
ELSEVIER Journal of Computational and Applied Mathematics 70 (1996) 279-295 

JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

The relation of the d-orthogonal polynomials to the 
Appell polynomials 

Khalfa Douak 
Universitb Pierre et Marie Curie, Laboratoire d'Analyse Numbrique, Tour 55-65, 4 place Jussieu, 

75252 Paris Cedex 05, France 

Received 10 November 1994; revised 28 June 1995 

Abstract 

We are dealing with the concept of d-dimensional orthogonal (abbreviated d-orthogonal) polynomials, that is to say 
polynomials verifying one standard recurrence relation of order d + 1. Among the d-orthogonal polynomials one singles 
out the natural generalizations of certain classical orthogonal polynomials. In particular, we are concerned, in the present 
paper, with the solution of the following problem (P): Find all polynomial sequences which are at the same time Appell 
polynomials and d-orthogonal. The resulting polynomials are a natural extension of the Hermite polynomials. 

A sequence of these polynomials is obtained. All the elements of its (d + 1)-order recurrence are explicitly determined. 
A generating function, a (d + 1)-order differential equation satisfied by each polynomial and a characterization of this 
sequence through a vectorial functional equation are also given. Among such polynomials one singles out the 
d-symmetrical ones (Definition 1.7) which are the d-orthogonal polynomials analogous to the Hermite classical ones. 
When d = 1 (ordinary orthogonality), we meet again the classical orthogonal polynomials of Hermite. 

Keywords: Appell polynomials; Hermite polynomials; Orthogonal polynomials; Generating functions; Differential 
equations; Recurrence relations 

AMS classification: 42C99; 42C05; 33C45 

O. Introduction 

The orthogonal polynomials in general and the classical orthogonal polynomials in particular 
have been the object of extensive works. They are connected with numerous problems of applied 
mathematics, theoretical physics, chemistry, approximation theory and several other mathematical 
branches. In particular, their applications are being widely used in theories as Pad~ approximants, 
continued fractions, spectral study of SchriSdinger discrete operators, polynomial solutions of 
second-order differential equations and others. 

The notions of d-dimensional orthogonality for polynomials [14], vectorial orthogonality as 
defined and studied in [19] or simultaneous orthogonality in [7] are obviously generalizations of 
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the notion of ordinary orthogonality for polynomials. Such polynomials are characterized by the 
fact that they satisfy an order d + 1 recurrence relationship, that is a relation between d + 2 
consecutive polynomials [19]. All these new notions of d-orthogonality for polynomials and, 
equivalently, 1/d-orthogonality [5] appear as particular cases of the general notion of bior- 
thogonality studied in [6]. Recently they have been the subject of numerous investigations and 
applications. In particular, they are connected with the study of vector Pad6 approximants 
[19, 20], simultaneous Pad6 approximants [-7] and other problems such as vectorial continued 
fractions, polynomials solutions of the higher-order differential equations, spectral study of 
multidiagonal nonsymmetric operators [4]. 

Otherwise, according to a point of view based only upon the d-orthogonality conditions, 
especially the (d + 1)-order recurrence relation, some studies which look for generalizations of the 
orthogonal polynomials properties in general and the classical orthogonal polynomial ones in 
particular, are made in [-5, 8-11, 15]. In this paper we present the results in this direction. 

It is well known that the Hermite polynomials (up to a linear change of variable) form the only 
sequence of polynomials that are simultaneously orthogonal and Appell polynomials. This charac- 
terization of the Hermite polynomials was first given by Angelesco [2], and later by other authors 
(see, e.g., [18] and for additional references [-1]). 

Let {H,}, > o be the sequence of Hermite polynomials and {H,}, ~ o the corresponding monic 
polynomials, i.e.,/~,(x) = 2-"H,(x), n >~ 0. 

The previous property is translated by the fact that the sequence {/4,}, ~ o verifies: 
(a) the three-term recurrence relation 

H , + 2 ( x ) = x H , + , ( x ) - ½ ( n + l ) / ~ , ( x ) ,  n>~0; 

/4o(X) = 1, /41(x) = x 

and 
(b) the Appell character 

/~'+l(x) = (n + 1)/~,(x), n >/0. 

Our main objective in this paper is the investigation of sequences {P,}. ~ o of monic polynomials 
which are simultaneously Appell polynomials and d-orthogonal. 

Section 1 is devoted to some preliminaries and notations necessary for the sequel. In particular, 
the exposition of the definition and characterizations of the d-orthogonal polynomials. In Section 
2, we state and solve the problem (P). The proof is based only on the (d + 1)-order recurrence where 
an explicit expression for each of its elements is obtained. In Section 3, we give some characteriza- 
tions of these polynomials. First, by using the (d + 1)-order recurrence and the Appell property, we 
obtain a generating function and a (d + 1)-order differential equation of the polynomials P.(x), 
n/> 0. Next, by introducing the d-dimensional functional with respect to which the sequence 
{P,}, ~ o is d-orthogonal, we give a characterization of this novel sequence through a vectorial 
functional equation. Lastly, we express the derivative of the product of two consecutive poly- 
nomials in the form of a differential relation which generalizes McCarthy's characterization of 
a Hermite classical polynomials. 
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I. Preliminaries and notations 

Let ~ be the vector space of polynomials with coefficients in C and let ~ '  be its dual. We denote 
by (u, f ) the effect of u ~ 2 '  o n f ~  2 .  In particular, we denote by (u), =(u ,  x"),  n >/O, the moments  
of the functional u. Since a linear functional is uniquely determined by its action on a basis, u is 
uniquely determined by the sequence of constants (u),. 

