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This paper is aimed at providing a comprehensive analysis of the contact problem in orthogonal cutting
based on the simple assumption that contact is governed by a Coulomb law. Effects of the sliding friction
coefficient and of the cutting conditions are analyzed in details. The problem is analyzed numerically by
using an Arbitrary Lagrangian Eulerian Finite Element technique. In parallel, analytical models are devel-
oped allowing us to interpret the numerical data and to make them more meaningful. Distributions along
the tool–chip interface are analyzed for stresses, temperature and sliding velocities. The shear stress
exerted along the sticking zone is found to be equal to the shear flow stress of the work-material. Of par-
ticular significance is the investigation of the interface heating as the chip temperature appears to be a
key factor governing the contact regime. The increasing of the chip temperature along the tool rake face
appears to be mainly controlled by the mean value of the shear stress on the rake face and the Péclet
number taking into account the phenomena of advection and heat diffusion. At low values of the friction
coefficient the contact is governed by chip–tool sliding for the whole range of cutting speeds considered
here (1 ms�1

6 V 6 50 ms�1). For larger values of the sliding friction coefficient, a transition to a contact
dominated by sticking is found when the cutting speed is increased. Then, contact variables appear to be
mostly determined by the value of the flow stress of the work-material with a negligible effect of the slid-
ing friction coefficient. Thermal softening of the flow stress of the work-material governs the relationship
between cutting variables and cutting conditions. An asymptotic regime occurs at relatively high cutting
velocities (larger than 10 m/s) and for values of the sliding friction coefficient larger than 0.4. The analysis
of the effects of cutting conditions on the morphology of the secondary shear zone reveals the existence
of a boundary layer regime in the range of high cutting velocities. This is in keeping with the occurrence
of the asymptotic regime mentioned above.

Despite the simplicity of the contact model used, reasonable agreement is obtained with respect to
experimental trends. The interplay between numerical and analytical approaches happens to be fruitful
for understanding which are the main parameters influencing the contact variables, for checking the con-
sistency of the numerical approach and for offering a route for future improvements of machining
models.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The modeling of cutting processes appears to be a challenging
task since complex interactions between a number of parameters
are involved. Moreover, material parameters and interface proper-
ties are difficult to characterize. The constitutive law of the work-
material has to be determined under the extreme conditions met
during machining (large deformations, high temperatures and high
strain rates). The physical mechanisms controlling friction in dry
cutting are insufficiently known. This is especially the case at high
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cutting speeds. Considering for instance high speed cutting of
steels, the order of magnitude of physical parameters at the tool–
chip interface is about 10 m/s for the sliding velocity, 1 GPa for
the normal stress and 1300 K for the temperature.

The tool–chip contact is analyzed in this paper. How process
variables are affected by friction characteristics is of particular
interest. Dry cutting conditions are assumed. The evolution of local
variables at the tool–chip interface (stresses, particle velocities,
temperature) with cutting conditions is described in details. This
work is mainly focusing on thermal effects along the contact zone
as temperature is a critical parameter governing the tool–chip
interface response and the cutting process.

Attempts have been made to model the contact problem in
machining with relatively simple phenomenological laws (Childs,
2006a,b; Arrazola et al., 2008; Filice et al., 2007; Özel, 2006). Most

https://core.ac.uk/display/82053023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijsolstr.2012.08.013
mailto:molinari@lpmm.univ-metz.fr
http://dx.doi.org/10.1016/j.ijsolstr.2012.08.013
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Nomenclature

Cutting conditions
V cutting speed
t1 uncut chip thickness
a rake angle
c clearance angle
R cutting edge radius

Chip characteristics
t2 chip thickness
/ shear angle
sY shear flow stress of the work material
�sPZ mean shear flow stress along the central line of the pri-

mary shear zone
Vc chip velocity

Tool–chip interface
l sliding friction coefficient
�l mean friction coefficient ð¼ FtðrakeÞ

FnðrakeÞÞ
lap apparent friction coefficient ð¼ FT

FC
when a ¼ 0Þ

VS sliding velocity
s shear stress
r normal stress
n exponent controlling the decay of the normal stress

along the rake face
r0 factor characterizing the level of the normal stress along

the rake face
n1 exponent controlling the decay of the shear stress along

the rake face
s0 factor characterizing the level of the shear stress along

the rake face
�sSZ average shear flow stress along the sticking zone
m1 ¼ �sSZ=�sPZ

lc contact length on the flat part of the rake face
lp sticking length
l2 thickness of the secondary shear zone
g part of frictional heat allocated to the chip along the

sliding zone

geff effective coefficient of heat partition at the tool–chip
interface

j thermal conductance of the tool–chip interface
T1 temperature of the work-material at the entry of the flat

part of the rake face
T̂1 temperature of the work-material at the exit of the pri-

mary shear zone
Tmax maximum temperature of the chip along the rake face
xmax position of the maximum chip temperature on the rake

face
Pe ¼ Vc lc

ðk=qCpÞ Péclet number

Characteristics of the work-material
Tr reference temperature in the Johnson–Cook law
Tm melting temperature
_e0 reference strain rate
q mass density
Cp heat capacity per unit mass
k heat conductivity
a ¼ k

qCp
thermal diffusivity

b Taylor-Quinney coefficient

Forces
FC cutting force
FT thrust force
FnðrakeÞ and FtðrakeÞ normal and tangential forces exerted by the

chip on the flat part of the rake face

Field variables
dp

ij plastic strain rate tensor
rij Cauchy stress tensor
T absolute temperature
req Mises equivalent stress
_eeq equivalent plastic strain rate
eeq cumulated plastic strain
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of these laws do not essentially differ from the Coulomb friction
law with saturation of the shear stress on the tool face. In the pres-
ent paper, the tool–chip contact will be modeled by using the pris-
tine Coulomb law. The shear stress on the tool face will appear in
our simulations to be naturally saturated by the shear flow stress
of the work-material.

The thermo-mechanical characteristics of the work material
and of the tool are fixed throughout the whole analysis. The values
of the sliding friction coefficient and of the interface thermal resis-
tance are the sole material parameters to be varied. Moreover, a
detailed study of the effects of cutting conditions will be
performed.

The analysis is for a part based on Finite Element calculations
using an Arbitrary Lagrangian Eulerian (ALE) technique. The ALE
formulation minimizes element’s distortion and is therefore of par-
ticular interest in the primary and secondary shear zones and at
the vicinity of the cutting edge where large deformations take
place. The introduction of ALE technique in the modeling of
machining was pioneered by Rakotomalala et al. (1993). This work
was followed by different contributions showing the advantages of
the ALE formulation in the modeling of machining (Olovsson et al.,
1999; Movahhedy et al., 2000, 2002; Adibi-Sedeh and Madhavan,
2003; Özel and Zeren, 2005; Haglund et al., 2005).

The interpretation of numerical results in terms of simple con-
ceptual models and physical laws represents an essential aspect of
the present work. Taking advantage of analytical relationships con-
stitutes an efficient route for understanding the complex interac-
tions taking place between model parameters.

Although it does not compose the main goal of the paper, con-
frontation of the modeling against experimental data is made in
several occasions. Ultimately, it is of course wished to establish a
machining model from which most of the experimental features
could be retrieved. However, in the present state of knowledge of
constitutive modeling of metals and of friction phenomena, exper-
imental results are just partially met in most of the works reported
in the literature. Therefore, simply reproducing experimental
trends and being able to analyze them in a rational way seems to
be presently a reasonable intermediate stage before focusing on
close quantitative agreement.

This work is devoted to the analysis of contact variables (stress
and temperature fields at the tool–chip interface, particle veloci-
ties, sticking length, thickness of the secondary shear zone, hot
spot position). The response of the work material in the vicinity
of the tool–chip interface appears to be a crucial factor controlling
the contact problem. The effects of cutting conditions and of fric-
tional properties on contact stresses and contact temperatures
are analyzed. A law governing the heating of the chip on the rake
face is proposed and evaluated against numerical simulations.
Characterizing the heating of the chip is essential as it was demon-
strated by Molinari et al. (2011) that, whatever the cutting
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conditions considered, the overall friction coefficient (accounting
for both sliding and sticking contact) is solely function of the max-
imum chip temperature at the rake face.

The present analysis of local contact variables offers the possi-
bility of improving the analytical modeling of cutting processes.
It provides also the knowledge on how local contact variables are
influenced by cutting conditions and friction characteristics. Char-
acterizing local variables is useful for analyzing the tool wear and
the tool-edge failure due to the combined effects of high pressure
and the reduction of the material strength by heating.

The paper is organized as follows. The basic equations of the
problem and the numerical model are presented in Section 2.
The material properties of the work-material are taken as repre-
sentative of a medium carbon steel 42CrMo4 (AFNOR: 42CD4).
The properties of the work-material are fixed in the entire paper.
A parametric analysis is performed where we vary the values of
the sliding friction coefficient, of the cutting speed, of the feed, of
the tool edge radius and of the thermal resistance of the tool–chip
interface. Data concerning the stress and temperature distributions
along the tool–chip interface, the contact length and the sticking
length, are analyzed in the rest of the paper.

Distributions of stresses and of particle velocity along the tool–
chip interface are studied in Section 3 and the consistency with re-
spect to the contact law is checked. Heating and thermal softening
along the tool–chip interface are analyzed in Section 4 and are cor-
related to the evolution of the shear flow stress along the sticking
zone. The contributions to interfacial heating of parameters such as
contact length, shear stress and chip velocity are characterized
numerically and correlated to analytical formulation. Similarly,
we identify the position of the hot spot on the tool–chip interface.
The role of the thermal resistance of the interface is discussed.
Experimental trends for temperature recently obtained by Sutter
and Ranc (2007) at high cutting velocities on a ballistic machining
set-up, are compared to our theoretical predictions. The morphol-
ogy of the secondary shear zone (SSZ) is characterized in Section 5.
The effects of the cutting speed are summarized in Section 6, with a
special emphasis on the asymptotic regime (for which the process
variables are found to be weakly dependent of cutting speed and
feed) that occurs at relatively high cutting velocities (larger than
10 m/s) for values of the sliding friction coefficient larger than
0.4. This asymptotic state is shown to be the manifestation of a
boundary layer regime due to the increase (at high cutting speeds)
of the chip temperature towards the melting temperature of the
work-material.

2. Basic equations and numerical modeling

The framework adopted for the modeling of orthogonal cutting
is presented in this section.

2.1. Constitutive equation of the work material and heat generation

The work material is a medium carbon steel 42CrMo4 (AFNOR:
42CD4) with chemical composition given in Sutter and Molinari
(2005). The material behavior is modeled by using the Johnson–
Cook law:
Table 1
Material parameters of the Johnson–Cook model for the 42CrMo4 steel, according to
Molinari et al. (1997).

A (MPa) B (MPa) C n _e0 ðs�1Þ m Tr ðKÞ Tm ðKÞ

612 436 0.008 0.15 5.77 E�4 1.46 293 1793
req ¼ Aþ Ben
eq

h i
1þ C ln

_eeq

_e0

� �� �
1� T � Tr

Tm � Tr

� �m� �
ð1Þ

req and _eeq are respectively the Mises equivalent stress and strain
rate, T is the absolute temperature, Tr a reference temperature
(the room temperature here), Tm the melting temperature, _e0 a ref-
erence strain rate. The plastic flow is assumed to be governed by the
J2-flow theory.

The parameters of the Johnson–Cook law were identified exper-
imentally by Molinari et al. (1997) and are reported in Table 1.
Thermo-mechanical properties were characterized with a univer-
sal hydraulic machine for quasi-static tests and with Hopkinson
bars for the dynamic response. Other mechanical and thermal
properties of the work material and of the tool material are given
in Table 2. An uncoated carbide tool is considered. It is assumed
to behave elastically.

