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SUMMARY

Temporal lobe epilepsy is the most common and
often devastating form of human epilepsy. The mo-
lecular mechanism underlying the development of
temporal lobe epilepsy remains largely unknown.
Emerging evidence suggests that activation of the
BDNF receptor TrkB promotes epileptogenesis
caused by status epilepticus. We investigated a
mouse model in which a brief episode of status epi-
lepticus results in chronic recurrent seizures, anxi-
ety-like behavior, and destruction of hippocampal
neurons. We used a chemical-genetic approach to
selectively inhibit activation of TrkB.Wedemonstrate
that inhibition of TrkB commencing after status epi-
lepticus and continued for 2 weeks prevents recur-
rent seizures, ameliorates anxiety-like behavior,
and limits loss of hippocampal neurons when tested
weeks to months later. That transient inhibition
commencing after status epilepticus can prevent
these long-lasting devastating consequences estab-
lishes TrkB signaling as an attractive target for devel-
oping preventive treatments of epilepsy in humans.

INTRODUCTION

The epilepsies are one of the most common serious disorders of

the CNS. Among the epilepsies, temporal lobe epilepsy (TLE) is

the most common form and is often devastating both because

of its resistance to anticonvulsants and its associated behavioral

disorders (Engel et al., 1998). Retrospective studies of patients

with medically refractory TLE revealed that the majority experi-
enced an episode of continuous seizure activity (status epilepti-

cus [SE]) years earlier (French et al., 1993). Longitudinal studies

reveal that almost half of individuals experiencing de novo SE

develop recurrent seizures (epilepsy) after a seizure-free latent

period of variable duration (Annegers et al., 1987; Tsai et al.,

2009). Because induction of SE alone is sufficient to induce

TLE in diverse mammalian species ranging from mice to subhu-

man primates (Pitkänen, 2010), the occurrence of de novo SE is

thought to contribute to development of TLE in humans.

Insight into the molecular mechanisms by which SE trans-

forms a normal brain into an epileptic brain may reveal novel tar-

gets for development of preventive therapies.

It has been widely hypothesized that the brain-derived neuro-

trophic factor (BDNF) receptor TrkB is required for SE-induced

TLE (Boulle et al., 2012; but see Paradiso et al., 2009); however,

off-target effects of TrkB inhibitors together with inadequate

temporal control afforded by genetically modified animals have

precluded testing this idea. We therefore sought a method to

selectively inhibit TrkB after SE. Here we use a chemical-genetic

method (Chen et al., 2005) and demonstrate that inhibition of

TrkB signaling for 2 weeks after SE prevents development of

TLE and ameliorates comorbid anxiety-like behavior and

destruction of hippocampal neurons.

RESULTS

Activation of TrkB after SE
We first sought to confirm that SE induction enhanced activation

of TrkB. A major pathway by which SE can be induced in hippo-

campus and related temporal lobe structures involves activation

of neurons in the amygdala by chemical or electrical methods

(Goddard et al., 1969;Mouri et al., 2008). Infusion of the chemical

convulsant kainic acid (KA) into the right amygdala of an awake

wild-type (WT) mouse induced SE (Ben-Ari et al., 1980; Mouri
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et al., 2008) (Figures S1A, S1B, S3, and S4 available online). Mice

were euthanized either immediately (0) or at 3, 6, 24, or 96 hr

later. Mice infused with vehicle (PBS) served as controls. Using

p-TrkB (pY816 and pY705/706) immunoreactivity as surrogate

measures of activation (Segal et al., 1996), we detected

increased activation of TrkB in the hippocampus ipsilateral to

the infused amygdala immediately upon termination of SE and

at each of the subsequent time points relative to the vehicle con-

trols (p < 0.01) (Figure S2A).