By a polynomial  set (PS), we mean a sequence of monic polynomials {P,},>~ 0 in which 
deg P,(x) = n for all n, say, P,(x) = x" + . . . .  n >~ O. 

Let {P,}, >~ o be a polynomial set; there exists a sequence of linear functionals {u,}, >~ o, such that 

(Urn, P , )  = 6,.,,, m, n >70. (1.1) 

The sequence {u,}, ~> o is called the dual sequence of {P,}, >~ o; it is unique [14]. 

Lemma 1.1 (Maroni [14]). For each u ~ ~ '  and p >1 1 integer, the followin9 two propositions are 
equivalent: 

(a) <u, Pp-I> ¢ O; (u, Pn> = O, n/> p; 
(b) 3 2 ~ e C ,  O ~ < v ~ < p - l ,  2p_l #O,  suchthat  

p - 1  

u = • 2~Uv. (1.2) 
v = O  

We now consider a polynomial set {P,},~> o with its derivative sequence {Q.}. ~ o defined by 
Q,(x) = [1/(n + 1)] P,] +1 (x), n >/0. We denote by {v,}, ~ o the dual sequence of {Q.}, ~> o. 

Proposition 1.2 (Maroni [14]). W e  have 

D v , = - ( n + l ) u , + l ,  n>~0, (1.3) 

where Du, the derivative of  a linear functional u, is defined by (Du, f ) := -- (u, f '  ),  V u ~ 2 '  and 
V f ~  2 .  

1.1. The regular orthogonality 

Let us recall the definition of regular orthogonality. The linear functional u will be called regular 
if we can associate with it a sequence of polynomials {P,}, ~ o such that 

( u , P , P , , ) = r , 6 , , m ,  n,m>>,O, r,v~O, n>~O. 

Then for all n the degree of P,(x)  is exactly n and we can always suppose each P,(x) to be monic. 
Therefore, the PS {P,}. ~> o is unique. In this case, it is called the orthogonal polynomial set (OPS) 
relative to u. Necessarily, u = 2Uo, 2 ¢ 0. 

It is an old result that such OPSs are characterized by the fact that they verify a three-term 
recurrence relation, namely: 

Pn+2(x)  = (x  -- f l ,+ l )P .+l (x )  - 7.+lP,(x),  n >~ 0 (monic form); (1.4) 

Po(x) = 1, Pl (x)  = x -- flo; (1.5) 
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with 

7.+a # 0 ,  n~>0. 

Definition 1.3. The OPS {P.}. ~ o will be called classical if {Q,}. ~> o is also an OPS  [13]. 

This gives (1.4), (1.5) and 

Qn+2(x) = (x  - o~n+a)Qn+x(X) - ~ .+IQn(x ) ,  n >i 0; (l.6) 

Qo(x) = 1, Qx(x) = x - ~o; (1.7) 

with 

6 n + 1 # 0 ,  n >>.O. 

Theorem 1.4 (Geronimus [12]). The sequence {P,}, ~ o, orthog °nal with respect to u, is classical if  
and only i f  there exist two polynomials dp and ~b with deg ~b = t ~< 2, deg ~k = 1, such that 

@u + D(dpu) = 0 (d? monic), 

writing ~(x) = a t x  + ao, we must have alCN* if t = 2. 

1.2. The d-orthogonality 

Let us consider d linear functionals F 1, . . . ,  F n (d >f 1). 

Definition 1.5. A polynomial  set {P,}, ~> o is called a d-dimensional  or thogonal  polynomial  set or 
simply a d-or thogonal  polynomial  set (d-OPS) with respect to F = (F 1, . . . ,  Fd) x if it fulfils [19]: 

( F ~ , P m p , )  =O, n>~md +~ ,  m>~O, (1.8) 

(F~,P,,P,, ,d+~_I) 4=0, m>~O, (1.9) 

for each integer e with 1 ~< c~ ~< d. 

Remark  1.6. The inequalities (1.9) are the regular condi t ions equivalent to the ones given in [14, p. 
110] or [20, p. 142]. They are a natural  generalization of those given in the regular or thogonal i ty  
case. In this case, the d-dimensional  functional F is called regular. It is not  unique. 

Indeed, from L e m m a  1.1, we have 
~ - 1  v + l  

'/Sv+ 1 F ~ ~ 2~u~, 2 ~ - l # 0 ,  l<~e<<.d ~ u~= ~ v , F ,  # 0 ,  O<<.v<<.d 1. 
v = O  

Therefore, from now on, we shall work uniquely with the dual  functionals Uo, . . . ,  Ud- a, that  is to 
say ~ / =  (Uo, . . . ,  Ud- 1 )T. it is the canonical  regular d-dimensional  functional with respect to which 

the PS {P.}, >~ 0 is d-orthogonal .  
Note  that  if d = 1, we meet  again the ordinary orthogonali ty,  say, {P,}, >~ o is an OPS.  
The  remarkable  characterizat ion of the d-OPSs is the one given by Van Iseghem in her 

thesis [19]: A polynomia l  set {P,}, >~ o is d-OPS if and only if it satisfies the (d + 1)-order 
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recurrence  relation: 
d - - 1  

