT-2 domains is not shown. The mRNA is drawn as a dashed red line. The 50-cap/eIF4E/4G complex structure shown is from yeast (Gross et al., 2003).

State 2. Model for the unwinding of the 50-proximal region of mRNA.

The position and 50-30 polarity of the mRNA on eIF4A is modeled based on the structure of eIF4A3 (Andersen et al., 2006). The direction of translocation/unwinding

along the mRNA (50 to 30) is indicated by an arrow.

State 3. Model for the scanning complex.

The small ribosomal subunit (gray semi-transparent surface, with the rRNA backbone shown as ribbon) and the mRNA (red solid ribbon) are from 1JGP.pdb (Yusu-

povaetal., 2001). The direction of scanning of the initiationcomplex along themRNA (50 to30 ) is indicated byanarrow. According to thismodel, eIF4A ison the front (30-

side) of the scanning initiation complex, in agreement with its helicase function.
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(Figure 4D) indicates that eIF4G HEAT-1 tethers eIF4A to mRNA,

whereas binding of eIF4H to single-stranded mRNA behind

eIF4A could also serve to prevent mRNA reannealing and

promote processive unidirectional translocation of eIF4A. It

should be noted here that eIF4G possesses at least one more

RNA-binding region: located N-terminal from the HEAT-1

domain and important for scanning (labeled ‘‘S’’ on Figure 1C)

(Prevot et al., 2003). It is not currently known where that region

of eIF4G binds the mRNA with respect to eIF4A.

The cap-binding complex, composed of eIF4E, eIF4G, eIF4A,

as well as eIF4B or eIF4H, helps recruit the small, 40S ribosomal

subunit both through interactions with eIF3 and by unwinding

any secondary structures in the mRNA in the vicinity of the

50-cap (clearing the ‘‘ribosome landing pad’’). In our model, the

RNA-binding surface of eIF4G HEAT-1 in the complex with

eIF4A appears to be almost on the opposite side with respect

to the RNA-binding site of eIF4A. One can thus hypothesize

that eIF4G HEAT-1 contacts a region of mRNA ‘‘behind’’

(50 from) the helicase. The mRNA between eIF4G HEAT-1 and

eIF4A could be looped out as the complex translocates in the

30 direction while staying tethered to the 50-cap. Although the

cap-binding complex has greater helicase activity than free

eIF4A, it still has limited processivity: it will eventually fall off

the leading end of the mRNA and resume the cycle from the

50-end, thus constantly keeping the 50-proximal ‘‘landing pad’’

ready for 40S subunit binding (Figure 7B, left panels).

Model for the Organization of the Scanning
Preinitiation Complex
Since the Cap-binding complex is bound at the 50-end of the

mRNA, it is simple to assume that it remains behind (on the

50 side) the 40S ribosomal subunit during scanning. However,

mechanistically, it would be more logical for the helicase eIF4A

to be in front (on the 30 side) of the scanning complex. The orga-

nization of the eIF4A/4G/4H complex (Figure 4D), suggests that it

could be simultaneously behind and in front of the 40S subunit

during scanning. On the bacterial ribosome, the mRNA enters

from the solvent side of the small subunit; wraps around the

Neck coming to the interface with the large subunit; then exits

again through the solvent side, �50 Å away from the entry site

(Yusupova et al., 2001). The path of the mRNA through the

eukaryotic translation preinitiation complex appears to be similar

(Pisarev et al., 2008). The 40S subunit is recruited to the mRNA

through the interaction between eIF4G and ribosome-bound

eIF3, which is on the solvent side of the 40S subunit (Siridecha-

dilok et al., 2005). Superimposing our model of the eIF4A/4G/4H

complex on the crystal structure of the small subunit bound to

mRNA (Yusupova et al., 2001) indicates that it is spatially

possible for eIF4A to be in front of the scanning complex, while

eIF4G HEAT-1 is near the mRNA on the 50 side (Figure 7B, right

panel). The polarity of mRNA on eIF4A is consistent with this

hypothetical model. eIF4H could contact mRNA behind eIF4A,

but in front of the 40S subunit. Wrapping of mRNA around the

Neck of the 40S subunit would bring the two ends of the

mRNA near each other and favor simultaneous interaction of

the eIF4A/4G/4H complex with mRNA segments both on the

front (30) and back (50) of the scanning complex. Once the scan-

ning preinitiation complex is assembled on mRNA, it can proces-
458 Cell 136, 447–460, February 6, 2009 ª2009 Elsevier Inc.
sively translocate in the 30 direction in search of the start codon.

eIF4G HEAT-1 could either retain its interaction with the

50 portion of the mRNA or contact rRNA instead. eIF4E may

remain associated with both the cap and eIF4G during scanning,

at least transiently, as discussed previously (Jackson, 2000;

Marintchev and Wagner, 2004). Since eIF4H and its homolog

eIF4B appear to share a common binding site on eIF4A (Rozov-

sky et al., 2008) and similar function, in complexes containing

eIF4B instead of eIF4H, eIF4B will likely take the place of

eIF4H. Finally, the core components of the helicase complex

(eIF4A, eIF4B and eIF4G HEAT-1) are conserved between

human and budding yeast. Therefore, while budding yeast lack

an eIF4H homolog and have lost the eIF4G HEAT-2 and HEAT-

3 domains, the overall organization of the scanning complex is

likely conserved with that in human.

Insights on the Regulation of Helicase Function
The dynamic organization of the eIF4A/4G/4H helicase complex

and the mechanisms of regulation of its activity discussed here

can help understand the regulation of helicase activity in general.