Chemical-Genetic Approach Enables Selective
Inhibition of TrkB Kinase
We next sought to verify that we could selectively inhibit TrkB

activation using a chemical-genetic approach. A genetic modifi-

cation of mice in the TrkB locus (TrkBF616A) in which alanine is

substituted for phenylalanine at residue 616 within kinase

subdomain V renders TrkB sensitive to inhibition by a blood-

brain barrier and membrane-permeable, small-molecule, 1-(1,

1-dimethylethyl)-3-(1-naphthalenylmethyl)-1H-pyrazolo[3, 4-d]

pyrimidin-4-amine (1NMPP1; henceforth, the terms 1NMPP1

and inhibitor will be used interchangeably). Importantly, in the

absence of 1NMPP1, no differences in TrkB kinase activity or

overt behavior are detectable in TrkBF616A compared to WT

mice (Chen et al., 2005). We infused the amygdala of TrkBF616A

mice either with PBS or KA and then administered vehicle or

1NMPP1, respectively (see Experimental Proceduresand Fig-

ure S1B). We detected enhanced p-TrkB (pY816) immunoreac-

tivity in western blots of lysates from the hippocampus ipsilateral

to the infused amygdala in vehicle-treated WT (3 hr post-SE, p <

0.001) and TrkBF616A mice (3 hr post-SE, p < 0.001; 24 hr post-

SE, p < 0.01) compared to their vehicle-treated PBS-infused

controls (Figures S2B, S2C, and S2D). Importantly, 1NMPP1

treatment inhibited the increase in p-TrkB (pY816) after SE in

TrkBF616A (3 hr, p < 0.001; 24 hr, p < 0.01) but not inWTmice (Fig-

ures S2B, S2C, and S2D). Similar results were obtained with an

additional antibody directed to pY705/706 (Figures S2B, S2C,

and S2D). These results provide direct biochemical evidence

that systemic treatment with 1NMPP1 can selectively inhibit

SE-induced TrkB activation in TrkBF616A mice and validate our

chemical-genetic method.

Transient Inhibition of TrkB Kinase Commencing after
SE Prevents Development of TLE
The ability to effectively and selectively inhibit activation of TrkB

induced by SE enabled us to further determine whether inhibition

of TrkB kinase after SE could prevent the development of

chronic, spontaneous recurrent seizures (SRSs). We maintained
Figure 1. Transient Inhibition of TrkB Kinase Prevents SRS after SE

(A) Total number of SRSs detected during weeks 1–2 after SE during treatment w

SRS was significantly reduced by 1NMPP1 treatment in TrkBF616A (*p < 0.05) bu

SRSs detected during weeks 5–6 post-SE (heat map in D); video-EEG analyses w

with 1NMPP1. Among the ten 1NMPP1-treated TrkBF616Amicemonitored during 1

of C) were monitored during weeks 5–6 after SE (D). Occurrence of SRSs was pre

WTmice compared to their vehicle-treated controls. (C and D) Number of SRSs de

as heat maps (one mouse per column). Note that SRSs were detected in only two

1NMPP1-treated TrkBF616Amice during weeks 5–6 (D). By contrast, all vehicle-tre

(six of six) or 1NMPP1 (six of six) exhibited SRSs during weeks 1–2 (C) and we

Bonferroni post hoc tests, n = 6–10. M, male; F, female. Animal numbers corresp
animals on 1NMPP1 for a period of 2 weeks (Figure S1B and

Experimental Procedures) because this approach ensured inhi-

bition of TrkB kinase for the duration of the SE-induced elevation

(Figure S2). To minimize its effects on KA-induced SE, we with-

held treatment with 1NMPP1 until diazepam was administered

after 40 min of SE. Importantly, behavioral (Figures S3A and

S3B) and electrographic (Figures S3C and S4) seizures during

SE prior to treatment with diazepam were similar in the vehicle-

and 1NMPP1-treated TrkBF616A mice. Moreover, assessment of

electrographic seizure number or duration in hippocampal elec-

troencephalogram (EEG) recordings during the 1 hr interval be-

tween diazepam and lorazepam or during the 1 hr after treatment

with lorazepam by a blinded observer revealed no significant dif-

ferences between vehicle- and 1NMPP1-treated TrkBF616A mice

(Figures S3F and S3G, respectively). These results of visually in-

spected EEG were corroborated by quantitative measures of

EEG power, which revealed no significant differences between

vehicle- and 1NMPP1-treated TrkBF616A mice during the 1 hr in-

tervals after treatment with diazepam or lorazepam (Figures

S3D, S3E, and S4).