Pm+a+l(X) = ( x - -  flrn+a)Pra+a(x)-- ff'~ . d - l - v  Ym+d-v Pro+a- 1 - v ( x ) ,  
v = 0  

with the initial condi t ions  

Po (x) = 1, P ,  (x) = x -- flo 

and  

and  if d />  2: 

it'. (x) = (x - f t ,_ l )  P , - ,  (x) -- 

the regular i ty  condi t ions  
o ~Ym+ 1 =~ O, m~>0 .  

n - 2  

Z ?n.Y-lY-;P.-z-~(x), 2 <~ n <~ d, 
v = O  

m t> 0, (1.10) 

(1.11) 

(1.12) 

N o w ,  when  the der ivat ive  PS {Q,}. ~> o is also d - O P S  with respect  to ~¢r = (Vo, . . . ,  vd-1)T, the 
po lynomia l  set {P,}. ~> o is called a "classical" d - O P S  I-8, 9]. 

Then,  bo th  {it'.}. ~ o and  {Q.}. ~> o satisfy an order  d + 1 recurrence relation. Consequent ly ,  the 
recurrence  (1.10) with (1.11) as well as the fol lowing recurrence relat ion verified by  {Q,}. ~> o hold  
s imul taneously:  

d - 1  

= ( x  - - Y ~,m+a-~Qm+d-,-v(x), m >i O, (1.13) 
v = O  

with the initial condi t ions  

Qo(x) = 1, Q l ( X )  = x - ~o  

and  if d >~ 2: 
n - - 2  

Q.(x) = (x - ~ , - O Q , - ~ ( x )  - E 6d.--l--;O,-2-~(x), 2 <~ n <~ d, (1.14) 
v = 0  

6°+x # 0, m~>0.  

1.3. d-symmetric polynomials 

Let  k be an integer  with 0 ~< k ~< d. By ~k, k = 0, 1, . . . ,  d, we deno te  the d + 1 roots  of  unity, 
namely:  ~k = exp(2ikn/ (d  + 1)), ~k d+l = 1. 

Definit ion 1.7. The  sequence  {P,}. ~> o is called d-symmetr ic  if it fulfils: 

P.(~kX) = CgP.(x), n >~ O, (1.15) 

for each k = O, 1 . . . .  , d. 

W h e n  d = 1, then ~o = 1 and  ~1 = - 1, this means  that  the sequence  {P.}, ~ o is symmetr ic ,  that  
is P . ( -  x) = ( -  1)" P,(x), n >~ O. 

Definit ion 1.8. The  d-d imens ional  funct ional  ~ = (Uo . . . .  , un-1)T is called d-symmetr ic  if it fulfils: 

(uv)(d+l),+, = 0, p = 0, 1 . . . .  ,d, /~ # v, n ~> 0, (1.16) 

for each 0 ~< v ~< d -  1. 
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When d = 1, then q / =  Uo (q/is  reducible to a linear functional), we find again the symmetrical  
functional: (Uo)2, + 1 = 0, n ~> 0 (all the momen t s  of odd  order vanish). 

It is of interest to interpret  the d-symmetrical  proper ty  (1.15) in terms of the m o m e n t  condi t ions 
(1.16). Tha t  is given in 

Theorem 1.9 (Douak  and Maron i  [9]). Let  {P,}, ~ o be a d-OPS with respect to q / =  (Uo, . . . ,  un_ 1) T. 
Then the followin9 propositions are equivalent: 

(a) q / i s  d-symmetric. 
(b) {1°.},/> o is d-symmetric. 
(c) {P,}./> o satisfies the recurrence relation: 

e.(x) = x", 

P.+a+x(x) xP.+a(x) o = - -  7 . +  1 P . ( x ) ,  

O ~ n ~ d ,  

n ~ O  
(1.17) 

that is to say ft. = O, n >i 0; ~'~,+ 1 = 0, n >~ 0, for  each v = 1, ... ,d - 1. 

Corollary 1.10. Moreover, if  {P,},/> o is a "classical" d-OPS, then {Q.},/> o is also d-symmetric. 

2. Statement of the problem 

N o w  we pose the problem (P): Find all d-OPSs {P.}. ~> o which are also Appell PS. 
Thus,  the polynomial  sets {P.}. ~ o necessarily must  enjoy the two properties: 
(a) the (d + 1)-order recurrence relation (1.10) with (1.11), and 
(b) the Appell character:  

Q.(x) = P.(x), n >>, O. (2.1) 

The following remark  is in order  here: The d-OPS {P,}. ~ o is necessarily a "classical" one. 
Indeed, from the equality (2.1) its derivative PS {Q.}. ~> o again forms a d-OPS. Then, the two 

(d + 1)-order recurrence relations (1.10) with (1.11) and (1.13) with (1.14) hold simultaneously. 
Before solving the problem (P), it is very impor tan t  to recall the following well-known character- 

izations of Appell polynomials  [3]: 
(i) A polynomial  set {P,}. >, o is an Appell PS if and only if the polynomials  P,(x), n >i O, are 

defined by the generating function 

t n 

A(t)eXt= • P . (x)~ . ,  A(t) = ~ a,t", ao = 1, (2.2) 
n > - O  n>>.O 

which we denote  by G(x, t), that  is G(x, t) = A(t)e xt. 
(ii) {P,}. ~> o is an Appell PS if and only if there exists a sequence of numbers  {a.}. ~> o, such that  

fo( ) P. (x )=  a._kX k, n = 0 , 1 ,  . w i t h a o = l  
k k ""  ' " 

(2.3) 
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Examples of Appell polynomials are: The sequence of powers {x"}, ~ o, the Hermite polynomials 
{f/,}, ~> o and the Bernoulli polynomials {B.}. ~ 0. Their corresponding generating functions are 
given, respectively, by e x', e x'-'2/4 and [t/(e' - 1)] e ~'t. 