Accessory proteins can modulate the affinity of the helicase for

nucleotides (and thus its activity) by simultaneously binding

both RecA-like domains and promoting closed or open interdo-

main orientation. Stable interactions could maintain the integrity

of the complex. Weak/transient interaction with one of the RecA-

like domains can accommodate the requirement for mobility in

helicase function.

The position of accessory RNA/DNA-binding domains within

a helicase or a helicase complex in general can be correlated

to their potential functions. An RNA-binding domain can anchor

the helicase to its substrate, thus lowering the KM for RNA. If

a domain binds RNA immediately behind the helicase (as does

the eIF4H RRM domain in the eIF4A/4G/4H helicase complex),

it can also stabilize the nascent ssRNA and promote processive

unidirectional translocation of the helicase.

Accessory proteins within a helicase complex and accessory

domains of the helicase itself are likely to employ similar mech-

anisms of regulation. In the case of intramolecular regulation

within a large multidomain helicase, the covalent links between

the domains could replace some of the stable intersubunit inter-

actions that keep the complex together.

EXPERIMENTAL PROCEDURES

Vectors, Protein Expression, and Purification

The human eIF4A1 (406 residues), eIF4G1 (1600 residues), and eIF4H isoform 2

(228 residues) or subcloned fragments thereof were used. The constructs used

in this study are shown in Figure 1. The expression constructs for human

eIF4A1 and eIF4A-CTD are described in (Oberer et al., 2005). The clone

expressing eIF4A-NTD has an N-terminal His-tag, followed by a TEV protease

cleavage site. All other proteins and protein fragments used in this study have

an N-terminal GB1 tag, followed by a His-tag and a TEV cleavage site. Expres-

sion and purification of unlabeled proteins, as well as of proteins uniformly

labeled with stable isotopes for the NMR experiments, was carried out as

previously described for eIF4A-CTD (Oberer et al., 2005).

NMR Resonance Assignments and Chemical

Shift Perturbation Assay

NMR spectra were recorded at 298 K on a Bruker 750, 600, or 500 MHz, or

a Varian Inova 600 or 500 MHz spectrometers, equipped with cryogenic



probes. Unless stated otherwise, samples for NMR measurements contained

0.4–1 mM protein in buffer containing 20 mM Tris-HCl (pH 7.0), 150 mM KCl,

2 mM DTT, 1 mM EDTA, 0.01% NaN3, 0.2 mM AEBSF, and 10% D2O. The

samples of eIF4A-CTD were at 150 mM or lower, due to the limited solubility

of these proteins at physiological salt concentrations. Backbone resonance

assignments were obtained for 100% of the assignable residues in the

eIF4G HEAT-2 domain, using standard triple-resonance experiments. Chem-

ical shift mapping was done as described in (Marintchev et al., 2007).

Surface Plasmon Resonance

Surface plasmon resonance (SPR) experiments were carried out using a

BIAcore 3000 instrument (Biacore Inc., Piscataway, NJ). Wild-type or mutant

eIF4G HEAT-1, eIF4G HEAT-2, or eIF4H was immobilized on a research grade

CM5 sensor chip using amino coupling kit. The binding experiments were

carried out in the buffer described above for the NMR experiments at 25�C,

at flow rate of 20 ml/min. eIF4A, eIF4A-NTD, or eIF4A-CTD was injected at

increasing concentrations. 1 mM ATP (or ADP) and 3 mM MgCl2 was added

to the injected eIF4A samples, where indicated. Curve fitting was done with

SigmaPlot (SPSS Inc.).

Fluorescence Anisotropy

Fluorescence anisotropy RNA binding experiments were carried out in 384-

well plates on a PerkinElmer EnVision plate reader. The samples contained

50 nM FITC-labeled U40 RNA oligonucleotide (Dharmacon). The binding exper-

iments were carried out in the buffer described above for the NMR experi-

ments at 25�C. Curve fitting was done with SigmaPlot (SPSS Inc.), as

described in (Roehrl et al., 2004).

Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) binding experiments were carried out on

a VP-ITC machine (MicroCal) at 25�C by injecting aliquots of eIF4G HEAT-2

into a well containing eIF4A with and without HEAT-1 in the buffer described

above for the NMR experiments, except that DTT was replaced with TCEP,

and the buffer contained 5 mM MgCl2 and 5% glycerol. Data were processed

using Origin software.

Structure Analysis and Modeling

The interdomain orientation between eIF4A-NTD, eIF4A-CTD, and the RNA

were modeled based on the structure of eIF4A3 (2HYI.pdb [Andersen et al.,

2006]). For modeling, we used the crystal structure of human eIF4A-NTD

(2G9N.pdb) and a homology model for human eIF4A-CTD (Oberer et al.,

2005) based on the structure of yeast eIF4A. The interdomain orientation of

the HEAT domains of eIF4G was as modeled previously (Marintchev and Wag-

ner, 2005) based on the interdomain orientation in CBP80 in the nuclear Cap-

binding complex (1HT2.pdb [Mazza et al., 2002]). The topology of the eIF4A/

4G/4H complex was built interactively in MOLMOL, guided by the results

from NMR chemical shift mapping and site-directed mutagenesis. Modeling

of the position of the eIF4A/4G/4H complex on the ribosome was done in

MOLMOL, which was also used to generate the resulting figures.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Results, Experimental Procedures,

References, four figures, and one movie and can be found with this article

online at http://www.cell.com/supplemental/S0092-8674(09)00020-8.
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