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We discuss the general dynamical behaviors of quintessence field, in particular, the general conditions for
tracking and thawing solutions are discussed. We explain what the tracking solutions mean and in what
sense the results depend on the initial conditions. Based on the definition of tracking solution, we give
a simple explanation on the existence of a general relation between wφ and Ωφ which is independent
of the initial conditions for the tracking solution. A more general tracker theorem which requires large
initial values of the roll parameter is then proposed. To get thawing solutions, the initial value of the roll
parameter needs to be small. The power-law and pseudo-Nambu Goldstone boson potentials are used to
discuss the tracking and thawing solutions. A more general wφ–Ωφ relation is derived for the thawing
solutions. Based on the asymptotical behavior of the wφ–Ωφ relation, the flow parameter is used to give
an upper limit on w ′

φ for the thawing solutions. If we use the observational constraint wφ0 < −0.8 and
0.2 < Ωm0 < 0.4, then we require n � 1 for the inverse power-law potential V (φ) = V 0(φ/mpl)

−n with
tracking solutions and the initial value of the roll parameter |λi | < 1.3 for the potentials with the thawing
solutions.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The recent cosmic acceleration observed by type Ia supernova
data [1] was usually explained by introducing a dynamical scalar
field called quintessence [2–4]. More general dynamical scalar field
models such as phantom [5], quintom [6], tachyon [7] and k-
essence [8] were also proposed. For a recent review of dark energy,
please see Ref. [9].

For a dynamical scalar field φ with the potential V (φ) in
the flat Friedmann–Lemaître–Robertson–Walker universe with the
metric ds2 = −dt2 + a2(t)(dr2 + r2 dθ2 + r2 sin2 θ dφ2), its energy
density and pressure are ρφ = φ̇2/2 + V (φ) and pφ = φ̇2/2 − V (φ),
where φ̇ = dφ/dt . The scalar field rolls down a very shallow poten-
tial while its equation of state wφ = pφ/ρφ approaches −1 and it
starts to dominate the Universe recently. Because the scalar field
catches up the background only recently and the current value
of its equation of state parameter is around −1, wφ does not
change too much in the redshift range 0 � z < 1 for most scalar
fields, so the time variation of wφ is bounded for the thawing and
freezing models [10–18]. In general, the evolution of scalar field
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depends on the initial conditions. However, the attractor solutions
and the tracking solutions are independent of the initial condi-
tions [19–36]. In particular, the tracker field φ tracks below the
background density for most of the history of the Universe until
it starts to dominate recently for a wide range of initial condi-
tions, and there exists a relation between wφ and the fractional
energy density Ωφ = 8πGρφ/(3H2) today, where the Hubble pa-
rameter H(t) = ȧ/a. There also exists a general wφ–Ωφ relation
for the thawing solutions which is well approximated by some
analytical expressions [37–47]. In this Letter, we will discuss the
general dynamics such as the wφ–Ωφ relation and the bound
on w ′

φ = dwφ/d ln a of the tracking and thawing fields. We use
the power-law potential and the pseudo-Nambu Goldstone boson
(PNGB) potential [48–52] as examples to illustrate the general dy-
namical behaviors of tracking and thawing fields.

If the Universe is filled with the quintessence field and the
background matter with the equation of state wb = [(1/3)aeq/a]/
[1 + aeq/a], where aeq = 1/3403 [53] is the scale factor a(t) at the
matter-radiation equality, then in terms of the dimensionless vari-
ables,

x = φ′
√

6
= 1√

6

dφ

d ln a
, y =

√
V

3H2
,

λ = − V ,φ

V
= − 1

V

dV

dφ
, Γ = V V ,φφ

V 2
, (1)
,φ
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the cosmological equations are

x′ =
√

3

2
λy2 + 3

2
x
(
x2 − y2 − 1

) + 3

2
wbx

(
1 − x2 − y2), (2)

y′ = −
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λxy + 3

2
y
(
1 + x2 − y2) + 3

2
wb y

(
1 − x2 − y2), (3)

λ′ = −√
6λ2(Γ − 1)x. (4)

The fractional energy density and the equation of state of the
scalar field are

Ωφ = x2 + y2, wφ = x2 − y2

x2 + y2
. (5)

Using the fractional energy density Ωφ and the parameter γ =
1 + w , Eqs. (2)–(4) become

Ω ′
φ = 3(γb − γφ)Ωφ(1 − Ωφ), (6)

γ ′
φ = (2 − γφ)

(−3γφ + |λ|√3γφΩφ

)
, (7)

λ′ = −√
3γφΩφλ|λ|(Γ − 1). (8)

From Eq. (7), we get a lower limit w ′
φ � −3(1 + wφ)(1 − wφ).