Now, we are ready to sketch the solution. 
Let {P,}, ~ o be d-orthogonal  and satisfies the equality (2.1). First, by differentiating (1.10) and 

shifting m --. m + 1, we get 

Pro+a+ 1 (X) = (m + d + 2) Qm+a+ 1 (x) - (m + d + 1)(x - tim+n+ 1) Om+a(x) 

d-1  
+ ~ ( m + d _ . ~ . d - l - ~  V~ym+d+l-~Qm+d-l-~(X), m>~O. (2.4) 

v = 0  

Lastly, writing Pm+a+l(x) + (m + d + 1)Qm+a+l(x) and making use of (1.13), we obtain 

Pm+a+ l(x) = Qm+a+ l(x) + (m + d + 1)(tim+a+1 -- O~m+a) Qm+a(X) 

d-1  
d - l - v  + ~ [(m+d-v)ym+a+l-v'a-l-v _ ( m + d + l ) ~ m + d _ v ] Q m + a _ l _ ~ ( x )  ' 

v = O  

Likewise, differentiating the initial conditions (1.11) and making use of (1.14), we get 

Po(X) = Qo(x), 

Pl(x)  = Ql(x) + (ti, - O~o)Qo(x) 

and i fd~>2,  2~<n~<d:  
n - 2  

P.(x) Q.(x) + n(ti. o~ . -OQ.- , (x )  + Z [(n 1 e - , -  d-~ . . . . .  ~)~._ ,  " n ~ . _ l - ~ ] 9 _ . _ a _ . ( x ) .  
/ t = 0  

Otherwise, since Q.(x) = P.(x), n >1 O, we have necessarily 

am=tim, m>~0; 
6~+1 = 7~,+1, m >/0, for each v with 0 ~< v ~< d -  1, 

so that, the two relations (2.5) and (2.6) take, respectively, the forms: 

Pm+a+ l(X) = Pm+a+ l(X) + (m + d + 1)(tim+a+1 -- tim+n) Pm+a(X) 

d - 1  
d - l - v  + ~ [(m+d-v~ym+a+l_v"'a-~-v - ( m + d + l ) ? m + a - v ] P m + a - l - ~ ( x ) ,  

v = 0  

and for any integer n with 0 ~< n ~< d, we have 

n - 2  

P.(x) = P.(x) + n(ti. - t i . - 1 ) P . - l ( x )  + 

with P_, (x)  = 0 and 32-" = 0 for n > 1. 

m>~0. 

(2.5) 

(2.6) 

m~>0 

(2.7) 

[(n -- 1 _ /~). a- 1-,y._u -- nTa-l--~]P,_2_u(x) ,  (2.8) 
/ t = 0  
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Since {P,}, ~ o is a basis of  ~ ,  then f rom (2.7) and  (2.8) it is easy to ob ta in  

//.+1 = /~ , ,  n > O ,  

(m + d v)- n - l - v  - (m + d + n -  a - l - v  
- -  Ym+d+l-~ -- **)',.+n-v, m/>  O, v = O, 1, ... ,d  - 1, 

(n 1 d - l - u  d - a -  - - - # ) 7 . - u  = n T . - a - ~ , ,  O < ~ l ~ n - - 2 ,  2<<.n<.d, 

it fol lows that  

/~. =/~o,  n>_-0; 

= , m~>O;  v = O ,  1 , . . .  d - l "  7.,+ x 7~ d - v ' ' 

7o #0. 

It is a ma t t e r  of  simple calculus. W e  can a lways  choose  flo = 0 and  7 o = 1/(d + 1) for d fixed, then 

d-1 (: ~) 
P.,+a+I(X) = xPm+a(x) - v~,oTa1-1-v + = + Pro+a- x -v(x) 

- ( d + l ) - l ( m + d )  Pm(x)' m > ~ O d  (2.9) 

and  the initial condi t ions  

Po(x) = 1, P , ( x )  = x 

and  if d >/2:  (2.10) 

P (x) = x P . _ , ( x )  - 2 < n <. d, 
v=o + 1  

where  7{, 7 2, . . . ,  7'~- * are d - 1 a rb i t ra ry  constants .  
The  two  relat ions (2.9) and  (2.10) can  be  wri t ten in the form 

P.+l(x)  = xP.(x)  -- y, 7dl-X-v n v=o v + 1 P. -1 -v ( x ) ,  n >1 O, (2.11) 

with Po(x) = 1, P_ . ( x )  = 0 for n ~> 1 and  (~") = 0 if v > n. 