The evolution of the temperature of the work-material is gov-
erned by the energy equation:

qCp
_T � kDT ¼ bdp

ijrij ð2Þ

_T is the material derivative of the temperature, DT is the Laplacian
of T, dp

ij are the components of the plastic strain rate tensor and rij

the components of the Cauchy stress tensor. q, Cp and k are respec-
tively the mass density, the heat capacity per unit mass and the
heat conductivity of the work material. The thermal properties Cp

and k are considered as constants in this analysis (temperature
dependence neglected).

The Taylor-Quinney coefficient, b, is in general rate and strain
dependent and is function of the metal considered. In their exper-
iments on iron, Rittel et al. (2006) reported that the maximum va-
lue of b (close to unity) is observed at strain rates larger than
104 s�1. Usually, b increases also with strain and approaches unity
at very large strains. As large strain rates and strains are encoun-
tered in machining within the primary and secondary shear zones,
it is justified to assign to b a large value close to unity. In our mod-
eling, the fixed value b = 0.9 is considered, but the trends in the re-
sults would remain essentially unchanged by varying the Taylor-
Quinney coefficient in a range of values close to unity.

At the tool–chip interface, the frictional energy per unit time
and unit surface is equal to sVS along the sliding zone, with s being
the shear stress and VS the sliding velocity. Frictional energy van-
ishes when sticking occurs (VS ¼ 0). It is assumed that the totality
of the frictional energy is transformed into heat. The proportion of
the frictional heat energy allocated to the chip is characterized by
the coefficient of heat partition g (0 6 g 6 1). A detailed analysis of
the contact mechanics at the scale of surface asperities would be
needed to characterize the value of g along the sliding zone. Such
study could be based on Finite Element simulations at the
microscale (level of asperities) coupled with molecular dynamics
simulations. In the absence of precise information, the value
g = 0.5 is adopted in the present calculations. Thus, along the slid-
ing zone, frictional heat is equally allocated to the two bodies in
contact. However, it should be noted that, just after being depos-
ited in chip and tool, the frictional heat is redistributed through
the tool–chip interface if the thermal conductance of the interface
is non-zero.

The thermal conductance of the tool–chip interface has the va-
lue j ¼ 2000 W m�2 K�1 in most of our calculations. Under the
high contact pressures generated in the cutting process, j may
have larger values (low thermal resistance of the interface). There-
fore, the effect of a large thermal conductance j will be explored
by considering the value j = 109 W m�2 K�1. Let us note that the
temperature is discontinuous across the tool–chip interface except
if j =1 (no thermal resistance).

The free surface of the workpiece and of the chip and the exter-
nal boundary of the tool are assumed to be adiabatically insulated.



Table 2
Mechanical and thermal parameters of the work-material (42CrMo4 steel) and of the carbide tool. E, Young modulus, m, Poisson ratio, q, mass density, Cp , heat capacity per unit
mass, k, heat conductivity, b, Taylor-Quinney coefficient.

E ðGPaÞ m q ðkg m�3Þ Cp ðm2 s�2 K�1Þ k ðN K�1 s�1Þ b

Work material 202 0.3 7800 500 54 0.9
Tool 1000 0.3 12700 234 33.5 –
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The dimension of the tool is taken large enough, so that the heating
at the tool–chip interface is not affected by the thermal conditions
at the external boundary of the tool.

2.2. Friction law

The Coulomb law is used to model contact. Under sliding condi-
tion, the shear stress s is related to the normal stress r by the
relationship:

s ¼ lr ð3Þ

where l is the sliding friction coefficient (taken as constant along
the interface). The sliding velocity vanishes when s < lr. In machin-
ing, the latter condition is realized at the vicinity of the tool tip,
where the normal stress reaches high values. Then, sticking occurs
between chip and tool.

Along the sticking zone, the work material is plastically sheared
and the shear stress at the tool–chip interface is identical to the
shear flow stress of the work-material sY which is function of tem-
perature, strain and strain rate. Thus the contact is basically gov-
erned by two parameters. The first parameter (the sliding friction
coefficient l) relates to an intrinsic interface characteristic, the sec-
ond refers to a mechanical property of the work-material (sY). It
turns out that:

s ¼ infðsY ;lrÞ ð4Þ

Zorev (1963) considered the relationship (4) as being the consti-
tutive law of the interface. This model was implemented in Finite
Element simulations of orthogonal cutting, see for example Marus-
ich and Ortiz (1995). Arrazola and Özel (2010) have recently ex-
plored the effect of a limit shear stress slimit in the contact law
(sY being replaced by slimit in Eq. (4)).

The genuine Coulomb law is used in the present work. The shear
stress along the sticking zone will be found to be equal to sY as an
outcome of the calculations.

A more general friction law than (4) was introduced in the liter-
ature related to machining, Childs (2006b), Filice et al. (2007),
Childs et al. (1998), Dirikolu et al. (2001):

s ¼ sY 1� exp � lr
sY

� �n� �� �1
n

ð5Þ

where n is an arbitrary positive parameter. This law was initially
proposed by Shiratashi and Usui (1976) for n = 1. It should be noted
that for small values of r Eq. (5) reduces to the form (3) of the Cou-
lomb law for sliding contact while for large values of r the relation-
ship s ¼ sY corresponding to sticking contact is retrieved. Thus, the
law (5) offers a smooth transition from sliding to sticking contact
when r varies. However this transition is based on the phenomeno-
logical relationship (5) which has no specific physical meaning.

2.3. Numerical modeling

The problem of orthogonal cutting is modeled by Finite Element
simulations using the code ABAQUS/Explicit (2003) and the ALE
formulation with the boundary specifications shown in Fig. 1. Geo-
metrical characteristics of the cutting model are reported in Fig. 2.
For some materials chip segmentation is experimentally ob-
served at high cutting speeds. This feature cannot be accounted
for with the ALE formulation. Only stationary flow and continuous
chip formation can be simulated in this framework. Thus, some of
the results obtained with the present numerical model may not be
in total agreement with experimental observations made at very
high cutting speeds. However, when chip segmentation is due to
adiabatic heating, we believe that the main trends are conserved
if the band spacing is wide enough. In that case, the appearance
of shear bands within the chip is characterized by discrete events
which should not affect significantly the average values of field
variables.

Plane-strain deformations are assumed in the modeling. An
example of mesh configuration is shown in Fig. 1. CPE4RT quadri-
lateral elements with reduced integration were used. They have
four nodes, are adapted for plane deformation applications and
they account for temperature effects.

In most of calculations the mesh size was about 4 lm. A mesh
sensitivity analysis was performed by reducing the average mesh
size to 2 lm. Little differences were found in the results as will
be shown later. Therefore, to optimize computational time, the
mesh size of 4 lm was generally adopted, except for some cases
where a finer mesh of 2 lm was used (e.g. for the evaluation of
the thickness of the secondary shear zone).

In the Abaqus software, two options are offered to model the
contact problem: the kinematic and the penalty algorithms.
Numerical tests conducted with the Coulomb friction law showed
significant variations in the results according to the choice of the
contact algorithm Results obtained with the kinematic formulation
presented some inconsistencies. For example, when sliding oc-
curred, the ratio s=r was found to be different from the friction
coefficient l. Therefore, calculations were made by using the pen-
alty (and surface/surface) method which provides consistent
results.
2.4. Parametric analysis

The sliding friction coefficient l is assumed to be constant, i.e.
independent from cutting conditions and from field variables.

All results correspond to quasi-steady regimes reached when
the interface temperature and the values of cutting forces are
nearly time independent. Time histories of cutting and thrust
forces and other cutting variables reveal that a quasi-steady state
regime is obtained after a short transient period. For instance, for
the test corresponding to the following conditions: l ¼ 0:8,
V = 8 m/s, t1 ¼ 0:1 mm, R ¼ 0:015 mm, j ¼ 2000 W m�2 K�1, the
quasi-steady regime is reached for a time of about 500 ls.

The numerical approach and the cutting problem is the same as
in Molinari et al. (2011). The pertinence of the numerical model
was checked in Molinari et al. (2011) against various experimental
results obtained for the medium carbon steel 42CrMo4. In particu-
lar, the measured values of overall friction coefficients and their
variation with cutting conditions were correlated to numerical
data.

A parametric analysis is conducted by varying the value of the
sliding friction coefficient in the range 0 6 l 6 1 and by changing
cutting conditions. The values of the rake and clearance angles are



X

Y

TOOL

WORKPIECE

Eulerian surface 
Displacement 

U2=0

Eulerian surface 
Material velocity V

Displacement U1=0

Eulerian surface 
Material velocity V

Displacement U1=0

Sliding surface 
Displacement U2=0

Sliding surface 

Embedded surface 

1

2

Fig. 1. Deformed mesh and conditions imposed in the ALE model.

t1

t2
TOOL

CHIP

V

x

I (x=0)

J (x=lc)

K K’

y φ

Fig. 2. Geometrical characteristics of the cutting model.

3778 A. Molinari et al. / International Journal of Solids and Structures 49 (2012) 3774–3796
fixed (a ¼ 0, c ¼ 7�). Cutting conditions are summarized in Table 3.
The labels T4, T5 and T6 in the first column of Table 3 refer to sim-
ilar calculations reported respectively in Tables 4-5-6 of Molinari
et al. (2011). In the present paper, the focus is made on the analysis
of local variables and on the solution of the thermal problem at the
tool chip interface.

Values of T1 and of Tmax corresponding respectively to the nodal
temperature of the work-material at I (x = 0), see Fig. 2, and to the
maximum nodal temperature of the work-material along the tool–
chip interface are of special interest for the analysis of the thermal
problem.
Table 3
Values of the cutting parameters and of interface properties used in simulations; a rake ang
chip thickness, R cutting edge radius, V cutting speed, j thermal conductance of the tool–

Test label l t1 (mm)

a ¼ 0� , c ¼ 7� , g ¼ 0:5

T4 0 6 l 6 1 0.1
T5 0.8 0.1
T6 0.6 0:05 6 t1 6 0:5
K 0.6 0.1
The results corresponding to test conditions K of Table 3 are re-
ported in Table 4. Two different values of the thermal conductance
of the tool–chip interface are considered: j ¼ 2000 W m�2 K�1 and
j ¼ 109 W m�2 K�1. It is worth noting that a fine mesh size (about
2 lm) was used while the mesh size was about 4 lm for other cal-
culations (T4, T5, T6) of Table 3. Thus, in addition to the effects of j,
results of Table 4 will allow us to evaluate the mesh sensitivity by
direct comparison with data related to T4 for j ¼ 2000 W m�2 K�1.
More details about mesh sensitivity are given in Section 4.5.
3. Stress and velocity distributions along the tool rake face

We first characterize sliding and sticking contact by investigat-
ing the distribution along the tool rake-face of the sliding velocity
VS, as shown in Fig. 3a for the test T4 of Table 3 with friction coef-
ficient l ¼ 0:8 and cutting speed V ¼ 8 ms�1. The tool is fixed and
VS is the component of the particle velocity tangential to the rake-
face. The origin of the x-axis is located at the point I, see Fig. 2. The
results of Fig. 3a reveal the existence of (i) a sticking zone where
the sliding velocity VS is nearly zero, (ii) a sliding zone where
VS – 0. Note the progressive increase of the sliding velocity from
nearly zero at the exit of the sticking zone, to the quasi-steady va-
lue 4 m/s. Fig. 3b shows the distribution along the tool–chip inter-
face of the normal stress r (actually lr is represented) and of the
shear stress s (nodal values for r and s). By convention r is taken
as positive; thus, r is the absolute value of the real normal stress. r
vanishes at x ¼ lc , where lc ¼ 0:267 mm is the length of the contact
zone. The sliding zone is defined by lp < x < lc. The length of the
sticking zone is given in Fig. 3a by lp ¼ 0:174 mm. The results of
le, c clearance angle, g heat partition coefficient, l sliding friction coefficient, t1 uncut
chip interface.