If the tracker parameter Γ can be expressed as a function of the
roll parameter λ, then the above system (6)–(8) becomes an au-
tonomous system. In this case, we have additional critical point
Ωφc = 1 and γc = 0 which is absent in the system (2)–(4), where
the subscript c means the critical point. At the point x = 0 and
y = 1, the transformation from (x, y) to (Ωφ,γ ) is singular, so we
get different critical points. Only when λc = 0, the point x = 0 and
y = 1 is the critical point of the system (2)–(4). For the exponen-
tial potential, the point x = 0 and y = 1 is not a critical point for
the system (2)–(4) and the critical point Ωφc = 1 and γc = 0 for
the system (6)–(8) is not a stable point.

If we use the flow parameter F = γφ/(Ωφλ2) [16], then Eq. (7)
can be written as

γ ′
φ = 3γφ(2 − γφ)(−1 + 1/

√
3F ). (9)

To understand the general dynamics of the quintessence, it is use-
ful to use the function β = φ̈/(3Hφ̇) [16,44],

β = −1 + 1 − wφ√
12F

= 1

2

[
Ωφγφ + (1 − Ωφ)γb

] − β ′

3(1 + β)
− V ,φφ

9(1 + β)H2
. (10)

For the thawing solution, the quintessence field rolls down the
potential very slowly, V ,φφ ≈ 0 and β is almost a constant, so
β ≈ γb/2 at early time when Ωφ ≈ 0 and wφ ≈ −1 [44].

2. Tracker solution

The energy density of the tracker field φ tracks below the back-
ground density for most of the history of the Universe, it starts
to dominate the energy density only recently and then drives the
cosmic acceleration. The tracker fields have attractor-like solutions
in the sense that they rapidly converge to a common cosmic evo-
lutionary track of ρφ(t) and wφ(t) for a very wide range of initial
conditions, so the tracking solutions are extremely insensitive to
the initial conditions [4,22]. Furthermore, an important relation be-
tween wφ and Ωφ today was found for the tracker field. When
the tracker field enters the tracking solution, it satisfies the tracker
condition [22]

γφ = 1 + wφ = 1
λ2Ωφ, (11)
3

thus this condition is the initial condition of tracking solution. In
other words, the initial condition for the tracking solution reads
F = 1/3. From Eq. (7), we see that γ ′

φ = 0 when the tracker condi-
tion is satisfied, so it is possible that wφ stops varying. On the
other hand, the quintessence field satisfies the tracker equation
[22,28]

Γ − 1 = 3(wb − wφ)(1 − Ωφ)

(1 + wφ)(6 + x̃′)
− (1 − wφ)x̃′

2(1 + wφ)(6 + x̃′)

− 2x̃′′

(1 + wφ)(6 + x̃′)2
, (12)

where x̃ = ln[(1 + wφ)/(1 − wφ)] and x̃′ = d ln x̃/d ln a. For the
tracking solution, wφ is nearly constant, so x̃′ ≈ x̃′′ ≈ 0, and we
get

wφ ≈ wb(1 − Ωφ) − 2(Γ − 1)

2Γ − 1 − Ωφ

< wb (Γ > 1). (13)

If Ωφ ≈ 0 when the tracker condition (11) is satisfied, then

wφ = wtrk
φ = wb − 2(Γ − 1)

2Γ − 1
, (14)

and β = −γb/2(2Γ − 1) are approximately constants if the tracker
parameter Γ is nearly constant, Ωφ ∝ a6γb(Γ −1)/(2Γ −1) increases
with time and λ2 ≈ 3(1 + wtrk

φ )/Ωφ decreases with time. For

the tracker field, V ,φφ/H2 is not negligible, so β �= γb/2. In fact,
V ,φφ/H2 is a constant for the exponential potential when the at-
tractor is reached.