Remarks  2.1. (a) By differentiating k times the polynomial  P.(x) and taking (2.1) into account,  we get 

P.-k(X) -- ( -- k)! p(k)t,~ n! - , ,  ~..,, O <~ k ~ n, n >>. O, (2.12) 

where  P(.k)(x) = DkP.(x) = (n + 1)- 1 P.(k++~l)(x). 
(b) In ~ ' ,  the equal i ty  (2.1) becomes  

v . = u .  f o r n > ~ 0 ,  (2.13) 

where  {u.}. ~> o (resp. {Vn}. >_. O)is the dual  sequence  associa ted  to {P.}. ~ o (resp. {Q.}. >. o). Hence,  

~/" = q/, (2.14) 
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where ¢¢ (resp. ~ )  is the canonical  regular d-dimensional  functional with respect to which the 
polynomial  set {P.}. ~ o (resp. {Q.}. ~ o) is d-orthogonal .  

Otherwise, by making  use of (2.13), we obtain from (1.3) the relation: 

D u , = - ( n + l ) u , + l ,  n>~O. 

By recurrence, it follows that  

( -  1)"D"uo, n / > 0 ,  (2.15) Un - -  n----~ 

which is another  characteristic of the Appell polynomial  sets. 

Example.  For  the powers {x"}, ~> o, Uo = 6 (Dirac delta function) and u, = [ ( -  1)"/n!] D"6, n >10. 

In order  to produce  a d-OPS analogous to the Hermite  PS, we have to choose the arbitrary 
constants  Y ~ = 0 for any v = 1, . . . ,  d - 1 (choice is always possible, because or thogonal i ty  is kept  
th rough  a shift), then {P,}, ~ o is reducible to a d-symmetric PS. 

In this case, {P.}, ~ o is a "classical" d-OPS analogous  to the Hermite  OPS  {/4.}, ~ o. It will be 
called the Hermite- type d-OPS. One reason for giving this name is that  these polynomials  have 
some properties that  are analogous  to those of the Hermite  polynomials  (that is the object of the 
next section). 

Therefore, from now on, we denote  this d-OPS of type Hermite  by { / t . ( . ;  d)}. ~ o and for the 
corresponding nonmon ic  PS we adopt  the nota t ion  {H.(. ; d)}. ~ o, such t ha t / t , ( x ;  d) = k.H.(x;  d), 
n >~ 0 where k. is a normal izat ion constant  which will be determined below. 

Thus  the recurrence (1.17) becomes 

+ l ) - x ( m + d J H m ( x ; d ) ,  m~>O; /?m+d+l(X; d) = X~Im+a(x; d) - (d 
d \ /  

(2.16) 
f t , ( x ; d ) = x " ,  n = 0 ,  1, . . . , d .  

Otherwise, since {/~,(. ; d)} .  ~ o is also d-symmetric,  we can write [9]:  

/4~d+a),+,(X; d) = xURU,(xa+l), n >~ O, 0 <~ # <~ d, (2.17) 

where { R , } , ~ o ,  0 ~< # ~< d are d + 1 polynomial  sets which are not  d-symmetric. Such PSs are 
called the d + 1 componen t s  of the d-OPS {H,( . ;  d)}. ~ o. They are defined by the system 

p,+l(x) = - f2,(x)p.(x),  n >~ O, (2.18) 

with 

p,(x) = Rd(x) / 
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and 

O . ( x )  = 

/ ~,+1 0 0 ... 0 - x 

~ n + l  ~ n + 2  0 "'" 0 - -  X 

~ n + l  ~ n + 2  ~ n + 3  "'" 0 - -  X 

~ n + l  ~ n + 2  ~ n + 3  "'" ~n+d  - -  X 

~ n + l  ~ n + 2  ~ n + 3  "'" ~ n + d  --  X + ~ n + d + l  

where 

o - ( d + l ) - l ( ( d + l ) n + d + z )  
(-On+'t : ~)(d+l)n+~ - -  d ' n ~ O ,  l ~ z ~ d + l .  

According to [-9, Th6or6me 5.2], each component  {R,U}.~>o is d-OPS. Moreover,  the first 
{Rn }, ~ o is a "classical" one (see [-9] for further details). component  o 

When d = 1 (ordinary orthogonali ty case), we find again the Hermite PS {/4.},~o with 
its two quadratic components  {L~. - 1/2)}n t> 0 and {L(1 /2)}n> ~ o, where {L~,')}.~ o, ~ > -  1, are the 
Laguerre PS. 

3. Some characterizations of  the sequence {P~}. ~> o 

At last, it is interesting to show that some properties satisfied by the d-OPS {P.}. ~> o (solution of 
the problem (P)) and, in particular, those satisfied by the Hermite-type d-OPS {/c/w(.; d)}. ~> o are 
a natural extension of the Hermite classical OPS. This is given by the following results. 

3.1. Generating function 

Theorem 3.1. Let {P.}, ~> o be a PS with the generatin9 function G(x, t) = ~ .  >, o P.(x) t"/n!. Then 
{P.}, ~ o is a solution of(P) i f  and only if G(x, t) has the form G(x, t) = A(t)e x' with 

d - 1  - v  t v + 2  

A(t) = exp - v=~o]) d - 1  ( ; 7  2 ) ! J "  (3 .1 )  

Proof. The necessity. Let {P,}, >_. o be a solution of (P), i.e., it satisfies the (d + 1)-order recurrence 
relation (1.10) with (1.11) and the equality (2.1). 