V (ms�1) R ðmmÞ j ðW m�2 K�1Þ

1 6 V 6 50 0.015 2000
4 6 V 6 30 0.030 2000
4 6 V 6 40 0.015 2000
6 6 V 6 50 0.015 2000 and 109



Table 4
Results corresponding to test conditions K of Table 3 are reported here for various values of the cutting speed V. Definitions of other variables are found in the nomenclature.
Calculations are conducted with a mesh size of about 2 lm while for tests T4, T5 and T6 of Table 3 the mesh size was 4 lm. Two values of the thermal conductance j of the tool
chip interface are considered.

Test
label

j (W/m2/K) V
(m/s)

FC

(kN/m)
FT

(kN/m)
lap Fn (rake)

(kN/m)
Ft (rake)
(kN/m)

�l �sPZ

(MPa)
�sSZ

(MPa)
t2

(mm)
lc
(mm)

lp/lc /
(deg)

Tmax

(K)
T1 (K) xmax/lc

t1 ¼ 0:1 mm, R ¼ 0:015 mm, l ¼ 0:6
K01 2000 6 254 131 0.515 221 104 0.471 629 440 0.275 0.265 0.696 20.0 1363 997 0.708
K02 2000 10 226 105 0.464 192 74.7 0.390 641 406 0.229 0.213 0.727 23.6 1452 1026 0.734
K03 2000 15 214 90.8 0.424 181 61.3 0.339 645 354 0.211 0.193 0.741 25.4 1526 1073 0.762
K04 2000 20 207 83.4 0.404 174 53.5 0.308 651 327 0.197 0.182 0.742 26.9 1565 1100 0.751
K05 2000 30 197 72.3 0.367 163 41.2 0.252 656 270 0.184 0.167 0.760 28.5 1626 1174 0.736
K06 2000 50 192 65.0 0.339 157 32.6 0.207 661 238 0.168 0.154 0.760 30.8 1682 1244 0.775
K07 109 6 261 146 0.559 231 121 0.524 624 478 0.283 0.269 0.654 19.3 1281 998 0.833
K08 109 10 231 115 0.498 204 91.0 0.446 639 437 0.244 0.233 0.709 22.3 1401 1028 0.854
K09 109 15 219 99.4 0.454 178 63.2 0.355 648 427 0.178 0.168 0.720 29.3 1472 1025 0.834
K10 109 20 230 92.2 0.402 183 51.5 0.282 656 370 0.173 0.162 0.748 30.0 1540 1065 0.847
K11 109 30 204 80.8 0.396 169 49.5 0.292 659 315 0.189 0.175 0.754 27.9 1610 1145 0.886
K12 109 50 198 71.5 0.361 165 40.3 0.245 662 273 0.185 0.170 0.751 28.4 1683 1210 0.880
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Fig. 3b show that s ¼ lr in the sliding zone, in agreement with the
Coulomb friction law.

It is worth analyzing the nature of the plastic flow along the
sticking zone. Firstly, it should be noted that the particle velocity
being zero at the tool–chip interface, the global chip movement
must be accommodated by a shear layer (secondary shear zone)
where the chip undergoes plastic flow. Apart from numerical oscil-
lations, the results of Fig. 3c reveal that, along the sticking zone, the
shear stress s is related to the Mises-equivalent stress req (evalu-
ated at Gauss integration point) through the relationship:

s ¼ reqffiffiffi
3
p ð6Þ

It is shown in Appendix A that, for a material obeying the Mises-J2

flow theory, the condition (6) is satisfied if and only if the plastic
flow along the tool–chip interface is simple shearing. It should be
also noted that plastic flow occurs when req ¼

ffiffiffi
3
p

sY , with sY being
the shear flow stress. Therefore, it is found by considering (6) that
the shear stress is identical to the shear flow stress along the stick-
ing zone:

s ¼ sY ð7Þ

The present numerical modeling of contact appears to be in agree-
ment with the contact model proposed by Zorev (1963) assuming
that the condition (7) is satisfied along the sticking zone.

It is observed in Fig. 3c that the relationship (7) is not met along
the sliding zone. Flow analysis within the chip indicates that plastic
deformation is weakly activated along the sliding zone. However,
according to the results demonstrated in Appendix A, the mode of
plastic deformation is not simple shearing since s – reqffiffi

3
p . The plastic

activity along the sliding zone may be related to chip curling.
The contact regime depends on the value of the sliding friction

coefficient l. While results of Fig. 3 were related to l ¼ 0:8, a small
sliding friction coefficient, l ¼ 0:2, is considered in Fig. 4. Cutting
conditions are the same as for Fig. 3. It appears from Fig. 4a that
sticking does not exist anymore for l ¼ 0:2. The chip slides along
the tool rake-face with a velocity of about 4—5 ms�1. Stress profiles
displayed in Fig. 4b indicate an excellent consistency of the numer-
ical results with the Coulomb friction law s = lr. The distribution
of req=

ffiffiffi
3
p

is shown in Fig. 4c. The fact that req=
ffiffiffi
3
p

> s is an indica-
tion that the mode of deformation along the rake face is not plastic
shearing. Additional information is provided by the examination of
numerical results. It is observed that the cumulated plastic
deformation increases with x along the rake face. Thus, the chip
is plastically deformed along the rake face (chip curling) and from
the J2-flow theory it follows that req=

ffiffiffi
3
p

is identical to the shear
flow stress sY . Finally, it turns out from these theoretical consider-
ations that sY > s all along the tool–chip interface (sliding contact).
The same conclusion was obtained for the results of Fig. 3c (l = 0.8)
along the sliding zone.

From this discussion, the results appear to be fully consistent
with the Coulomb contact law along the sliding zone and to pro-
vide the correct physics along the sticking zone. It is so for the
whole series of calculations reported in this paper. Further consis-
tency is found by checking in Appendix B that the chip velocity ob-
tained numerically is in agreement with plastic flow
incompressibility.

Experimental measurements of stress distributions along the
tool face are difficult to achieve. Therefore, comparing experiments
with theoretical predictions is not easy. However, it can be men-
tioned that experimental stress profiles reported by Childs et al.
(1989) are in qualitative agreement with the simulated stress dis-
tributions given in Fig. 3b.

The variations of r and s along the tool–chip interface are dis-
played in Fig. 5 for various values of the cutting speed and of the
sliding friction coefficient corresponding to tests T4 of Table 3.
For completeness, the stress distributions are displayed by includ-
ing the tool edge region using the following representation. Con-
sider on the tool edge a given point P of coordinates ðx; yÞ (see
axes in Fig. 2) and denote by r the absolute value of the normal
stress at P and by s the shear stress at the interface. To P we asso-
ciate the point ðx;rÞ (or ðx; sÞ) in the Fig. 5a. Note that we have
�R 6 x 6 0, for the points located on the tool edge, with
R ¼ 0:015 mm being the edge radius. The edge region provides al-
ways a larger stress level.

4. Heating and thermal softening along the tool–chip interface

4.1. Temperature distribution along the tool–chip interface

The value j ¼ 2000 W m�2 K�1 is assigned to the thermal con-
ductance of the tool–chip interface. The effect of a larger value of
j will be evaluated in Section 4.5. For the low value of j considered
here, the temperature is discontinuous at the interface. Therefore
the temperature on the chip side T int

chip should be distinguished from
those on the tool side T int

tool. However, the relevant parameter for the
modeling of the cutting process is T int

chip. As a matter of fact, the chip
temperature at the interface controls the thermal softening of the
work-material and thereby does affect the whole process. This is
the reason why the present analysis is focusing on T int

chip. For con-
ciseness, this temperature will be denoted as interface tempera-
ture, T int.
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. The fact that these quantities are well correlated for 0 6 x 6 lp is an indication that the mode of
plastic deformation along the tool face is simple shearing when sticking occurs.
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The temperature distribution along the tool rake face is shown
in Fig. 6 for the cases considered in Fig. 3 (high friction, l ¼ 0:8)
and Fig. 4 (low friction, l ¼ 0:2). As expected, the interface temper-
ature is smaller for the lower value of friction. The increasing of
temperature at the tool face results from (i) self-heating of the
work material due to plastic deformation within the primary and
secondary shear zones, (ii) frictional heating along the sliding zone.
The temperature T1 at the point I (see Fig. 2) is the result of the
heating associated to plastic deformation near the tool tip. This
temperature appears to be larger for l ¼ 0:8 (T1 = 1010 K) than
for l ¼ 0:2 (T1 = 854 K). It is worth noticing that T1 is significantly
different from the temperature T̂1 evaluated at the exit of the pri-
mary shear zone on the path P1P2 shown in Fig. 20 of Appendix C:
T̂1 ¼ 645 K for l ¼ 0:8 and T̂1 ¼ 613 K for l ¼ 0:2. The increasing
of the temperature for a material particle crossing the primary
shear zone is basically related to adiabatic plastic shearing as dis-
cussed in Appendix C. The plastic deformation field which pro-
duces the increasing of the temperature at I is more complex
than along the path P1P2 (partly because of the tool radius effect)
and cannot be easily represented by analytical means.

Beyond x = 0 (point I), a further increasing of temperature is ob-
served along the tool face. For l ¼ 0:8 (test T4 of Table 3, with
V ¼ 8 ms�1) the temperature evolves from T1 = 1010 K to the max-
imum value Tmax = 1402 K, Fig. 6a. This increasing is due to the dis-
sipation of plastic work along the sticking zone. The maximum
temperature Tmax is reached at the end of the sticking zone at
xmax ¼ lp ¼ 0:174 mm. There is no increasing of temperature in
the sliding zone, rather a drop of 150� is observed between xmax

and the end of contact. This drop is the consequence of heat
transfer towards the surrounding (chip and tool) which cannot
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be compensated by the low level of frictional heating along the
sliding zone (as the level of shear stress is rapidly decreasing at
large values of x).

For l ¼ 0:2, there is no sticking and Tmax = 980 K occurs at
xmax ¼ 0:127 mm near the end of the contact zone
(lc ¼ 0:164 mm) see Fig. 6b. There is no secondary shear zone,
and the increasing of the temperature up to Tmax appears as the
sole result of frictional heating.

The influence of the cutting speed on the temperature distribu-
tion is illustrated in Fig. 6c for l ¼ 0:8 and in Fig. 6d for l ¼ 0:2. Of
note is the increasing of Tmax with V. The position xmax of Tmax ap-
pears to be nearly insensitive to the cutting speed for the low value
of friction l ¼ 0:2, while for l ¼ 0:8, xmax is moving significantly
towards the tool tip when V is increased. This is in keeping with
the decreasing of the contact length when the cutting speed is aug-
mented. These results will be further commented in the following
sections. In particular, the position xmax will be correlated with the
stress distribution on the tool–chip interface.
The dependence of Tmax upon cutting speed is illustrated in
Fig. 6e for various values of l. Two regimes can be distin-
guished. For low values of the sliding friction coefficient
(l = 0, l = 0.2) sliding contact occurs all along the tool rake face
(x P 0). In that case Tmax appears to be an increasing function
of l, as the amount of frictional heating is more important at
higher friction. However, for large values of l, contact is domi-
nated by sticking and the ‘‘interface’’ response is mainly con-
trolled by the flow stress of the work-material with a minor
effect of l.