If Ωφ is not small or the tracker parameter changes rapidly
when the tracker condition (11) is satisfied, then wφ won’t keep
to be a time independent constant and it decreases with time
while Ωφ increases to 1, so the scalar field does not track the
background and Eq. (14) does not hold when the tracker condi-
tion (11) is satisfied, but the scalar field has the freezing behavior
with wφ → −1 asymptotically. Therefore, both the tracker condi-
tion (11) and Eq. (14) will be violated when Ωφ is not negligible
or Γ changes rapidly, and wφ keeps decreasing.

For the tracker field, the tracking solution at late times has the
property that γφ → 0 and Ωφ → 1, so γφ should decrease with
time while Ωφ increases with time. When γφ reaches the back-
ground value γb , and λ2 decreases to the value λ2 = 3γφ/Ωφ , then
we reach the tracker condition. After that, γφ decreases toward
to zero and Ωφ increases toward 1. From Eq. (7), we know that
we should keep |λ| <

√
3γφ/Ωφ in order that γ ′

φ < 0, therefore
|λ| should decrease with time and λ → 0 when γφ → 0. For any
quintessence field rolling down its potential, |λ| does not increase
with time is equivalent to Γ � 1 as easily seen from Eq. (8).

For the exponential potential, λ is a constant and Γ = 1. If
λ is small, then eventually γφ will decrease to be less than γb ,
and Ωφ will quickly increase to be 1. In particular, if λ2 < 3γb ,
then the system will reach the attractor solution with Ωφ = 1
and γφ = λ2/3. If λ is big, i.e., λ2 � 3γb , then the attractor so-
lution is γφ = γb = λ2Ωφ/3. Since the above attractors satisfy the
tracker condition (11), so both of them are also tracking solutions.
In Fig. 1, we show the phase diagram for the exponential potential
with λ = 2.1. The original tracking solution found in [22] is inde-
pendent of the value of λ which is in contradiction with the results
for the exponential potential. The contradiction was then resolved
in [28] by deriving the correct tracker equation (12).

With the dynamical Eqs. (6)–(8), we can understand the gen-
eral dynamical evolution of the tracker field as follows: (a) Initially
if Ωφi is not too small or λi is large enough so that λ2

i > 3γφi/Ωφi ,
where the subscript i means the initial value, then γφ will increase
toward 2 independent of the initial value of wφ . Once γφ > γb ,
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Fig. 1. The phase diagram of wφ and Ωφ for the exponential potential with λ = 2.1.
“∗” corresponds to the saddle node Ωφ = 1 and γφ = λ2/3, “×” and “+” corre-
spond to the stable points γφ = γb and Ωφ = 3γφ/λ2 with γb = 4/3 and γb = 1
respectively.

Ωφ will decrease. When Ωφ decreases to be small enough so that
λ2 < 3γφ/Ωφ , γφ decreases toward −1 and Ωφ starts to increase
once γφ < γb . Even if λ decreases, it will overtake 3γφ/Ωφ when
γφ → 0, then γφ increases again. Once γφ increases away from
zero, we will have λ2 < 3γφ/Ωφ and the tracker behavior of wφ

will be reached, maybe after several oscillations. If λi is small,
then to satisfy the tracker condition, Ωφi cannot be too small and
Ωφ may reach 1 very quickly and the tracker solution with nearly
constant wφ will not appear. (b) Initially if Ωφi or λi is small so
that λ2

i < 3γφi/Ωφi , then γφ decreases toward 0 and Ωφ starts to
increase once γφ < γb independent of the initial value γφi . After
that, the dynamics is similar to that in case (a). In this case, even
though Ωφi is small, but it always increases if λi is small, Ωφ will
reach 1 soon and the tracker solution with nearly constant wφ

does not appear. Of course, the current values of Ωφ , λ and wφ

depend on their initial values. From these analyses, we conclude
that if the initial value of λ is small, then no tracker solution with
nearly constant wφ appears because Ωφ reaches 1 too soon. For
small λi , once Ωφ reaches 1, the equation for Ωφ decouples from
the dynamical system (6)–(8). Therefore, the solution to Eqs. (7)
and (8) gives a relation between wφ and λ. Since wφ approaches
−1 asymptotically, the relation is universal if Γ is a function of
λ in the sense that it does not depend on the initial conditions,
therefore the wφ–w ′

φ relation is also universal when wφ → −1.
For the tracking solution, the conditions (11) and (14) are the

initial conditions, so for the same initial value of Ωφ at the start
of the tracking solution, the trajectories of wφ , Ωφ an λ will be
the same, that is why we have the same wφ–Ωφ trajectory for the
tracking solution independent of the initial conditions. However,
the exact values of wφ and Ωφ at a moment (for instance, at the
present) still depend on the initial conditions. We refer the tracking
solutions as those solutions which have a common wφ–Ωφ trajectory
for a wide range of initial conditions, technically, the tracking solutions
satisfy the two conditions (11) and (14) initially.