So that its generating function G(x, t) has the form G(x, t) = A(t)e xt. We shall show that A(t) has 
the form (3.1). Indeed, by differentiating G(x, t) = Z ,  >. o P,(x)t"/n] with respect to t, and using the 
notat ion ~t = c9/c3t, we have 

t n - 1  t n 

gtG(x,t) = ,~ l • P"(X) tn, - 1 ) ! - , > / o Z  P,+l (X)~ .  (3.2) 
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Now, in virtue of (2.11), the equality (3.2) can be written 

dt G(x, t) = xP,(x)  - 7al- 1 -~ n 
,~>ot_ ~=o v + l  P, -1-~(x )  

d-1 tv+l t n - l - v  
= xG(x,  t) - ~ yal-l-~ 1~-------~ E P~-l-~(X)(n _ 1 - v)! 

~=o ( v +  ,.,~>o 

= xG(x,  t) - a -1 -v  G(X, t). (v + 1)! 
It follows that  G(x, t) satisfies the partial differential equation: 

( d-1 _v _tv+l ~ 
O,G(x,t) = x -  ~=o~,~ -~ ( v T - f ) ! j G ( x ,  t). (3.3) 

Otherwise, using the Appell character, i.e., the generating function has the form G(x, t) = A(t)e  xt 
and differentiating it always with respect to t, we get 

{?tG(x, t) = A'( t )e  ~t + xG(x,  t). (3.4) 

F r o m  (3.3) and (3.4), it is easy to see that  A(t) satisfies the differential equation: 

A'(t) + d-l-v A(t) = O; 

(3.5) 
A(0) = 1 

of which the solution has the form (3.1): A ( t ) =  e x p ( -  ~.a-i , a - l - ~ . ~ + 2 / .  L ~ = o r I ~ /iv + 2)!). Thus,  the 
necessity of the condi t ion stated is established. 

Conversely, suppose that  G(x, t) = A(t)e  xt is the generating function of the polynomials  P.(x), 
n >/0, where A(t) has the form (3.1), we shall show that  the PS {P,}. ~> o is a solut ion of the problem 
(P). Since G(x, t) = A(t) e ~t with (3.1), it is clear that  {P.}. ~ o is an Appell PS and G(x, t) satisfies the 
partial differential equat ion  (3.3). 

Therefore, it suffices to show that  {P.}, ~> 0 is d-OPS, i.e., that  the (d + 1)-order recurrence 
relation (2.11) holds. Indeed, replacing G(x, t) by I2,~> oP.(x)t"/n! into (3.3), we obtain 

t n t n (d-1 tv+l ) t n P.+l(X)~. = x • P . ( x ) - ~ . -  E 7~ - 1 - ~ -  E P.(x)~.  
,~>o ./>o ~=o ( v + l ) !  ./>o 

it follows that  

t'= ~ xP.(x)~t'-- ~V (a-__~2?~-l-~ t~+~ )P,(x)~t 
or 

P,+I(x)~ .  = ~ x P , ( x ) -  1 - ,  n t 
v + l 

Compar ing  the coefficients of t", the recurrence (2.11) follows immediately. 
Hence, the converse s ta tement  of Theorem 3.1 is thus established. []  
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Remarks 3.2. (a) When ~ ~ = 0 for v = 1, 2, . . . ,  d - 1, we obtain the generating function of the 
Hermite-type d-OPS (/~.(.; d)}./> o: 

( td+l '] 
G(x, t) = a( t )e  x' with A(t) = exp d!(d ~ 1)2,] . 

In particular, for d = 1, we meet again G(x, t) = e xt-t2/4 which is the generating function of the 
Hermite PS {/:/.}. ~> o- 

(b) Setting x = 0 in G(x, t) = A(t)e xt, expanding exp( - t n+ 1/dI(d + 1) 2) in a power series, and 
comparing coefficients of powers of t in both sides of the resulting equation, we find that 

((d + 1)n)! 
/4ta+ 1).(0; d) -- ( -  1)" 

(d + 1)2"(dI)"n! ' 

ff-Ita+l).+u(O;d)=O, l <<,# <~ d 

and it is easy to see that 0 is a zero of/t td+ a).+u(X; d) of multiplicity/~. 
(c) Otherwise, in order to produce a d-orthogonal polynomials of type Hermite {H.(.; d)}, ~ 0 

analogous to the nonmonic  polynomials of Hermite, we have to choose the normalization 
coefficient k. = 2-",  n >~ 0 with 2 = (dI(d + 1)2) x/(a+ x). 

Indeed, replacing t by 2t into 

exp xt  d I ( ~ - l ) 2 j  = 2 / t , ( x ; d )  , 
n>~0 

we obtain that 

t n tn 
e x p ( 2 x t - - t a + l )  = ~ 2"/-).(x;d)~.l = ~ Hn(x;d)-~.., 

n>~O " n>~O 

which is the generating function of the Hermite-type d-OPS {/-/n('; d)}. ~ o. 
When d = 1, we meet again the generating function of the Hermite polynomials {H.}. ~ o 

tn 
exp(2xt -- t 2) = 2 H . ( x ) ~ .  

n~>0 

3.2. (d + 1)-order differential equation 

Let us adopt the following notat ion for a finite differential operator on ~ :  

L[y(x)]  = ~a+l Yta+l)(x) + cqYta)(x) + "'" + ct2Y"(X) q- e lxy ' (x ) ,  

where the av's, 1 ~< v ~< d + 1 are constants. 