We first asked whether SRSs can be suppressed during the

2 weeks of 1NMPP1 treatment and subsequently (i.e., weeks

5–6) whether SRSs are eliminated after termination of 1NMPP1

treatment of TrkBF616A mice. Despite displaying SE with behav-

ioral and EEG features similar to those of vehicle-treated

TrkBF616A mice (Figures S3 and S4), no seizures were detected

in eight of the ten 1NMPP1-treated TrkBF616A mice during the

2 weeks after SE (Figures 1A and 1C). Of the two 1NMPP1-

treated TrkBF616A mice that exhibited seizures, a limited number

of seizures (two and three, respectively) were detected within 3

to 5 days after SE, whereas no seizures were observed during

days 6–14 after SE (Figure 1C). By contrast, analyses of contin-

uous video-EEG during weeks 1–2 after SE revealed that SE-

induced SRSs commenced several days thereafter in all

vehicle-treated TrkBF616A mice and in all WT mice treated with

either vehicle or 1NMPP1 (Figures 1A and 1C). There was a strik-

ing reduction in the number of SRSs per 1NMPP1-treated

TrkBF616A mouse (0.5 ± 0.3) compared to the vehicle-treated

TrkBF616A group (10.0 ± 3.1; p < 0.05) (Figure 1A). Importantly,

1NMPP1 treatment did not reduce the occurrence of SRSs in

WT mice in comparison to their vehicle-treated controls (p =

0.57), thereby demonstrating the specificity of 1NMPP1 inhibi-

tion. The seizures that did occur in the two 1NMPP1-treated

TrkBF616A mice were of similar duration (p = 0.66, Student’s

t test) and behavioral class (p = 0.71, Student’s t test) to those

observed in vehicle-treated TrkBF616A mice. Importantly, no sei-

zures were detected in control mice receiving infusion of PBS
ith vehicle or 1NMPP1 in WT or TrkBF616A mice (heat map in C). Occurrence of

t not WT mice compared to their vehicle-treated controls. (B) Total number of

ere initiated in these mice approximately 2 weeks after terminating treatment

–2 weeks after SE, eight of them (the left first eight columns on the bottom right

vented in these eight 1NMPP1-treated TrkBF616A mice (***p < 0.001), but not in

tected each day duringweeks 1–2 (C) andweeks 5–6 (D) after SE are presented

of ten 1NMPP1-treated TrkBF616A mice during weeks 1–2 (C) and one of eight

ated TrkBF616Amice (seven of seven) and all WTmice treated with either vehicle

eks 5–6 (D) post-SE. Statistics were performed using two-way ANOVA with

ond to numbers in Figures S3 and S4.
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Figure 2. SE-Induced Anxiety-like Behavior

Is Reduced by Inhibition of TrkB Kinase

(A) Both WT and TrkBF616A mice undergoing SE

and treated with vehicle thereafter exhibited pro-

longed latency to exit the darkened and enter the

lighted compartment compared to PBS controls

(WT: **p < 0.01; TrkBF616A: *p < 0.05). 1NMPP1

treatment reduced this latency in TrkBF616A mice

(**p < 0.01), but not in WT mice. (B) Both WT and

TrkBF616A mice undergoing SE and treated with

vehicle thereafter spent less time in lighted

compartment compared to PBS controls (WT:

**p < 0.01; TrkBF616A: **p < 0.01). 1NMPP1 treat-

ment increased the time spent in the lighted

compartment in TrkBF616A mice (***p < 0.001), but

not in WT mice. Data are presented as mean ±

SEM and analyzed using two-way ANOVA with

Bonferroni corrections, n = 5–9.
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into amygdala (data not shown). Thus, continuous infusion of the

TrkB kinase inhibitor 1NMPP1 for 2 weeks commencing after SE

markedly reduces the SE-induced SRSs.