In [17], the author rephrased the tracker theorem as: the
tracker property appears for any scalar field model in which the
roll parameter λ is capable of taking on large initial values in the
early Universe. If λ decreases with time, then λ is capable of tak-
ing on large initial values in the early Universe. However, for the
power-law potential φα with α > 0, the roll parameter λ can be
large if we start from small φ, and there is no tracking solution.
Furthermore, it is not clear how large the initial value should be.
Therefore, we propose the tracker theorem as: the tracker behavior
appears for any quintessence field in which the roll parameter |λ| does
not increase with time and the initial value of λ should be big enough
so that Ωφ is still negligible when the tracker condition (11) is satisfied.
The new definition of the tracking solution and the tracker theo-
rem proposed here are parts of the main results of this Letter.

3. Power-law potential

In this section, we use the power-law potential as an example
to explicitly show the analyses presented in the previous section.
Here we focus on the tracking and thawing behaviors and the
bound on w ′

φ . For the power-law potential V (φ) = V 0(φ/mpl)
α

with the energy scale V 0 ∼ (10−3 eV)4 and the Planck mass
mpl = 1/(8πG)1/2, the tracker parameter Γ = 1 − α−1, so the dy-
namical system becomes an autonomous system. The dynamical
analysis of the system (2)–(4) with f (λ) = −1/α was carried out
in [33]. The dynamical system (2)–(4) has the following critical
points: (xc, yc, λc) = (±1,0,0), (xc, yc) = (0,0) with λ arbitrary,
and (xc, yc, λc) = (0,1,0). Only the critical point (xc, yc, λc) =
(0,1,0) can be stable if f (λ = 0) > 0. For the inverse power-
law potential, f (0) = −1/α > 0, so the critical point (xc, yc, λc) =
(0,1,0) which corresponds to the solution Ωφc = 1 and γφc = 0 is
a stable point. From this analysis, we know that λ will decrease to
zero for the tracking solution.

3.1. Tracking solution

If we use the dynamical system (6)–(8), the critical points are:
Ωφc = 0, γφc = 0 or γφc = 2 with arbitrary λ; Ωφc = 1 and γφc = 0
with arbitrary λ; and (Ωφc, γφc, λc) = (1,2,0). The critical point
(Ωφc, γφc, λc) = (1,0,0) is a stable point. For the critical point
(Ωφc, γφc, λc) = (1,0,0), the linear approximation of the system
(6)–(8) is

δΩ ′
φ = −3γbδΩφ, (15)

δγ ′
φ = −6δγφ, (16)

δλ′ = 0. (17)

One of the eigenvalues is 0. To analyze the stability of the sys-
tem, we need to understand the stability of Eq. (8) for the critical
point (Ωφc, γφc, λc) = (1,0,0) by using the center manifold theo-
rem [54]. So we need to solve the following equation [54]

dγφ

dλ

√
3γφΩφλ2/α = (2 − γφ)(−3γφ + λ

√
3Ωφγφ). (18)

Let γφ(λ) = γ2λ
2, up to the order of λ2, we get γ2 = 1/3. Substi-

tuting Ωφ = 1 and γφ = λ2/3 into Eq. (8), we get

λ′ = λ3/α. (19)

The system is stable if α < 0, so the critical point (Ωφc, γc, λc) =
(1,0,0) of the dynamical system (6)–(8) is a stable point for the
inverse power-law potential. From the above analysis, we see that
asymptotically γφ = λ2Ωφ/3 to the leading order, so this stable
critical point corresponds to the late time tracking solution. In
other words, the flow parameter starts with the value F = 1/3 and
approaches the value F = 1/3 asymptotically for the tracking solu-
tion. The function β starts with β = αγb/2(2 −α) and increases to
β = 0 asymptotically.