Theorem 3.3. Let  {P.}./> o be a PS. A necessary and sufficient condition that {P.}. >/o is a solution o f  
the problem (P) is that each polynomial P.(x), n -- O, 1, . . . ,  satisfies the following (d + 1)-order 
differential equation o f  type: 

d - 1  
7o P~a+I'(x) + ~ p~d)(x) + ... + ~1 . . . . .  d---! (d - 1)--------~ ~ r ,  tx) - XPn(X) + nP.(x) = O, n >~ O, (3.6) 
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i.e., using the previous dif ferential  operator  notat ion:  

L[Pn(x ) ]  = nPn(x), n >~ 0 

wi th  

and 

~Xl=l 

])d+l-v 

~ - ( v -  1)! 

f o r  each 2 <<. v <<. d + 1. 

291 

Proof .  The necessity of (3.6). Let {P,}, ~> o be a solution of (P), so that it satisfies the (d + 1)-order 
recurrence relation (2.11) and the Appell character (2.1). 

In virtue of(2.12), replacing P, -k (X) ,  n >~ O, k = O, 1, . . . ,  d, by the successive derivatives P,tk+~l)(x) 
into the recurrence (2.11), the ( d +  1)-order differential equation (3.6) follows immedi- 
ately. 

Conversely, suppose that the sequence {P,}, ~> o satisfies the differential equation (3.6). It is 
verified that Qo(x)  = Po(x )  = 1. 

Assuming that Qm(x) = Pro(X) for m = 1, 2, . . . ,  n - 1, we shall prove it for m = n. Differentiating 
(3.6), we get 

d ! - "  ( d -  1)! -"  

d-1 
• .. 4- Y-x ~ p(3)t,:~ (n 1)P~(x) 0, - 1! - "  , ~ v , - x P : , ' ( x ) +  --  = 

n ~> 0. (3.7) 

Changing n --+ n + 1 and P:,+ l(x) by (n + 1) Q.(x), we find that the sequence {Q,}, ~> o also satisfies 
a (d + 1)-order differential equation of type (3.6): 

1 d - 1  
1 1  ,"~ tt l \ 

71°d! Qf+  1)(x) 4 (d -~------M-11)! Q~,")(x) + ... + ~ ~g, tx)  - x Q ' ( x )  + nQ,(x)  = O, n >1 O, (3.8) 

that is 

L [ Q , ( x ) ]  = nQ, (x ) ,  n >~ O. 

Hence, since the differential operator L is nonsingular, we have Q,(x )  = c .P . (x ) .  

But, the polynomials Q,(x )  and P. (x )  are monies, comparing coefficients of x", we find that c, = 1, 
therefore Q,(x )  = P . ( x )  for all n i> 0, i.e., {P.}. ~> o is an Appell PS. 

Now, making use of (2.12) and P~.k)(x) by the corresponding expression of P, -k (X) ,  0 <~ k <~ n, in 
the differential equation (3.6), it is easy to obtain the (d + 1)-order recurrence relation (2.11). Hence, 
{P,}. ~> o is at the same time d-OPS and Appell PS, then it is a solution of the problem (P). This 
proves the converse. [] 
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Remarks 3.4. (a) The differential equation (3.6) is a particular case of the one given in [17]. 
(b) For  the d-symmetrical case, i.e., the Hermite-type d-OPS {/t~(.; d)},~>o, the differential 

equation (3.6) becomes 
A t  , 

fflt, d + l ) ( x ; d ) - ( d  + l ) ! x H , ( x , d ) + ( d  + l)!nffI , (x;d) O, n>>.O. (3.9) 

In particular, for d = 1 we get again the second-order differential equation satisfied by the Hermite 
polynomials {H,}, ~ o: 

H"(x) - 2xig/,;(x) + 2n/t,,(x) = 0, n ~> 0. 

3.3. A vectorial functional equation and moments 

We now consider the d-dimensional functional q / =  (Uo, . . . ,  ua_ ~)x with respect to which the PS 
{P.}. ~> o is d-orthogonal. 

We begin by recalling the following characterization of the "classical" d-OPS [10]. 

Theorem 3.5. A d-O PS {P.}. >/o is "classical" if and only if  there exist two d x d polynomial matrices 
tIJ I,I, v i d - 1  ~ la. vxd-1 with degO.  ~ 1, degqS~, ~< 2, such that ~,YJ/~1 v , #  = O ,  ~__. ~ t F / t  I v , / t  = 0 v 

~ q / +  D(@q/) -- 0 (3.10) 

with conditions about regularity (see [10, Th6or~me 3.1]). 

Here the action of the d-dimensional functional ~ / =  (Uo, . . . ,  ua- l) T on a polynomial f as well as 
the left-multiplication of a functional by a polynomial are defined, respectively, by 

( u o , f )  

< u l , f >  
q / ( f )  := . and (hu, f )  := (u, hf>, V u ~ ' ;  g h ,  f e d  ~. 

( U a - i , f )  

According to the above theorem (which we adopt to our situation), we obtain easily the following 
result. 