The transition between sliding contact and sticking dominated
contact is clearly apparent for l ¼ 0:4. For cutting speeds smaller
than 8 ms�1 we have pure sliding (lp = 0, tests #31–35 of Table 4
of Molinari et al. (2011)). For larger cutting speeds, the contact is
dominated by sticking and values of Tmax merge with those ob-
tained for l P 0:6. The appearance of a saturation regime for large
values of l and large cutting velocities is an important feature
which will be further discussed.
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The same observations can be made for the temperature T1, see
Fig. 6f. It is worth noting that T1 becomes weakly dependent upon
V when the contact is dominated by sticking i.e. when l > 0:4. This
is also the case for l ¼ 0:4 and V P 8 ms�1.

4.2. Thermal softening at the tool–chip interface

The effect of thermal softening due to heating of the chip along
the tool face can be quantitatively evaluated by using the multipli-
cative form of the Johnson–Cook law: req ¼ f ðeeqÞgð _eeqÞhðTÞ. Con-
sidering for example the case l ¼ 0:8, the drop of the shear flow
stress by 200 MPa along the sticking zone observed in Fig. 3c ap-
pears to be mostly controlled by the increasing of temperature
Tmax � T1 ¼ 392 K, see Appendix D.

When increasing the cutting speed, the heating at the tool–chip
interface is enhanced and the shear flow stress along the sticking
zone is reduced by the effect of thermal softening. This feature is
illustrated in Fig. 7a representing the evolution of the mean shear
flow stress, �sSZ ; along the sticking region (secondary shear zone) in
terms of the cutting speed V for various values of l. �sSZ is defined
by

�sSZ ¼
1
lp

Z lp

0
sðxÞdx ð8Þ

and is calculated by taking the nodal values of s on a path following
the tool–chip interface.

Fig. 7a shows also the variation of �sPZ (mean shear flow stress in
the primary shear zone) and the evolution of the ratio m1 ¼ �sSZ=�sPZ .
�sPZ is evaluated along the central line of the primary shear zone
(see Molinari et al. (2011)). The stress �sPZ exhibits weak variations
with cutting speed and friction l. This observation is general and
can be checked from the results reported in Molinari et al.
(2011). Therefore, the variation of m1 is mostly due to �sSZ . In the lit-
erature, the value m1 ¼ 0:8 is frequently considered to be represen-
tative of thermal softening along the secondary shear zone. It is
seen here that m1 varies significantly in terms of the cutting speed
from about 0.9 at V ¼ 2 ms�1 to 0.5 at V ¼ 50 ms�1.

As shown in Appendix D, the evolution of the shear flow stress
along the sticking contact is mostly controlled by the increasing of
temperature. This suggests that �sSZ could be related to a character-
istic interface temperature by a one-to-one correspondence. In
Fig. 7b we have reported �sSZ in terms of Tmax for all the tests T4
of Table 3 (t1 = 0.1 mm) for which sticking is activated (lp – 0).
Tests T6 performed for other values of the uncut chip thickness
(t1 = 0.05 mm, t1 ¼ 0:25 mm and t1 ¼ 0:5 mm) are also reported.
It is interesting to observe that for such a variety of cutting speeds
(1 ms�1

6 V 6 50 ms�1), feeds and values of the sliding friction
coefficient (0:4 6 l 6 1), all points are more or less forming a sin-
gle ‘‘master curve’’. This curve can be seen as defining the ‘‘consti-
tutive response’’ of �sSZ in terms of the single parameter Tmax. Such
constitutive relationship is an important feature for the develop-
ment of machining models. It is worth noting that by extrapolating
the data reported in Fig. 7b the master curve would intersect the
abscissa-axis at a point slightly above the melting temperature of
the work material Tm ¼ 1793 K. This corresponds to the loss of
the resistance to shear of the tool–chip interface caused by the
melting of the work-material.

4.3. Analytical characterization of the heating at the tool–chip
interface

Tmax appears as an important parameter controlling the cutting
process through the evolution of the mean shear flow stress �sSZ

along the sticking zone. Furthermore, it has been demonstrated
by Molinari et al. (2011) that the dependence of the apparent fric-
tion coefficient lap with respect to cutting conditions can be also
expressed in terms of the sole parameter Tmax. The apparent fric-
tion coefficient is defined as lap ¼

FT
FC

(since a ¼ 0) with FC and FT

being respectively the cutting and thrust forces. In view of the
importance of Tmax in the modeling of the cutting process, it is
worth trying to evaluate this temperature by analytical means.

When the cutting speed V is increased, the chip temperature at
the tool–chip interface sustains in general an important growth.
This point was illustrated for Tmax in Fig. 6e. Evolutions with V of
the temperature T1 at I and of Tmax � T1 are reported in Fig. 8 for
l ¼ 0:8 and l ¼ 0:2. Tests conditions correspond to T4 in Table 3.
Tmax � T1 is the increase of the chip temperature between the
beginning of the rake face I (x = 0) and the point xmax of maximum
temperature. This temperature increase is a manifestation of either
dissipation associated to plastic shearing along the interface
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(sticking zone) or frictional heating (sliding zone). The evolution of
Tmax � T1 with V results from the balance between heat generation
along the interface and heat transfer towards the tool and the chip.
At low cutting speeds, cooling due to heat transfer is dominant and
consequently Tmax � T1 is tending to zero.
The increasing of T1 with V may be related to the phenomenon
of plastic flow localization frequently observed in visco-plastic
materials exhibiting thermal softening and subject to high strain
rates. In the present machining problem, it is likely that plastic
deformation is accumulated near the tool tip (a zone of stress
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concentration) and that a localization process is activated at large
cutting speeds. By increasing the cutting speed, the thickness of the
localization zone is reduced while plastic deformations and tem-
perature are augmented. This observation may explain the growth
of the temperature T1 with V. For a given cutting speed, T1 is seen
to be increasing with l, Fig. 6f. This is in keeping with the fact that
the localization process is more easily triggered for high friction
since sticking is favored (the condition of zero sliding velocity pro-
motes shear localization near the tool–chip interface). However, as
seen in Fig. 6f, the values of T1 becomes weakly dependent upon l
when contact is dominated by sticking i.e. for l P 0:4: In that case,
T1 appears to be only slightly sensitive to cutting speed.

4.3.1. Law governing the evolution of the chip temperature at the tool
rake face

The dependence of Tmax � T1 with respect to cutting conditions
and material properties can be characterized by analytical means.
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It is assumed that the distribution of the shear stress along the tool
rake face has the form:

sðxÞ ¼ s0 1� x
lc

� �n1

ð9Þ

The decay of s with x is characterized by the exponent n1. For small
values of n1 the stress profile is rather flat with a brutal drop to zero
at the end of contact. For n1 > 1 the stress profile is peaked at x = 0
and shows a smooth decay to zero at x ¼ lc . Therefore a large variety
of stress profiles can be approached through relationship (9).The
scaling factor s0 is related to the tangential component FtðrakeÞ of
the force exerted by the chip on the part IJ (0 6 x 6 lc) of the tool
rake face, see Fig. 2. By performing the integration of the shear
forces along the contact zone, we have:

s0 ¼
FtðrakeÞðn1 þ 1Þ
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Heat is mostly generated by plastic deformation within the bulk
material (primary shear zone and secondary shear zone) and by
friction along the sliding zone. In general, heat generation is negli-
gible in the rest of the chip.

When sticking is absent, friction heating is distributed all along
the tool–chip interface, the rate of heating per unit surface being
given by:

Q ¼ sVc ð11Þ

where Vc is the chip velocity at the interface, and s is the shear
stress. If sticking occurs, it happens that the thickness of the sec-
ondary shear zone becomes very thin at high cutting speeds, see
Section 5.1. In that case the heat source can be assumed to be local-
ized at the tool–chip interface (the thickness of the secondary shear
zone being neglected), and the relationship (11) holds all along the
tool–chip interface (sticking and sliding zones). This simplified
framework is adopted in the following.

The heat transfer problem associated to surface heating defined
by (11) can be solved by using the Laplace transform technique as
in Moufki et al. (1998). The temperature distribution along the
tool–chip interface is found to be of the following form:

TðxÞ � T1 ¼ geff
s0

ffiffiffiffiffiffiffiffiffi
Vclc

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkqCp

p Gðx=lc; n1Þ ð12Þ

G
x
lc
; n1

� �
¼
Z x=lc

0
1� x

lc
þ u

� �n1 1ffiffiffi
u
p du ð13Þ

In Eq.(12) geff is an effective coefficient of heat partition which ac-
counts for the fact that, along the sticking zone, the totality of the
heat is generated within the chip (secondary shear zone), while,
along the sliding zone, only the fraction g ¼ 0:5 of frictional heat
is attributed to the chip.

Let us denote by xmax the position of the maximum chip temper-
ature on the rake face. From (12) and (13), xmax=lc and the maxi-
mum Gmax of the function Gðx=lc; n1Þ are solely function of the
stress exponent n1. Thus, for given cutting conditions, we have:

Tmax � T1 ¼ geff
s0

ffiffiffiffiffiffiffiffiffi
Vclc

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkqCp

p Gmaxðn1Þ ð14Þ

By using Eq. (10) it follows that:

Tmax � T1 ¼ K1
�s

qCp

ffiffiffiffiffi
Pe

p
ð15Þ

with:

K1 ¼
1ffiffiffiffi
p
p geff ðn1 þ 1ÞGmaxðn1Þ ð16Þ

�s ¼ FtðrakeÞ
lc

ð17Þ

Pe ¼
Vclc

ðk=qCpÞ
ð18Þ

�s is the mean shear stress on the rake face (0 6 x 6 lc). From Eq.
(15), ðTmax � T1Þ=T0 appears as the product of the square root of
the Péclet number Pe (accounting for heat transfer) by the dimen-
sionless number �s

qCpT0
that is related to heat production along the

tool–chip interface by dissipation.
For l P 0:4, it will be shown that the dependence of Tmax � T1

with respect to the cutting conditions V and t1 can be well ac-
counted for (in a certain range of these parameters) by a single cal-
ibration of the non-dimensional factor K1 in Eq. (15). For small
values of friction, K1 is function of l, in part because of the depen-
dence of the stress distribution with respect to l.
The evolution of Tmax � T1 with the chip velocity Vc is analyzed
in Fig. 9. The chip velocity is evaluated in terms of the cutting
speed V according to the relationship (B1) of Appendix B, with val-
ues of the shear angle given by / ¼ arctanðt1=t2Þ: The chip thick-
ness t2 (see Fig. 2) is evaluated numerically.

In Fig. 9a numerical results are compared against analytical re-
sults given by Eq. (15) (solid lines) by taking K1 ¼ 0:336 for l ¼ 0:2
and K1 ¼ 0:519 for l ¼ 0:8. Numerical estimates of FtðrakeÞ and of
the contact length lc are used to calculate �s and the Peclet number
in Eq.(15). It is worth noting that, by using the same value
K1 ¼ 0:519, results of similar quality can be obtained for all friction
coefficients such that l P 0:4 (see Fig. 9c for l ¼ 0:4). This is re-
lated to the fact that, for l P 0:4, the contact regime is mostly con-
trolled by sticking. The correlation between numerical results and
those predicted by Eq. (15) is generally good but is less accurate at
small velocities as shown in the loglog diagram displayed in
Fig. 9b. For l ¼ 0:8, this discrepancy may be attributed to the fact
that the secondary shear zone is getting thicker at small velocities,
see Section 5.1. Thus, the hypothesis used to derive Eq. (15), that
heat is mostly dissipated nearby the tool face, is losing validity. An-
other source of divergence comes from the assumption made in the
analytical approach that heat conduction effects are negligible in
the direction tangential to the tool–chip interface, see Moufki
et al. (1998). This assumption is only suitable when the chip veloc-
ity is sufficiently large.