Because the dynamical system (6)–(8) is hard to solve numeri-
cally if λi is too large, we choose to solve the dynamical system
(2)–(4) numerically for the inverse power-law potential V (φ) =
V 0(φ/mpl)

−6 to illustrate the tracking behavior and the results are
shown in Fig. 2. As seen from Fig. 2, the general dynamics of the
tracker field follows our discussion in the previous section, and
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Fig. 2. The time evolutions of Ωφ and wφ for the inverse power-law potential V (φ) ∼ 1/φ6. The arbitrary initial time ln ai = −30 was chosen for computational convenience.
The initial condition for the red line is Ωφi = 10−11, wφi = 0.6 and λi = 1.2 × 106. The initial condition for the blue line is Ωφi = 10−11, wφi = −0.6 and λi = 1.2 × 106. The
initial condition for the black line is Ωφi = 10−17, wφi = 0.6 and λi = 1.2 × 106. The initial condition for the brown line is Ωφi = 10−17, wφi = −0.6 and λi = 1.2 × 106. The
initial condition for the purple line is Ωφi = 10−3, wφi = −0.6 and λi = 10. The initial condition for the green line is Ωφi = 0.1, wφi = 0.6 and λi = 10. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 3. The left panel shows the wφ –Ωφ trajectories of the evolutions of wφ and Ωφ shown in Fig. 2, and the right panel shows λ versus wφ for the inverse power-law
potential V (φ) ∼ 1/φ6 with the tracking behavior. For λi = 1.2 × 107, we choose Ωφi = 10−10–10−6 and different wφi . For λi = 5.2 × 107, we choose Ωφi = 10−2–10−7 and
different wφi . The × corresponds to the points (wφ0,Ωφ0) with λi = 1.2 × 107 and different Ωφi and wφi . The + corresponds to the points (wφ0,Ωφ0) with λi = 5.2 × 107

and different Ωφi and wφi . The dashed line is the fitting function (21). The purple and green dotted lines are for λi = 10 without the tracking behavior. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
wφ exhibits oscillatory behaviors before the scalar field reaches
the tracking solution. For small λi = 10 (for this case, λi � 100),
the tracking solution with constant wφ does not appear because
Ωφ reaches 1 in a short time. Even though the general wφ–Ωφ re-
lation was not followed as shown by the dotted lines in Fig. 3, the
same wφ–λ and wφ–w ′

φ relations are still followed for those so-
lutions with small λi when wφ approaches −1. For large λi , the
tracking behavior is realized easily. But to get the observationally
allowed Ωφ0 (the subscript 0 means the current value), we need to
adjust the initial values of λ, Ωφ and wφ . For the example shown
in Fig. 2, we choose λi = 1.2 × 106 and 10−17 � Ωφi � 10−11 so
that 0.05 � Ωφ0 � 0.95. We also show the relation between wφ0

and Ωφ0 for the tracking solutions with different initial conditions
in Fig. 3. Not only the relation between wφ0 and Ωφ0 exists, but
also the same relation follows for wφ and Ωφ at any moment af-
ter it reaches the tracking solution. This is one of the main results
obtained in this Letter.
As we discussed in the previous section, the wφ–Ωφ trajectory
is independent of the initial conditions, so the wφ0–Ωφ0 relation
is the same as the general wφ–Ωφ relation for the tracking solu-
tion because of the tracker condition, although the values of wφ0
and Ωφ0 depend on the initial conditions. Therefore, we general-
ize the common wφ0–Ωφ0 trajectory found in [4,22] to the com-
mon wφ–Ωφ trajectory for the tracking solutions even though wφ

evolves differently when the tracker field starts to dominate the
Universe. The trajectory can be obtained by solving the dynamical
system (6)–(8) with the initial conditions (11) and (14). A gen-
eral wφ–Ωφ relation was proposed in [39] for slow-roll freezing
quintessence by assuming constant λ as

γφ = λ2
0

3

[
1√
Ωφ

−
(

1

Ωφ

− 1

)(
tanh−1(

√
Ωφ) + C

)]2

. (20)

Apparently, this relation cannot be applied for the tracking behav-
ior because γφ → λ2

0/3 when Ωφ → 1 and γφ → ∞ when Ωφ → 0
if C �= 0. The reason why the above relation does not work is that
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Fig. 4. The wφ –Ωφ and w ′
φ –wφ relations for the power-law potential V (φ) ∼ φα with the tracking behavior. The dashed line in the right panel is for the upper limit