Theorem 3.6. 
all satisfies the vectorial functional equation: 

7Jql + D(q~qi) = O, 

where ~ and q) are the two d x d matrices 

q ' ( x )  = 

The PS {P.}, >/o is solution of  the problem (P) if and only if the d-dimensional functional 

(3.11) 

, = 

0 1 0 ... 0 

0 0 2 ... 0 

0 0 0 ... d - 1  

( d h ° ) x  . . .  

with ~u = - dYd-u/7°, /~ = 1, ... ,d are arbitrary constants. 

" ' "  0 

1 . . .  0 

0 ... 1 
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Proof.  I t  is a par t icular  case of  the result  given in [10]. [] 

R e m a r k  3.7. F o r  the d -OPS of type Hermi te  {H,(.; d)}n ~> o, we have 7 0 = (d + 1)- 1 and  7] = 0 for 
v = 1, . . . ,  d - 1, then  (u = 0, ~ = 1, . . . ,  d - 1. In the sequel we consider only this case. 

F o r  any  po lynomia l  f,  the vectorial  equa t ion  (3.11) leads to 

(Tog) ( f )  + D(#Oll)(f) = O, 

tha t  is to say 

( u l , f )  

2 ( u z , f )  

( d -  1 ) (Ud- l , f )  

d(d + 1) (Xuo , f )  

( u o , f ' )  

( u l , f ' )  

(Ud-2,f')) 
( U d - l , f ' )  

In part icular ,  for f (x)  = x m+ 1, m >1 0, 
funct ionals  Uo, u l ,  . . . ,  u~_ ~, which we write in the form 

1 

0 

0 

0 

Then  

0 -.. 0 0 

1 
0 0 

m + l  

d - 1  
0 0 

m + l  
0 ... 0 d(d + 1) 

m + l  

we have the recurrence of the 

(Ul)m+ 1 = (m + 1)(Uo)m 

1 
(U2)m+ 1 = ~(m + 1)(Ul)m 

1 
(ua-1)m+X = d----~--~(m + 1)(ud-2)m 

1 
(U0)m+ 2 -- ~ 1  ------------~ ( m d ( d  + + 1)(Ua-X)m 

UO)m + 1 

(Ul)m +1 

(Ud-1)m+ l 

(UO)m+ 2 

m>~O. 

mo me n t s  of the l inear 

0 0 .-. 0 0 1 

1 0 -.. 0 0 0 

0 1 .-- 0 0 0 

0 0 -.. 1 0 0 

0 0 ... 0 1 0 

(Uo)m 

(Ul)m 

(Ud- X)m 

(UO)m+ 1 

(3.12) 

It follows tha t  

( U o ) ~ + a + l = ( d + l ) - X ( m + d )  d (Uo),., m ~ > 0 .  (3.13) 
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Corollary 3.8. The moments of the linear functionals uo, . . . , ud_ I are given by 
- for the linear functional uo: 

(uo)o = 1, 

bO)(d+ 1)m = (d+l)pl~fi~((d+~n+d), m21, 

(uO)(d+l)m+p = 0, p = 1, . . . ,d, m > 0; 

_ and for each u, with a = 1, . . . , d - 1: 

(k), = <% xm> = 

= 0 r <uo, xm-7 

= 0 r (u~),,-~, CC = 1,2, . . . ,d - 1, m 2 0, 

which we can write 

bd(d+l)m+p = &t,, ((d+l~+p)(UO)(d+l)m, p=O,l, . . ..d. m>O, 

(3.14) 

(3.15) 

where we have taken (~0)~~ = 0, n > 1. 

Proof. From (3.13) we have immediately (3.14) and from (3.12) we obtain (3.15). Cl 

3.4. A digerential relation 

Finally, in order to complete the analogy between the Hermite-type d-OPS and the classical 
OPS of Hermite, we conclude this section with the following differential relation which generalizes 
the one given by McCarthy [16] in the ordinary orthogonality case for the Hermite polynomials 

{~“},.O. 
The derivative of the two consecutive polynomials’ product B,(x; d) 8,+ 1 (x; d) is given by 

(f&+,(x; d)&(x; d))’ = (n + l)fii(x; d) + (~~d~l~~, xfi,+l(x; d)fi,+d-1(x; d) 

n!(d + l)! * 
- (n + d _ l)! K,+r(x; d)%+d(x; d), n 2 0. 

Indeed, differentiating the product A, + I (x; d) I?, (x; d), we get 

(A,+,(~;d)A,(x;d))‘=8,:+,(x;d)~,(x;d)+I?,+~(x;d)~~(x;d). 

Hence, since {A,, (.; d)},, a o is an Appell sequence, we have 

fiA+r(x; d) = (n + l)fi,(x; d) and fii(x; d) = &I,- 1(x; d). 

(3.16) 

(3.17) 
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Now, from the recurrence relation (2.16), it is possible to express / t . - l ( x ; d )  in terms of 
/-~.+d-l(x; d) and i¢:/.+d(x; d), substituting into (3.17), the relation (3.16) follows immediately. 

When d = 1, the previous identity is reduced to the quadratic diferential relation satisfied by the 
Hermite polynomials {/4.}. ~> o [-16]: 

(Hn+l(X) ff-In(x))' = (n + 1)/t.2(x) + 2 x F I . + l ( x ) f f I . ( x )  - 2/~2+1(x), n >~ 0. 
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