The important variation of the coefficient K1 when considering
low friction (l = 0.2) and high friction (l = 0.8) can be related, as
mentioned earlier, to the nature of the mechanisms of heat dissipa-
tion nearby the tool–chip interface. For low friction, the heating is
due to friction. The heat source is located at the interface and is
partitioned as 50% allocated to the chip and 50% to the tool, accord-
ing to the value g ¼ 0:5 that was entered in the Finite Element cal-
culations. For l = 0.8, sticking contact is dominant, and the heat
source is now located in the secondary shear zone. Therefore, with
the low value 2000 W m�2 K�1 of the interface thermal conduc-
tance, about 100% of the heating is likely to be attributed to the
chip. This is why the value of K1 for l ¼ 0:8 is larger than for
l ¼ 0:2.

4.3.2. Rate dependence of Tmax � T1

It will be shown that the dependence of Tmax � T1 with respect
to the chip velocity can be described in terms of a power law
Tmax � T1 / ðVcÞa. The exponent a depends on the nature of contact
(pure sliding or sticking dominated contact) and is constant in a
certain range of velocities.

For l ¼ 0:2 the dependence of Tmax � T1 with respect to the chip
velocity is represented by a straight line of slope 0.5 in the log–log
diagram of Fig. 9b. Thus, Tmax � T1 is scaled by

ffiffiffiffiffiffi
Vc
p

. It should be
noted that for l ¼ 0:2, FtðrakeÞ and lc appear from numerical calcu-
lations to be weakly dependent upon velocity. Then, Eqs. (17), (18)
and (15) imply Tmax � T1 to be scaled by

ffiffiffiffiffiffi
Vc
p

. This result is not af-
fected by the value of K1. Indeed, in Fig. 9b the level of the solid
lines is controlled by K1 but the slope is not influenced by this
factor.

For l ¼ 0:8 (high friction) analytical and numerical results are
seen in Fig. 9b to be well correlated for sliding velocities larger
than Vc ¼ 1:25 ms�1 (cutting velocities V P 4 ms�1). The variation
of Tmax � T1 with respect to the chip velocity Vc is represented by a
straight line with slope 0.2 (regime II). A larger slope is found at
lower velocities (regime I). The transition between the two regimes
occurs at the chip velocity Vc ¼ 1:25 ms�1 (cutting speed
V ¼ 4 ms�1). It is interesting to observe in Table 4 of Molinari
et al. (2011) that for increasing cutting velocities the sticking ratio
lp=lc sustains a rapid growth during regime I, while a saturation of
lp=lc is found in regime II. For regime II, the contact appears to be
dominated by sticking. Since the secondary shear zone takes the
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appearance of a thin boundary layer at large cutting speeds, the
hypothesis that heat generation is localized in a close vicinity of
the tool face is satisfied. This explains the good correspondence be-
tween numerical results and Eq. (15) for regime II.

The results shown in Fig. 9c are relative to l ¼ 0:4. This case is
of special interest, as a clear transition from sliding friction to dom-
inant sticking was observed in Fig. 6e. As said before, the scaling
factor in Eq. (15) is taken identical for all sliding friction coeffi-
cients verifying the condition l P 0:4 (K1 ¼ 0:519). Similarly to
Fig. 9b, a regime II characterized by Tmax � T1 / ðVcÞ0:2 can be ob-
served at large velocities in the loglog diagram of Fig. 9d. The tran-
sition to regime II occurs at the cutting speed V ¼ 8 ms�1 (chip
velocity Vc ¼ 3:23 ms�1) and corresponds almost to the saturation
of lp=lc , see Table 4 of Molinari et al. (2011). As for l ¼ 0:8, sticking
contact turns out to be dominant in regime II. For regime I, we
nearly have Tmax � T1 / ðVcÞ0:5, see Fig. 9d; contact is dominated
by sliding. The velocity exponent 0.5 is consistent with the result
found in Fig. 9b for the value l ¼ 0:2 of the sliding friction coeffi-
cient for which pure sliding occurs. The existence of two distinct
contact regimes suggests that two values of K1 may be used in
Eq. (15) according to whether we are below or above the transition
velocity between regimes I and II. So doing, a better correspon-
dence between numerical predictions and Eq. (15) would be ob-
tained for the whole range of cutting velocities (results not shown).

The cutting speed corresponding to the transition to regime II is
a decreasing function of l. For l ¼ 0:4 it was found to be about
V ¼ 8 ms�1 (chip velocity Vc ¼ 3:23 ms�1), for l ¼ 0:6 it has the
value V ¼ 4 ms�1 (Vc ¼ 1:35 ms�1). For larger friction the transi-
tion velocity becomes almost independent of l. Thus, for l ¼ 0:8
transition occurred at V ¼ 4 ms�1 (Vc ¼ 1:25 ms�1) as for l ¼ 0:6.

4.3.3. Effect of feed and tool edge radius on chip temperature at the
rake face

Values of Tmax, T1 and Tmax � T1 are reported in Fig. 10a in terms
of the cutting speed for various feeds (t1 ¼ 0:05 mm, t1 ¼ 0:1 mm,
t1 ¼ 0:25 mm and t1 ¼ 0:5 mm) and for l ¼ 0:6. These numerical
data are related to the tests T4 and T6 of Table 3. For a given cutting
speed, it appears that Tmax, T1 and Tmax � T1 are increasing functions
of t1. However, for large feeds, T1 becomes weakly sensitive to t1 and
Tmax � T1 is weakly sensitive to the cutting speed for V P 8 ms�1.

Eq. (15) shows the importance of the Péclet number, Pe, in the
evolution of Tmax � T1. Considering that the contact length lc is
scaled by the feed t1, it is natural to investigate the relationship be-
tween chip temperature and cutting conditions through the dimen-
sionless cutting speed �V ¼ Vt1=a, with a ¼ k

qCp
being the thermal

diffusivity of the work-material. It is worth noting that �V depends
on the control parameters V and t1 (cutting conditions) while Pe is
function of the dependent variables Vc and lc (resp. chip velocity
and contact length). Fig. 10b shows the variation of Tmax with respect
to �V . For all values of the feed considered, the results appear to be
grouped along a well defined master curve. Similar results are ob-
tained for T1 in Fig. 10b. These results show that, for high values of
the sliding friction coefficient, the cutting process is essentially con-
trolled by heat transfer through the dimensionless number �V .

Fig. 11 illustrates for l ¼ 0:8 the effect of the tool edge radius
(R ¼ 0:015 mm and R ¼ 0:030 mm) on Tmax and T1. The uncut chip
thickness is t1 ¼ 0:1 mm. Data correspond to tests T4 and T5 of Ta-
ble 3. It is seen that the temperature T1 near the tool edge is increas-
ing with R, while the effect of R seems to be negligible on Tmax.

4.4. Hot spot position

The position xmax of the maximum chip-temperature on the rake
face is an interesting feature that can be assessed by experimental
measurements, Sutter et al. (2003), Sutter and Ranc (2007). From
the relationship (12) it was deduced that xmax=lc is solely function
of the shear stress exponent n1. It is seen in Fig. 12 that xmax=lc is a
decreasing function of n1. These results were obtained by seeking
numerically the position xmax of the maximum of the function
x̂! Gðx̂; n1Þ defined by relationship (13). Results can be derived
analytically if n1 is an integer, see Moufki et al. (1998). In particular
it can be verified by direct integration that xmax=lc ¼ 1 for n1 ¼ 0
and xmax=lc ¼ 0:5 for n1 ¼ 1. From Fig. 12, it results that the position
of the temperature maximum is getting closer to the end of the
tool–chip contact (x = lc) when the shear stress profile becomes
more flat (small n1).

Finite Element results showing xmax=lc versus cutting speed V are
displayed in Fig. 13a for l ¼ 0:2 and l ¼ 0:8. Test conditions are
those reported as T4 in Table 3. The value of xmax=lc turns out to be
weakly sensitive to the cutting speed and to be in the range 0.65–
0.8. xmax=lc is larger (about 0.8) for low friction l ¼ 0:2. The later re-
sult can be correlated to the shear stress profile reported in Fig. 4b.
The stress exponent associated to V ¼ 8 ms�1 and l ¼ 0:2 is found
to be n1 ¼ 0:23. The corresponding prediction of the analytical ap-
proach is ðxmax=lcÞanalytic ¼ 0:86, see Fig. 12, a result in close agree-
ment with the numerical prediction (about 0.8) displayed in
Fig. 13a. For l ¼ 0:8, we have n1 ¼ 0:4. The analytical approach pro-
vides ðxmax=lcÞanalytic ¼ 0:75, see Fig. 12. This value is below those ob-
tained for l ¼ 0:2 in agreement with FE results presented in Fig. 13a.

The evolution of xmax=t1 in terms of V is shown in Fig. 13b. For
l ¼ 0:2 it is observed that xmax=t1 is nearly insensitive to the cut-
ting speed in the range of velocities considered here. However,
for l ¼ 0:8 a rapid decreasing of xmax=t1 is seen until the asymp-
totic value of about 1.1 is reached at V > 25 ms�1. This trend to-
wards an asymptotic value is related to the transition to a
contact dominated by sticking, as discussed previously.

The evolution of xmax=lp in terms of the cutting speed is dis-
played in Fig. 13c for l = 0.8. Such representation has no meaning
for low values of l since lp ¼ 0 in that case. Fig. 13c reveals that the
position of the temperature maximum is located at the exit of the
sticking zone for V > 4 ms�1. In this velocity range we note also in
Fig. 13c a saturation of the ratio lp=lc corresponding to the transi-
tion to a contact regime dominated by sticking.

4.5. Effect of thermal properties of the tool–chip interface

The thermal properties of the tool–chip interface are character-
ized by the thermal conductance j and the coefficient g of parti-
tion of the frictional energy (along the sliding zone). The value
g ¼ 0:5 was adopted. Along the sticking zone, the temperature is
insensitive to the value of g, since the frictional energy vanishes
(the sliding velocity is equal to zero).

The value of the thermal conductance used so far was
j ¼ 2000 W m�2 K�1. Few experimental characterizations of j
can be found in the literature for situations relevant to machining
(high pressure, high sliding velocities). Of note are the experiments
recently conducted by Brocail et al. (2010) coupled with a method
for deriving the thermal conductance of the tool–chip interface,
Guillot et al. (2008). In Brocail et al. (2010), a tribometer was devel-
oped which is able to reach high pressure of the order of 1 GPa. The
system was composed of a tool made up of an AISI M2 steel rub-
bing on AISI 1045 or on AISI 304L steels. A value of about
j ¼ 104 W m�2 K�1 was found in these experiments.

In order to quantify the effect of the thermal conductance of the
tool–chip interface, two quite different values have been
considered: j ¼ 2000 W m�2 K�1 (low conductance) and
j ¼ 109 W m�2 K�1 (high conductance). Calculations are conducted
under conditions K of Table 3. It must be noted that these results
are obtained for a mean mesh size of 2 lm (while most of the other
results of the paper are relative to a mean mesh size of 4 lm). This
allowed us to make a mesh sensitivity analysis. Most of the results
appeared to be nearly insensitive to the decreasing of the mesh
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size. The maximum deviation was obtained for xmax=lp (about 10%)
but the trends (for instance the dependence of xmax=lp upon cutting
speed) were found to be very similar. Therefore, it was justified to
work with the mesh size of 4 lm which permitted to save compu-
tational time.