If inhibition of TrkB kinase activity prevented development of

epilepsy, then a reduction of SRSs should persist after termina-

tion of the inhibitor (1NMPP1). After discontinuation of 1NMPP1

treatment, animals were housed in home cages for 2 weeks (i.e.,

weeks 3–4) before video-EEG monitoring was resumed during

weeks 5–6. Among eight TrkBF616A mice that had undergone

1NMPP1 treatment during weeks 1–2 after SE, no seizures

were detected in seven of them during weeks 5–6 and only a sin-

gle seizure was detected in the eighth mouse (Figures 1B and

1D). By contrast, all vehicle-treated TrkBF616A mice and all WT

mice treated with either vehicle or 1NMPP1 exhibited SRSs dur-

ing this same time (Figures 1B and 1D). Indeed the epilepsy ap-

peared to worsen, in that the percentage of days with seizure

during weeks 5–6 increased in comparison to weeks 1–2 in

each of these three control groups (p < 0.001, paired Student’s

t test, n = 19). Consistent with the worsening, when all three

groups were considered together, a significant increase (38%)

in the total number of seizures was found during weeks 5–6

compared to weeks 1–2 (p < 0.05, paired Student’s t test, n =

19). In contrast to TrkBF616A mice, 1NMPP1 treatment did not

reduce the frequency of SRSs in WT mice relative to the vehicle

controls (p > 0.99) (Figures 1B and 1D). Importantly, the reduc-

tion of SRSs in 1NMPP1-treated TrkBF616A mice during weeks

5–6 (p < 0.001) (Figures 1B and 1D) was not due to residual inhi-

bition of TrkB kinase because an evoked seizure induced similar

amounts of pTrk immunoreactivity in TrkBF616A mice when

examined 1 week after terminating 1NMPP1 treatment

compared to the vehicle alone (G.L., unpublished data), a finding

consistent with a half-life of 1NMPP1 of less than 1 hr (Wang

et al., 2003). In sum, the striking reduction of seizures in

1NMPP1-treated TrkBF616A mice after termination of 1NMPP1

treatment demonstrates that transient inhibition of TrkB kinase

after SE prevents SE-induced chronic, recurrent seizures (TLE).

Transient Inhibition of TrkB Kinase Ameliorates SE-
Induced Anxiety-like Behavior
Increased levels of anxiety have been reported in humans with

TLE and anxiety-like behavior has been documented in animal
34 Neuron 79, 31–38, July 10, 2013 ª2013 Elsevier Inc.
models of TLE (Beyenburg et al., 2005; Gröticke et al., 2007).

We sought to determine whether SE-induced anxiety-like

behavior in animals was present and, if so, whether this SE-

induced behavioral abnormality can be prevented by the tran-

sient inhibition of TrkB kinase activity. After completion of

video-EEG recording during weeks 5–6, anxiety-like behavior

was assessed using the light-dark emergence test (Bourin and

Hascoët, 2003). In comparison to controls (n = 9) in which PBS

was infused into the amygdala, WT and TrkBF616Amice undergo-

ing SE followed by treatment with vehicle exhibited a prolonged

latency to enter the lighted compartment (WT: p < 0.01;

TrkBF616A: p < 0.05) (Figure 2A) and both groups spent less

time in the lighted compartment (WT: p < 0.01; TrkBF616A: p <

0.01) (Figure 2B). Notably, similar results were observed after

SE in WT animals treated with vehicle or 1NMPP1 and in

TrkBF616A mice treated with vehicle. By comparison to the

vehicle-treated TrkBF616A mice, TrkBF616A mice given 1NMPP1

for 2 weeks after SE exhibited a significantly reduced latency

to enter the lighted compartment (p < 0.01) and they spent

increased time in the lighted compartment (p < 0.001) (Figure 2).