0.2wφ(1 + wφ), the dotted line is for the tracking lower limit 3wφ(1 − w2
φ)/(1 − 2wφ), and the dot-dashed line is for the freezing lower limit 3wφ(1 + wφ).
λ is not a constant for the tracking solution as shown in Fig. 3.
When Ωφ is small, a linear approximation for the wφ–Ωφ relation
was found in [29,55]. We find that the general wφ–Ωφ relation for
α = −6 can be fitted by the following function

wφ = wb(1 − Ωφ) + 0.09Ωφ + 0.03Ω2
φ − 2(Γ − 1)

2Γ − 1 − Ωφ

. (21)

It is obvious that wφ does not differ much from the initial
value (14), so w ′

φ is small. To see how small it is, we show
the w ′

φ–wφ trajectory for different α in Fig. 4. The upper limit
w ′

φ � 0.2wφ(1 + wφ) [10] is also shown in Fig. 4. Our results
show that the upper limit is violated. As we discussed above, as
wφ → −1, F = 1/3 and w ′

φ = 0, so we expect the violation of
the upper limit 0.2wφ(1 + wφ). The other problem is the obser-
vational constraints on the values of Ωm0 and wφ0. Since wφ and
Ωφ follow a universal relation which is independent of the initial
conditions and the energy scale V 0 of the potential, we can use
the observational data to constrain the form of tracker potential.
For the power-law potential V (φ) = V 0(φ/mpl)

α , the observational
constraints can be satisfied by choosing small α as shown in Fig. 4.
If we choose the observational constraints 0.2 � Ωm0 � 0.4 and
w0 � −0.8 [56,57], then we require 0 > α � −1.

3.2. Thawing solution

For the inverse power-law potential, if λi is small, then wφ de-
creases to −1 as seen from Eq. (7). If we also fine-tune the initial
value of Ωφ (for α = −4, Ωφi is around 10−30 at ln ai = −20),
then wφ stays at the value −1 and starts to increase recently, we
get the thawing behavior. From Eq. (8), it is easy to see that λ will
keep to be a constant when wφ = −1. Combining Eqs. (6) and (7),
we get

dγφ

dΩφ

= −3γφ(2 − γφ) + λ(2 − γφ)
√

3γφΩφ

3(γb − γφ)Ωφ(1 − Ωφ)
. (22)

Taking the approximation γφ � 1, then Eq. (22) can be approxi-
mated as

dγφ

dΩφ

= −6γφ + 2λ
√

3γφΩφ

3γbΩφ(1 − Ωφ)
. (23)

The solution to the above Eq. (23) with constant λ ≈ λi is
γφ = λ2
i

3

(
1 + 1

2
γb

)−2

Ωφ(1 − Ωφ)2/γb

× 2 F 2
1

(
1

γb
+ 1

2
,

1

γb
+ 1,

1

γb
+ 3

2
;Ωφ

)
, (24)

where 2 F1(a,b, c, x) is the hypergeometric function. This approx-
imation breaks down when γφ ∼ 1. As Ωφ → 0 and wφ → −1,
γφ → λ2

0Ωφ/3(1 + γb/2)2, so the flow parameter F = 1/3(1 +
γb/2)2 and β = γb/2 which is consistent with the result found in
[44] with different argument. If wφ starts to increase during the
matter domination, γb = 1 and F = 4/27, we recover the famil-
iar wφ–Ωφ relation (20) with C = 0. We show the evolutions of
Ωφ , wφ and λ in Fig. 5, and the wφ–Ωφ and wφ–w ′

φ relations are
shown in Fig. 6 with dotted lines for the inverse power-law poten-
tial with α = −4. We choose two different initial values of λi = 0.8
and λi = 0.4. The thawing solution was kept up to wφ ∼ −0.95 for
λi = 0.4 and wφ ∼ −0.85 for λi = 0.8. When the scalar field takes
the thawing solution, λ is almost a constant as shown in Fig. 5
and the analytical relation (24) approximates the wφ–Ωφ relation
well as shown in Fig. 6. Since λ′ ∝ λ2, the larger λ is, the faster λ

changes, so the analytical relation (24) gives better approximation
for smaller λi as shown in Fig. 6.