The evolution of Tmax in terms of the cutting speed is reported in
Fig. 14a for j ¼ 2000 W m�2 K�1 and j ¼ 109 W m�2 K�1. The re-
sults reveal a weak dependence of the chip temperature with re-
spect to j. For j ¼ 109 W m�2 K�1 the chip and the tool
temperatures have same values since the thermal resistance of
the interface is negligible. However, for j ¼ 2000 W m�2 K�1 the
temperature is discontinuous across the interface (results not
shown for the tool temperature).

Fig. 14b displays the variation of xmax=lc with the cutting speed.
An increasing of about 10% is found when changing the thermal
conductance from j ¼ 2000 W m�2 K�1 to j ¼ 109 W m�2 K�1.
However, the trends are conserved as the velocity dependence
happens to be rather weak in both cases. Therefore, as far as the
chip temperature is concerned, it is enough to analyze the results
related to the value j ¼ 2000 W m�2 K�1.

4.6. Comparison with experimental data

Chip temperatures have been measured by Sutter et al. (2003)
and Sutter and Ranc (2007) for a medium carbon steel (42CrMo4)
and a low carbon steel C15 by using a CCD camera in the visible
range. The maximum of the chip temperature Tmax is function of
the feed and cutting speed. Measurements were done for the C15
steel at high cutting speeds (from 20 ms�1 to 60 ms�1) by using a
ballistic set-up, Sutter et al. (1998). Two values of the uncut chip
thickness were tested: t1 ¼ 0:25 mm and t1 ¼ 0:5 mm. Maximum
temperatures were observed for the C15 steel in the range from
920 K to 1020 K. For the 42CrMo4 steel, the maximum temperature
was found for t1 ¼ 0:5 mm to be 1100 K at V ¼ 20 ms�1. An impor-
tant difference exists with respect to Tmax ¼ 1730 K obtained in the
present modeling. However, it must be reminded that the quasi-
stationary states considered in our theoretical approach are
reached for times of the order of 1000 ls, while in the ballistic
experiments of Sutter and Ranc (2007), Sutter et al. (2003), the
time duration of the cutting process is very short (of the order of
100 ls) so that the cutting process is likely to be in a transient re-
gime. Another source of discrepancy might be related to the consti-
tutive response of the steels considered in experiments and to
friction characteristics.

It is probably more justified to discuss trends. In the range of
cutting velocities 20 ms�1

6 V 6 60 ms�1 the increasing of the
maximum temperature was measured by Sutter and Ranc (2007)
to be about 50 K when changing the feed from t1 ¼ 0:25 mm to
t1 ¼ 0:5 mm. In the present calculations the increasing of the max-
imum temperature is 55 K at V ¼ 20 ms�1 and 42 K at V ¼ 40 ms�1,
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see Fig. 10a. For the feeds t1 ¼ 0:25 mm and t1 ¼ 0:5 mm, the
increasing of the temperature when the cutting speed was aug-
mented from V ¼ 20 ms�1 to V = 60 ms�1 was measured by Sutter
and Ranc (2007) to be around 70 K. When extrapolating the curves
of Fig. 10a to larger velocities the increasing of temperature can be
estimated at about 75 K for the feed t1 ¼ 0:25 mm and 60 K for
t1 ¼ 0:5 mm. Therefore, at high cutting speeds, both calculations
and experiments indicate a rather weak dependence of the temper-
ature with respect to the cutting speed.

Numerical results concerning the position of the hot spot are
also compatible with experimental observations of Sutter and Ranc
(2007). These authors found, for the C15 steel (low carbon) that
xmax=t1 was weakly sensitive to the cutting speed for V > 20 ms�1.
The experimental value of xmax=t1 was about 0.85 in average. This
value is smaller than 1–1.2 obtained numerically. The gap may be
related to differences between the thermo-mechanical responses
of respectively the C15 steel used in experiments and the medium
carbon steel 42CrMo4 analyzed in the modeling. But we are more
interested by trends (e.g. variation of xmax=t1 with cutting speed)
than by the magnitude of the quantities studied.

Overall, the whole set of experimental trends reported by Sutter
and Ranc (2007) was found to be in good correlation with the pres-
ent numerical results.
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5. Morphology of the secondary shear zone and boundary layer
effects

Sticking of the chip to the tool occurs along the segment II0

(0 6 x 6 lp), see Fig. 15. Along the sticking zone, the chip undergoes
intense plastic shearing within the so called secondary shear zone
characterized by the length lp (x-direction) and the thickness l2

measured in the y-direction (orthogonal to the rake face). The
dependence of these morphological characteristics upon l and cut-
ting conditions is analyzed in the following.
5.1. Thickness of the secondary shear zone

The thickness l2ðxÞ varies with the position x along the rake face.
Using a fine mesh (2 lm), l2 has been characterized at the point S
indicated in Fig. 15 by applying the following methodology. The
distribution of the equivalent strain rate was considered on the line
SS0 aligned with the free surface of the workpiece and orthogonal to
the rake face at S. The maximum of the Mises-equivalent strain rate
_emax

eq was observed to be at S. The thickness of the shear zone at S was
evaluated as l2ðSÞ ¼ SS1 with S1 being the point of SS0 where the
equivalent strain rate is equal to _emax

eq =10. This characterization of
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the local value of the secondary shear zone width is somewhat arbi-
trary but is enough for the purpose of delineating trends. Fig. 16a
and b display the evolution of the thickness l2ðSÞ in terms of respec-
tively the cutting speed and a local measure of the chip velocity. The
local chip velocity was defined as the x-component of the particle
velocity at the point S0 which is at the distance t2=2 from S, see
Fig. 15. Test conditions refer to T4 in Table 3. Three values of the
sliding friction coefficient were considered (l ¼ 0:4; 0:6;0:8). The
width of the secondary shear zone l2ðSÞ happens to decrease rapidly
from about 65 lm to 4 lm when the cutting speed varies from
V ¼ 1 ms�1 to V ¼ 20 ms�1.

An interesting analogy can be drawn between the evolution of
the secondary shear zone at high cutting speeds and the process of
adiabatic shearing occurring in metals subject to rapid deforma-
tions. Adiabatic shear bands (ASB) are narrow lines with thickness
of some micro-meters where intense shear deformation and high
temperatures are localized, Bai and Dodd (1992), Tresca (1878).
They frequently appear in metals as the result of a thermomechan-
ical instability driven by thermal softening, Zener and Hollomon
(1944), Recht (1964), Molinari and Clifton (1983), Wright (2002),
Bonnet-Lebouvier et al. (2002). For fast processes and large defor-
mations, the stabilizing effects of heat conductivity, strain harden-
ing and strain rate hardening can be overcome by the destabilizing
effect of thermal softening. If the characteristic time of the process
is very small, there is no enough time for the heat generated by plas-
tic deformation to be transferred outside the localization zone. This
is the reason why flow instability turns out to be stronger for higher
loading rate. Accordingly, the deformation is more localized at high-
er loading rates. As a matter of fact, ASB in metallic targets impacted
by projectiles are observed to be thinner at higher impact velocities.
Similarly, the width of ASB obtained when machining titanium or
steels at high cutting speeds V is reduced by increasing V, Molinari
et al. (2002). It was theoretically predicted by Wright and Ockendon
(1992) and Dinzart and Molinari (1998) for material with linear
thermal softening (m = 1 in the constitutive law (1)), that the thick-
ness of an ASB is scaled by 1=Vshear . Here, Vshear is the shear velocity
(i.e. the variation across the shear band of the tangential component
of the particle velocity). Some similitude can be seen between the
secondary shear zone observed near the tool tip at high cutting
speeds and the phenomenon of adiabatic shear banding. In both
cases the material sustains an intense plastic shearing within a nar-
row band, the temperature is coupled to plastic strain, thermal dif-
fusion and thermal softening play eminent roles. Also, the particle
velocities within the shear zones have same direction as the shear
velocity (this is not the case for the primary shear zone).

Following this analogy, the thickness l2ðSÞ of the secondary
shear zone at S should be scaled as 1=Vc according to Wright and
Ockendon (1992) and Dinzart and Molinari (1998). In the present
problem, the shear velocity is assimilated to the local chip velocity
Vc at S0, Fig. 15. The loglog diagram of Fig. 16c reveals that the scal-
ing of l2 by 1=Vc is satisfied. This finding is an indication that, at
large cutting velocities, the secondary shear zone has same charac-
teristics than an adiabatic shear band in which shear flow is con-
trolled by the interplay of thermal softening, strain rate
sensitivity and heat conduction effects (Actually, ‘‘adiabatic’’ ap-
pears to be a misleading denomination, as heat conduction effects
have a significant role in structuring the shear flow within the
band; however this denomination is commonly used in the
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literature). For a given chip velocity, there is no clear dependence
of l2 upon the value of the friction coefficient (for 0:4 6 l 6 1),
see Fig. 16b and c. This is in line with the existence of a contact
dominated by sticking. In that case, contact variables are solely
controlled by the shear flow stress �sSZ , with a weak dependence
upon l, see Figs. 6e and 7a.

For high cutting speeds, the secondary shear zone becomes so
thin (few micro-meters), see Fig. 16a, that it behaves as a boundary
layer with high localized heating and velocity gradient.

It must be noted that the scaling of the thickness of the bound-
ary layer as 1=Vc is certainly doubtful when reaching extremely
small dimensions, i.e. at very large sliding velocities. Then, non-
local effects of the material response (e.g. gradient plasticity)
would have a role to play and the thickness of the boundary layer
would be controlled by the interplay between thermal effects and
the nonlocal response of the material. Similar higher order gradient
effects were discussed in the context of plastic shock waves and
the analysis of the shock front, Molinari and Ravichandran (2006).

A comprehensive analysis of boundary layers resulting from the
process of flow localization in thermal softening viscoplastic mate-
rials can be found in Gioia and Ortiz (1996).

5.2. Sticking length

The extension of the secondary shear zone along the tool rake
face is characterized by the sticking length lp. The dependence of
lp with respect to the sliding friction coefficient, the cutting condi-
tions and the contact length are analyzed numerically and by ana-
lytical means. A special attention is accorded to the transition
towards a contact regime dominated by sticking.

The evolution of lp with respect to the cutting speed is shown in
Fig. 17a for various values of the sliding friction coefficient l. Cut-
ting conditions are those related to tests T4 in Table 3. For low val-
ues of friction (l 6 0:2), the chip is sliding along the tool for all
values of the cutting speed considered here. For l ¼ 0:4 the contact
is entirely ruled by sliding (lp ¼ 0) for cutting velocities V below the
transition velocity Vtr ¼ 8 ms�1. For V > Vtr an abrupt change to a
sticking mode is observed which is characterized by a sharp in-
crease of lp. Vtr is a decreasing function of l. For a given value of
l, the transition from a pure sliding regime to a sticking mode is
a consequence of the increasing of the interface temperature with
cutting speed. The resulting drop of the flow stress of the work-
material (thermal softening) favors tool–chip sticking. For large
values of l sticking is easier, therefore the transition velocity Vtr

is smaller. The ratio lp=lc indicates which proportion of the contact
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Fig. 14. Effect of the thermal conductance, j, of the tool–chip interface. Calculations are
j ¼ 2000 W m�2 K�1 and j ¼ 109 W m�2 K�1. Note that the mesh size is about 2 lm wh
Tmax and (b) xmax=lc .
zone is ruled by sticking. According to Fig. 17b, about 60–70% of
the contact is governed by sticking above the transition velocity
Vtr . Since the level of stresses is smaller in the sliding zone, it can
be concluded that the overall contact forces (and therefore overall
friction characteristics) are mostly controlled by sticking. It is
worth observing in Fig. 17a and b that, for large friction
(l P 0:4), lp and lp=lc are tending to a saturation value which is
weakly sensitive to the value of l, as previously observed in
Fig. 6e for Tmax and in Fig. 7a for �sSZ . It can be also noted that stick-
ing is favored by larger values of l. Therefore lp and lp=lc are
increasing with l. This effect is important at low sliding velocities
but is less significant at high cutting speeds. The tendency to a sat-
uration regime will be further discussed in Section 6.