Similarities in locomotor activity in an open field among all four

groups undergoing SE excluded differences in spontaneous ac-

tivity as a confounding variable in the light-dark emergence re-

sults (data not shown) (Bourin and Hascoët, 2003). Collectively,

these results demonstrate that transient inhibition of TrkB kinase

activity prevents SE-induced anxiety-like behavior.

Neuroprotective Effects of Inhibition of TrkB Kinase
after SE
Death of hippocampal neurons and reactive gliosis are well

recognized neuropathological features of TLE in humans (Math-

ern et al., 1998) and similar features have been identified in the

hippocampus ipsilateral to the KA-infused amygdala 2 weeks

after SE (Mouri et al., 2008). Histological analyses of a subset

of WT mice given vehicle after SE and euthanized 2–3 months

thereafter revealed �60% reduction of neurons (NeuN-immuno-

reactive cells) in CA3b hippocampus compared to control WT

animals undergoing PBS infusion into amygdala (Figure 3A,

compare images in top and middle rows in far-left column, and

Figure 3B, p < 0.001), confirming results of Mouri et al. (2008).

Significant reductions of similar magnitude were observed after



Figure 3. SE-Induced Hippocampal Dam-

age Is Attenuated by Inhibition of TrkB

Kinase

(A) Representative images of immunostaining of

NeuN and GFAP in the hippocampal CA3b region

ipsilateral to the infusion site in WT and TrkBF616A

mice in respective PBS controls, SE-vehicle-

treated, and SE-1NMPP1-treated mice; scale bar

represents 50 mM. Insets: GFAP-positive cells

exhibited enhanced immunoreactivity and

enlarged cell bodies and braches in SE-vehicle- or

1NMPP1-treated WT mice and in SE-vehicle-

treated TrkBF616A mice; scale bar represents

20 mM. (B) Number of NeuN-positive cells within

ipsilateral CA3b hippocampus was reduced in

both WT and TrkBF616A mice undergoing SE and

treated with vehicle thereafter compared to PBS

controls (WT: ***p < 0.001; TrkBF616A: ***p < 0.001).

1NMPP1 treatment inhibited loss of NeuN-positive

cells in TrkBF616Amice (***p < 0.001), but not in WT

mice. Data are presented as mean ± SEM and

analyzed using two-way ANOVA with Bonferroni

post hoc tests, n = 3–6.
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SE in 1NMPP1-treated WT and vehicle-treated TrkBF616A mice

(Figures 3A and 3B). A significant yet notably less marked reduc-

tion (27%) of neurons was detected in 1NMPP1-treated

TrkBF616A mice after SE compared to control TrkBF616A mice un-

dergoing infusion of PBS into the amygdala (Figures 3A and 3B;

p < 0.05). Reactive gliosis evidenced by enlarged GFAP-immu-

noreactive cells with thickened processes in CA3b of hippocam-

pus were observed after SE in WT animals treated with either

vehicle or 1NMPP1 and in TrkBF616A mice treated with vehicle

(Figure 3A), confirming a previous report of Mouri et al. (2008).

Importantly, these abnormalities were attenuated by 1NMPP1

treatment after SE in the TrkBF616A mice (Figure 3A).

DISCUSSION

We hypothesized that transient inhibition of TrkB kinase

commencing after SE should prevent the subsequent expression

of chronic, recurrent seizures. We used biochemical, electro-

physiological, and pharmacological studies of WT and TrkBF616A

mice to test this hypothesis. A brief (40 min) epoch of SE was fol-

lowed by recovery and a seizure-free latent period of several

days, after which a devastating condition characterized by recur-

rent seizures with progressively increasing frequency, anxiety-
Neuron 79, 3
like behavior, and destruction of hippo-

campal neurons ensued. Biochemical

studies revealed increased activation of

TrkB in hippocampal membranes that

was detectable shortly after onset of SE

and persisted for several days. Inhibition

of TrkB kinase initiated after SE and

continued for just 2 weeks prevented

the development of TLE and anxiety-like

behavior and limited destruction of hip-

pocampal neurons when tested weeks

to months thereafter. These findings
establish TrkB signaling as an appealing target for therapies

aimed at preventing development of epilepsy and associated

behavioral disorders after SE.