For the power-law potential with positive α, the roll parame-
ter |λ| increases with time and there is no asymptotically freezing
solution. To get the thawing solution, we need to start with small
|λi | so that wφ decreases to −1. If we also fine-tune the initial
value of Ωφ (for α = 6, Ωφi is around 10−30 at ln ai = −20), then
wφ stays at the value −1 and starts to increase recently. We show
the evolutions of Ωφ , wφ and λ in Fig. 5, the wφ–Ωφ and wφ–w ′

φ

relations in Fig. 6 by the dashed lines for the power-law potential
with α = 6. We choose two different initial values of λi = −0.8
and λi = −0.4. When the scalar field takes the thawing solution,
λ is almost a constant as shown in Fig. 5 and the analytical re-
lation (24) approximates the wφ–Ωφ relation well as shown in
Fig. 6. Again the analytical relation (24) gives better approxima-
tion for smaller |λi | as shown in Fig. 6. If we use the observational
constraints wφ0 � −0.8 and Ωφ0 > 0.6, then the analytical rela-
tion (20) requires |λi | < 1.3. From the analytical relation (20), we
see that λ → 3(1 + wφ)/Ωφ as Ωφ → 1 which is not true for the
positive power-law potential because |λ| keeps increasing and it
increases faster and faster once wφ deviate from −1, this means
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Fig. 5. The left panel shows the evolutions of Ωφ and wφ and the right panel shows the evolutions of λ for the thawing solutions. The arbitrary initial time ln ai = −20 was
chosen for computational convenience. The red lines are for |λi | = 0.8 and the blue lines are for |λi | = 0.4. The dashed lines are for the power-law potential V (φ) ∼ φ6, the
dotted lines are for the inverse power-law potential V (φ) ∼ φ−4, and the dot-dashed lines are for the PNGB potential. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this Letter.)

Fig. 6. The wφ –Ωφ and w ′
φ –wφ relations for the thawing solutions. The dashed lines are for the power-law potential V (φ) = φ6, the dotted lines are for the inverse

power-law potential V (φ) = φ−4, and the dot-dashed lines are for the PNGB potential. The black lines in the left panel denote the analytical result (20) with C = 0. In the
right panel, the magenta line denotes the upper limit 3(1 + wφ)(2 + wφ) for thawing models, and the black line denotes the upper limit 3(1 − w2

φ)/2. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this Letter.)
that the approximation is broken as Ωφ → 1. On the other hand,
as Ωφ → 0, we get 1 + wφ → λ2Ωφ/3(1 + γb/2)2 = 4λ2Ωφ/27, so
the flow parameter F = 1/3(1 +γb/2)2 = 4/27 initially at the mat-
ter domination for the thawing solution and the flow parameter
F = 1/3 when the quintessence field leaves the thawing solution.
Therefore, 4/27 � F � 1/3 for the thawing solution, we get an
upper limit w ′

φ � 3(1 − w2
φ)/2 which is smaller than the upper

limit w ′
φ = 3(1 + wφ)(2 + wφ) [10], and there is no lower limit on

w ′
φ . As shown in Fig. 6, the lower limit w ′

φ � 1 + wφ [10] does
not hold. These two upper bounds are also shown in Fig. 6 and
they are satisfied by the thawing solutions. From Eq. (10), we get
β = γb/2 = 1/2 initially and β = −γφ/2 when the thawing period
ends.
4. PNGB potential

In this section, we focus on the wφ–Ωφ approximation (24)
and the limit on w ′

φ for the PNGB potential. The PNGB poten-

tial V (φ) = M4[1 ± cos(Nφ/ f )] was first proposed in the schizon
model in which the small PNGB mass is protected by fermionic
chiral symmetries [48,49], π meson and the axion are examples
of PNGB. In cosmology, the PNGB potential was first introduced as
natural inflation [50], and was later found that it also dominates
the energy density of the universe at present [51]. In this Letter,
we choose the PNGB potential without loss of generality, V (φ) =
M4[1−cos(φ/mpl)] with the energy scale M ∼ 10−3 eV, the tracker
parameter Γ = (λ2 −1)/2λ2 < 1 and f (λ) = Γ −1 = −(1+λ2)/2λ2

[33], so there is no tracking solution for the PNGB potential. Since
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f (0) is not well defined, the dynamical analysis on the fixed points
in [33] is not applicable. The critical points are: Ωφc = 0, γc = 0 or
γc = 2 with arbitrary λ; Ωφc = 1 and γc = 0 with arbitrary λ; and
(Ωφc, γc, λc) = (1,2,0). In fact, all the critical points are unstable
points.