For a given test, let us assume that the normal stress distribu-
tion along the tool–chip interface is described by the relationship:

rðxÞ ¼ r0 1� x
lc

� �n

ð19Þ

According to the Coulomb friction law, the shear stress distribution
along the sliding zone has the form:

sðxÞ ¼ lr0 1� x
lc

� �n

ð20Þ

The limit x ¼ lp between sticking and sliding zones is characterized
by sðlpÞ ¼ sY ðlpÞwhere sYðlpÞ is the shear flow stress at x ¼ lp. At first
approximation we shall consider that sYðlpÞ is given by the mean
shear flow stress along the sticking zone. Then, the sticking length
lp appears to be of the form, see Ozlu et al. (2010):

lp=lc ¼ 1�
�sSZ

lr0

� �1=n

ð21Þ

Fig. 17c shows for l ¼ 0:6 the evolution of lp=lc with respect to
the cutting speed. Testing conditions are again those of T4 in Table 3.
We have compared numerical predictions of lp=lc with those of Eq.
(21) using the values of �sSZ calculated numerically. The stress expo-
nent was taken as n ¼ 0:23 and for each test the value of r0 was
scaled in order to have the best fit with the numerical stress distri-
bution along the sliding zone. For instance, for the tests correspond-
ing to the cutting velocities V = 2, 4, 6, 10, 12, 15, 30ms�1 we had r0 =
950, 1000, 1150, 1100, 1000, 1000,1000 MPa. The trends predicted
by Eq. (21) are in good correlation with numerical data. In particular,
the transition towards a contact dominated by sticking is found to be
at the cutting speed V ¼ 4 ms�1. This transition is mostly controlled
by the thermal softening of the mean flow stress �sSZ .
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It should be emphasized that the sticking length appears in the
present approach as an outcome of the calculation while it is not so
in several numerical approaches of the literature. For instance,
Kountanya et al. (2009) used the Deform 2D software to simulate
the chip formation for a 100Cr6 steel. The Zvorev model was imple-
mented in this software, but the sticking length lp had to be chosen
a priori. As we have shown, the sticking length depends strongly on
the sliding friction coefficient, but is also function of the cutting
conditions and of the work-material properties. Indeed, the results
related to conditions T4 of Table 3 show that lp ¼ 0 for small fric-
tion while for l P 0:6 the ratio lp=t1 varies mostly in the range
1.2–3.54, depending on values of l and of the cutting speed. There-
fore any arbitrary definition of lp seems to be questionable.

Recently, Bahi et al. (2011) have proposed an analytical–numer-
ical hybrid model of sticking and sliding contact for perfectly sharp
tools. The trends of this model are in agreement with the results
predicted here.
6. Discussion of the effects of the cutting speed

The effects of the cutting speed on process variables are recapit-
ulated in this section. The cases of low and high friction are ana-
lyzed separately.
6.1. Low friction (l 6 0:2)

At a given feed, the effect of the cutting speed V can be summa-
rized as follows. For low values of the friction coefficient (l 6 0:2)
the chip is sliding along the tool for the whole range of cutting
speeds considered here (1 ms�1

6 V 6 50 ms�1). For a fixed value
of l, the process parameters are weakly dependent upon V, see
for example Table 4 of Molinari et al. (2011).

The heat dissipated at the tool chip interface is due to frictional
heating. It has been shown that the increasing of temperature
Tmax � T1 between the entry of the tool rake face and the hot spot
could be scaled by a power law with respect to the chip velocity
with exponent 0.5: Tmax � T1 / ðVcÞ0:5, Fig. 9b.

For all values of V the maximum chip temperature Tmax in-
creases with l, Fig. 6e. The position of the hot spot xmax is nearly
insensitive to V, Fig. 13b.
6.2. High friction (0:4 6 l 6 1)

The situation is totally different for large values of the sliding
friction coefficient (0:4 6 l 6 0:8). An abrupt transition towards
a contact dominated by sticking was observed when increasing
the cutting speed, see Fig. 17b. For l ¼ 1 sticking contact is domi-
nant in the whole range of cutting speeds 1 ms�1

6 V 6 50 ms�1.
When sticking is dominant, the tool–chip interface response is

mostly controlled by the average shear flow stress of the work-
material, �sSZ , along the sticking contact. Then, the effect of the slid-
ing friction coefficient l is almost wiped out. This is the reason
why at large cutting velocities the process variables become
weakly dependent on l. This was verified in Fig. 6e for Tmax, in
Fig. 7a for the shear flow stress �sSZ along the sticking zone, in
Fig. 16b and c for the thickness of the secondary shear zone, and
in Fig. 17a for the sticking length. This is also true for other process
variables reported in Table 4 of Molinari et al. (2011).

For l P 0:4 the thickness of the secondary shear zone (induced
by sticking) appeared to be inversely proportional to the local chip
velocity, see Fig. 16c. At large cutting speeds, the secondary shear
zone becomes so thin that it behaves as a boundary layer. Then,
the heat dissipated in the secondary shear zone is localized nearby
the tool face.

The evolution of process variables observed for increasing cut-
ting velocities is controlled by the thermal softening of �sSZ . It was
shown that �sSZ is mainly governed by a characteristic interface
temperature which was taken as the maximum chip temperature
Tmax, see Fig. 7b. By extrapolating the results of Fig. 7b, �sSZ ap-
peared to vanish when Tmax reaches the value T� larger than (but
close to) the melting temperature Tm of the work-material.

At large cutting velocities, the process variables seem to tend to
an asymptotic regime. This was the case for instance for the cutting
and feed forces, see Fig. 18a of Molinari et al. (2011), for Tmax in
Fig. 6e and for �sSZ in Fig. 7a.

The laws governing this asymptotic regime will be character-
ized in the following. For that purpose, we consider the mean fric-
tion coefficient �l characterizing the overall tribological response of
the tool rake face (0 6 x 6 lc), defined as: �l ¼ FtðrakeÞ

FnðrakeÞ.
By FnðrakeÞ and FtðrakeÞ we designate respectively the normal

and the tangential components of the force exerted by the chip
on the part IJ (0 6 x 6 lc) of the tool, see Fig. 2. It was shown by
Molinari et al. (2011) that, for l P 0:4, the dependence of �l with
respect to cutting conditions can be described by a simple phe-
nomenological law of the form:

�l ¼ �lðTmaxÞ ð22Þ

This result means that the overall friction coefficient of the tool rake
face is mostly controlled by the level of the chip temperature at the
interface. Thus, �l appears to be affected by the cutting speed V and
the uncut chip-thickness t1 through the sole variable Tmax (maxi-
mum chip temperature on the rake face).

It was also found that the mean friction coefficient vanishes
when Tmax reaches the critical temperature T�� which is larger than
(but close to) Tm.

�lðT��Þ ¼ 0 ð23Þ

It was further demonstrated by Molinari et al. (2011) that �l is
nearly independent of the value of the sliding friction coefficient
l when Tmax is large enough i.e. at high cutting speeds. As a conse-
quence T�� can be considered as independent of l.

To characterize the asymptotic regime at high cutting velocities,
Eq. (15) is written as:

Tmax � T1 ¼ K1
FnðrakeÞ�lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qCpklc

p ffiffiffiffiffiffi
Vc

p
ð24Þ

Let us define the limiting value of a given variable X at large veloc-
ities as:

X1 ¼ lim
V!1

X ð25Þ

Then, Eq. (24) gives for V !1:
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Fig. 16. Thickness of the secondary shear zone l2, evaluated at the point S of the rake face. Various values of the sliding friction coefficient are considered. The mesh size is
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T1max � T11 ¼ K11
F1n ðrakeÞ�l1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qCpkl1c
p lim

V!1

ffiffiffiffiffiffi
Vc

p
ð26Þ

Since all variables in Eq. (26) have finite limit, except for
limV!1

ffiffiffiffiffiffi
Vc
p

; we must have �l1 ¼ 0. Thus for large cutting speeds,
the mean friction coefficient of the rake face is tending to zero. To
have �l1 ¼ 0, the shear stress applied on the rake face has to vanish.
This implies that �s1SZ ¼ 0 and l1p ¼ l1c (sticking occurs along the
whole contact, otherwise we would have a non-zero shear stress
along the sliding contact, in contradiction with �l1 ¼ 0). �sSZ van-
ishes for Tmax ¼ T� according to the constitutive law defined above
for �sSZ . On the other hand, �l1 ¼ 0 implies that Tmax ¼ T��; according
to Eq. (23). Thus, necessarily we have T� ¼ T��, i.e. �sSZ and �l have the
same critical temperature T� (independent of l as for T��).

The asymptotic response of the system can be characterized by
considering the first order Taylor expansion of �lðTmaxÞ at Tmax ¼ T�:

�lðTmaxÞ � bðT� � TmaxÞ ðfor Tmax close to T�Þ ð27Þ

We have used the fact that �lðT�Þ ¼ 0 and we have introduced the
following definition:

b ¼ ��l0ðT�Þ > 0 ð28Þ

where �l0 designates the derivative of the function �l with respect to
the argument.

By using the relationship (B1) of Appendix B between chip and
cutting velocities, Eq. (24) can be rewritten as:
Tmax � T1 ¼ hðVÞ�lðTmaxÞ
ffiffiffiffi
V
p

ð29Þ

where h ¼ K1
FnðrakeÞffiffiffiffiffiffiffiffiffiffi

qCpklc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin /

cosð/�aÞ

q
.

Introducing (27) into (29) we obtain a linear equation for Tmax

which can be resolved as:

T� � Tmax ¼
T� � T1

1þ bhðVÞ
ffiffiffiffi
V
p ð30Þ

At large values of V, we have:

T� � Tmax �
T� � T1

bh1
1ffiffiffiffi
V
p ð31Þ

where h1 is defined according to (25). Substitution of (31) into (27)
gives:

�l � T� � T1

h1
1ffiffiffiffi
V
p ð32Þ

To analyze the asymptotic response, it should be noted that T1

is weakly sensitive to V for l P 0:4, see Fig. 6f. Thus (especially at
large cutting speeds) T1 can be considered as constant in the rela-
tionships (30) and (31). Then, it appears from the law (31) that Tmax

is tending asymptotically to T� as 1ffiffiffi
V
p . According to (32) �l is

decreasing to zero as 1ffiffiffi
V
p .

The loglog diagram of Fig. 18a shows for l ¼ 0:8 the evolution
of �l versus the cutting speed in the range 1 6 V 6 50 ms�1. For
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4 6 V 6 50 ms�1 the curve has a slope close to �0.4. We have con-
tinued this curve by drawing a straight (dashed) line with slope
�0.5 according to the law (32) valid at very large velocities. In
Fig. 18a no incompatibility in terms of the evolution of the slope
is found between numerical results and predictions of Eq. (32) at
higher velocities. To report the evolution of T� � Tmax is more diffi-
cult since no precise estimate of T� is available. However, as T� is
close to the melting temperature Tm of the work material, the var-
iation of Tm � Tmax in terms of V has been displayed in a loglog dia-
gram, Fig. 18b. A straight line of slope �0.5 has been also drawn.
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The numerical results show a good correlation with respect to
the slope �0.5, in conformity with the law (31).