In this model, λ′ ∝ (1 + λ)2, the roll parameter λ changes faster
than the power-law potential, so we don’t expect that the analyt-
ical expression (24) approximates the wφ–Ωφ as well as that for
the power-law potential with the same λi . To get the thawing so-
lution, we also need to start with small |λi| so that wφ quickly
reaches the initial thawing value −1, and we also need to fine-
tune the initial value of Ωφ to be around 10−32 at ln ai = −20. The
evolutions of Ωφ , wφ and λ are shown in Fig. 5, and the wφ–Ωφ

and wφ–w ′
φ relations are shown in Fig. 6 with dot-dashed lines.

As we expect, λ does not keep to be nearly constant, the approxi-
mation (20) is not good for large λi and it breaks down when Ωφ

approaches 1.

5. Discussion and conclusions

When the tracking solution is reached, w ′
φ ≈ w ′′

φ ≈ 0, so wφ is
almost a constant and both the tracker condition (11) and Eq. (14)
are satisfied. To keep wφ to be a constant, Ωφ should be small
and the tracker parameter Γ should be nearly constant, so the
tracker condition (11) requires the roll parameter λ to be large.
Therefore, the tracker parameter Γ > 1 and large initial value of
the roll parameter λ are the necessary conditions for tracking so-
lutions. Based on this analysis, we proposed the tracker theorem.
Although the current value of Ωφ and wφ depend on the initial
conditions for the tracking solutions, the wφ–Ωφ trajectory be-
fore Ωφ reaches 1 is independent of the initial conditions and
it can be used to exclude models by comparing it with the ob-
servational constraints. If we choose the observational constraints
0.2 � Ωm0 � 0.4 and w0 � −0.8, then we require n � 1 for the
inverse power-law potential V (φ) = V 0(φ/mpl)

−n . Since the dark
energy domination (Ωφ = 1, wφ = −1, λ = 0) is the attractor for
the inverse power-law potential, the asymptotic behaviors of λ and
wφ are the same and the same asymptotic λ–wφ trajectory is
followed by all solutions including the tracking and non-tracking
solutions. The flow parameter F starts and ends with F = 1/3,
the upper bound 0.2wφ(1 + wφ) does not hold and we expect
that no such upper bound exists for the freezing models, this will
make the distinction between cosmological constant and dynami-
cal tracker fields more difficult.

If the initial value of the roll parameter λ is small, then wφ

quickly decreases to −1 and stays at the value until the roll param-
eter λ becomes large, after that wφ starts to increase. This thawing
behavior can be achieved for the power-law potential with posi-
tive α and the PNGB potential. The thawing behavior can also be
achieved for the inverse power-law potential for a period of time if
the initial value of the roll parameter is small. In general, we need
to fine-tune the initial conditions so that we get the right values
of Ωφ0 and wφ0 which are consistent with the observational con-
straints for the thawing solutions. Because wφ ≈ −1 initially, the
roll parameter changes very slowly and it can be approximated as
a constant, a general wφ–Ωφ relation (24) is then obtained. Based
on the asymptotical behavior of the wφ–Ωφ relation, the flow pa-
rameter F = 1/3(1 + γb/2)2 = 4/27 when Ωφ → 0 and wφ → −1
during the matter domination, and F = 1/3 when the thawing be-
havior ends, we derive the upper bound w ′

φ � 3(1− w2
φ)/2 and we

expect that no lower bound exists for the thawing models, so the
distinction between cosmological constant and dynamical thawing
models becomes more difficult. If we use the observational con-
straint wφ0 < −0.8 and 0.2 < Ωm0 < 0.4, we find that the initial
value of the roll parameter |λi | < 1.3 for the potentials with the
thawing solutions.

In summary, we find that the same relation not only exists be-
tween wφ0 and Ωφ0, but also exists between wφ and Ωφ at any
time after the tracker field takes the tracking solutions. The rela-
tion is independent of the initial conditions and the energy scale
V 0 of the tracker field, so the observational data can be used to
constrain the tracker model by using this relation. Based on the ex-
istence of the relation, we generalize the tracking solutions with a
common track of wφ(t) to those solutions with a common wφ–Ωφ

trajectory and we propose the tracker theorem by using the roll
parameter λ. Both the upper limit w ′

φ < 0.2wφ(1 + wφ) for the
tracking solutions and the lower limit w ′

φ > 1 + wφ for the thaw-
ing solutions are found to be violated, and we propose a lower
upper bound w ′

φ � 3(1 − w2
φ)/2 for the thawing solutions.
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