Naturally, these asymptotic results at large velocities may be
sometimes hard to exhibit with experimental tests. Indeed, the
hypothesis of continuous chip formation can be in default when
increasing the cutting speed due to adiabatic shear banding and
other types of damage (cracks, recrystallisation, micro-voiding).
However, there are many situations where the asymptotic re-
sponse reported here is experimentally verified. For the medium
carbon steel 42CrMo4 considered in this paper, we refer to the
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slope predicted by Eq. (31).
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Fig. 20. Path P1P2 along which the temperature and the equivalent plastic strain reported in Table 5 are evaluated. The illustration refers to the test (a) of Table 5.

Table 5
Estimates of the shear deformation c1 and of the temperature T̂1 at the exit of the
primary shear zone. Tests conditions T4 of Table 3 are considered. Results are shown
for test (a) (V ¼ 8 ms�1; l ¼ 0:2) and test (b) (V ¼ 8 ms�1 ; l ¼ 0:8).

Test Finite Element results Analytical results

/ ð�Þ cFE
1 ¼

ffiffiffi
3
p

eeq T̂FE
1 ðKÞ cAN

1 Eq. (C2) T̂1ðKÞ Eq. (C1) with cFE
1

(a) 26.1 2.16 613 2.53 595
(b) 21.3 2.42 645 2.95 634
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experimental data reported in Fig. 2 of Molinari et al. (2011) which
show, for the cutting and thrust forces and the apparent friction
coefficient, asymptotic evolutions at large cutting speeds similar
to those predicted by the present numerical model.
7. Conclusions

Understanding the nature of contact at the tool–chip interface is
essential for the modeling of cutting processes. The aim of the
present work was to develop the fundamental knowledge on con-
tact regimes under the extreme conditions encountered in machin-
ing, having in mind that this understanding can be useful to other
situations where severe contact conditions are involved as in im-
pact and penetration mechanics.

Tool–chip contact in orthogonal cutting was investigated with
Finite Element simulations and analytical formulations. A Coulomb
friction law with constant sliding friction coefficient (i.e. indepen-
dent from cutting conditions) was considered.

It was shown that the chip temperature controls the nature of
the tool–chip contact (sliding versus sticking) by tuning the level
of the flow stress of the work-material (thermal softening). An
increasing of temperature leads to a decay of the flow stress that
favors sticking contact. With this in mind, much effort was devoted
to characterize the chip temperature at the rake face and to deter-
mine the influence of cutting conditions on temperature and nat-
ure of contact. We focused on the roles of cutting speed and
feed. The rake angle was fixed to zero. For a large range of cutting
speeds, feed rates and values of the sliding friction coefficient l,
the following points were established:

� Sticking contact is promoted by high friction, and, because of
chip heating, by high cutting speed and large feed.
� For large friction (l P 0:4) a brutal transition to a contact dom-

inated by sticking is observed when increasing the cutting
speed.
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� The increasing of the chip temperature along the rake face was
identified by analytical means in terms of Péclet number and
mean shear stress along the interface.
� The increase of temperature along the interface was character-

ized by a power-law dependence with respect to the chip veloc-
ity with an exponent depending of the nature of contact. For
high values of the sliding friction coefficient, contact is domi-
nated by sticking and the exponent has low value (0.2). Then,
the chip temperature shows strong velocity dependence at
low cutting speeds and weak dependence at high cutting
speeds. For small values of the sliding friction coefficient, the
contact is dominated by sliding and the exponent in the power
law has larger value (0.5).
� When contact is dominated by sticking (this excludes very

small sliding friction coefficients), the chip interface tempera-
ture can be related to the cutting speed V and the feed t1

through the dimensionless number Vt1/a (where a is the ther-
mal diffusivity of the work-material). This number appears as
an essential parameter controlling the cutting process.
� The morphology of the secondary shear zone (sticking contact)

was characterized by sticking length and thickness. The thick-
ness was found to be inversely proportional to the local chip
velocity in the range of cutting velocities considered
(1 ms�1

6 V 6 50 ms�1). At high cutting speeds, the secondary
shear zone takes the appearance of a boundary layer with a
thickness of few micro-meters.
� When contact is dominated by sticking, the system is governed

by an asymptotic regime at high cutting speeds. This asymptotic
response is related to the existence of a boundary layer regime
(along the sticking zone) and to the increase of the chip temper-
ature at the rake-face towards the melting temperature.
Asymptotic laws governing the evolution of the chip tempera-
ture and of the mean friction coefficient with respect to the cut-
ting speed were theoretically derived.

Despite the simplicity of the contact model based on the Cou-
lomb friction law, reasonable agreements were found with exper-
imental trends. All along the paper, the interplay between analytic
and numerical approaches allowed for checking the consistency of
numerical simulations, making the interpretation of data more
meaningful and offering a route for subsequent improvements of
analytical models of machining.
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Appendix A. Plastic flow analysis along the sticking zone

It is demonstrated that the plastic flow along the sticking zone
is identical to simple shearing in the direction x (Fig. 2) if and only
if the following condition is satisfied for 0 6 x 6 lp:

s ¼ reqffiffiffi
3
p ðA1Þ

s ¼ sxy ¼ syx is the shear stress at the tool–chip interface.
Firstly, let us assume that we have simple shearing in the direc-

tion x. Then, all the components of the plastic strain rate tensor are
equal to zero except for dp

xy ¼ dp
yx. From the J2-flow law, we have

dp ¼ ks. Therefore sxy ¼ syx are the sole non-zero components of
the deviatoric stress s. Consequently, the Mises- equivalent stress
req is related to the shear stress s by (A1).
Conversely, let us assume that the plastic flow is not identical to
simple shearing along the tool rake-face. Thus, there exists a
component dp

ij different from zero and different from dp
xy. Due to

the J2-flow law it results immediately that req >
ffiffiffi
3
p

s and (A1) is
violated.

Appendix B. Consistency of the velocity field with the
conservation of volume by plastic deformation.

Consider the segment KK 0 in Fig. 2 drawn perpendicularly to the
tool rake face. The point K is defined such that the tangent at K to
the chip surface is parallel to the tool rake-face. The chip thickness

is defined as t2 ¼ KK 0. Along KK 0 the particle velocity V̂ is non-uni-

form. The component V̂ x parallel to the rake face is almost an affine
function of the distance y to the tool and is increasing with y. Thus,
the material flux across the line KK 0 is given by q2 ¼ t2Vc , where

Vc ¼ V̂xðKÞþV̂xðK 0 Þ
2 characterizes the chip velocity. On the other hand,

the flux of work material flowing toward the tool is q1 ¼ t1V , where
V is the cutting speed and t1 is the uncut chip thickness. Since plas-
tic flow is volume preserving we should have (by neglecting elastic
deformation) q1 ¼ q2. The results of Fig. 19 reported for a width of
cut of w ¼ 1 mm and for l ¼ 0:2 and l ¼ 0:8 show that this rela-
tionship is well satisfied.

As a consequence, a simple way of evaluating the average chip
velocity on KK’ will be to employ the usual relationship derived
from volume conservation:

Vtheor
c ¼ V

sin /
cosð/� aÞ ðB1Þ
Appendix C. Calculation of the temperature at the exit of the
primary shear zone

Tests conditions reported in T4 of Table 3 are considered. Table 5
shows for the test (a) (V ¼ 8 ms�1; l ¼ 0:2) and test (b)
(V ¼ 8 ms�1, l ¼ 0:8) Finite Element method estimates of the tem-
perature T̂1 and of the plastic shear deformation c1 undergone by a
material element after crossing the primary shear zone. T̂1 is the
(nodal) temperature at the exit of the primary shear zone obtained
by following a path as indicated in Fig. 20. c1 is estimated in terms
of the equivalent Mises plastic strain eeq as: cFE

1 ¼
ffiffiffi
3
p

eeq.
The temperature T̂1 at the exit of the primary shear zone (PZ)

can be evaluated by analytical means in terms of the mean shear
flow stress �sPZ and of the plastic shear deformation c1: Assuming
that heat transfer effects are negligible (adiabatic process), the
temperature rise between the entry and the exit of the primary
shear zone is given by the energy equation:

ðDTÞPZ ¼
b�sPZc1

qCp
ðC1Þ

Note that �sPZ is weakly sensitive to cutting conditions and to the
value of l, see results reported in Molinari et al. (2011), and is
about �sPZ ¼ 640 MPa. T̂1 ¼ 273 Kþ ðDTÞPZ is evaluated in the last
column of Table 5 by using (C1) with b ¼ 0:9 and the above values
of �sPZ and cFE

1 . A good agreement is found in Table 5 with respect to
T̂FE

1 directly obtained from FE calculations. This is an indication that
the following hypotheses upon which Eq. (C1) is based are well sat-
isfied: (i) the plastic deformation mode in the PZ is simple shearing
and (ii) the deformation process is adiabatic.

In Table 5, the shear deformation across the primary shear zone
has been also calculated by using the usual expression (with
a ¼ 0):

cAN
1 ¼

cosðaÞ
sinð/Þ cosð/� aÞ ðC2Þ
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The shear angle / ¼ arctanðt1=t2Þ is given in Table 4 of Molinari
et al. (2011). Results obtained with Eq. (C2) correlate reasonably
with cFE

1 with a slight overestimation. The temperature T̂1 obtained
with (C1) and (C2) would be also slightly overestimated
(T̂1 ¼ 651 K for test (a) and T̂1 ¼ 709 K for test (b)).

Appendix D. Characterization of stress softening along the
sticking zone

Test (b) of Appendix C is considered here (l ¼ 0:8, V ¼ 8 m=s,
t1 ¼ 0:1 mm, R ¼ 0:015 mm, j ¼ 2000 W m�2 K�1). The super-
scripts 1 and 2 refer respectively to the entry (x = 0) and the exit
(x = lp) of the sticking zone. At these points of the rake face, values
of the Mises equivalent stress, temperatures, cumulated plastic

strain are given by:
rð1Þeqffiffi

3
p ¼ 509 MPa, Tð1Þ1 ¼ 1010 K, eð1Þeq ¼ 9:07 and

rð2Þeqffiffi
3
p ¼ 319 MPa, T ð2Þ1 ¼ 1402 K, eð2Þeq ¼ 21:8. The stress drop can be

characterized by the ratio:.
rð2Þeq

rð1Þeq
¼ f ðeð2Þeq Þgð _e

ð2Þ
eq ÞhðT

ð2Þ
1 Þ

f ðeð1Þeq Þgð _e
ð1Þ
eq ÞhðT

ð1Þ
1 Þ
¼ 0:63.

The respective contributions of thermal softening and of strain
hardening can be evaluated since temperature and equivalent plas-

tic strains are known: hðTð2Þ1 Þ
hðTð1Þ1 Þ

¼ 0:541 and
f ðeð2Þeq Þ
f ðeð1Þeq Þ

¼ 1:070. The functions

h(�) and f(�) are obtained from the Johnson–Cook law. From the va-
lue of the stress ratio, the contribution of the rate dependence can

be estimated as
gð _eð2Þeq Þ
gð _eð1Þeq Þ

¼ 1:08. Thus, it can be concluded that the var-

iation of the shear stress along the sticking zone is mostly due to
thermal softening of the work material (factor 0.541) with second
order stiffening effects of strain hardening (factor 1.07) and rate
sensitivity (factor 1.08).
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