The seizure-free latent period after SE is recognized clinically

(Annegers et al., 1987; French et al., 1993; Tsai et al., 2009)

and provides an opportunity to intervene with therapy to prevent

chronic recurrent seizures, a finding that has fostered intensive

study of the molecular mechanisms by which a brief episode of

SE induces lifelong epilepsy. Activation of mammalian target of

rapamycin (mTOR) signaling by SE has provided an attractive

mechanism because continuous treatment with an mTOR inhib-

itor (rapamycin), initiated after SE, reduced the frequency of

epileptic seizures (Wong, 2010). Disappointingly, the epileptic

seizures emerged after discontinuation of rapamycin, implying

that rapamycin suppressed seizures rather than targeting the

mechanisms underlying their development (Huang et al., 2010).

Administration of decoy oliognucleotides limiting the transcrip-

tional repressor NRSF initiated after SE resulted in a 70% reduc-

tion in the number of spontaneous seizures during the ensuing

2 weeks (McClelland et al., 2011). However, it is presently un-

clear whether the reduced frequency of seizures will persist after

discontinuation of decoy oligonucleotide therapy. Likewise,

pharmacological depletion of a microRNA, miR-134, initiated
1–38, July 10, 2013 ª2013 Elsevier Inc. 35
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after SE reduced the occurrence of spontaneous seizures when

tested weeks later. Nevertheless, whether this treatment was

preventive requires additional study because reductions of

miR-134 persisted (Jimenez-Mateos et al., 2012). Treatment

with atipamezole, an a2-adrenergic receptor antagonist, after

SE reduced the frequency of seizures but failed to prevent epi-

lepsy or behavioral impairments (Pitkänen et al., 2004). In the

context of these studies, the present findings are notable both

with respect to themagnitude of inhibition of the disease process

and its time course. Whereas multiple spontaneous recurrent

seizures were detected during weeks 5–6 after SE in each of

the 19 control animals undergoing SE, no seizureswere detected

in seven of eight animals in which TrkB kinase was inhibited for

just 2 weeks after KA-SE and only a single seizure was detected

in the eighth animal. Importantly, the short half-life of 1NMPP1

(less than 1 hr) (Wang et al., 2003), together with direct biochem-

ical evidence excluding persistent inhibition (G.L., unpublished

data), establishes the transient nature of the kinase inhibition.

The virtual elimination of spontaneous recurrent seizures and

associated anxiety-like behavior were evident long after discon-

tinuation of TrkB kinase inhibition, demonstrating a truly preven-

tive effect of this intervention.

That SE induces loss of hippocampal neurons is evident from

both histological and MRI studies of humans with severe TLE

(Cascino, 1998; Mathern et al., 1998). The control animals

undergoing SE in the present study exhibited neuronal loss pre-

dominantly in the hippocampal CA3 region ipsilateral to the KA

injection, as well as increased GFAP immunoreactivity typical

of reactive gliosis, resembling the pathology in humans and con-

firming previous reports (Mouri et al., 2008). This pathology was

significantly attenuated, but not eliminated, by transient inhibi-

tion of TrkB kinase commencing after SE. Because activation

of TrkB signaling would be expected to protect neurons from

death (Huang and Reichardt, 2003), the reduction in neuronal

death after inhibition of TrkB kinase is surprising. One possibility

is that the loss of hippocampal neurons in animals undergoing

SE followed by inhibition of TrkB kinase is due to injury sustained

during SE itself. If so, the greater loss of hippocampal neurons in

the control groups may be due both to SE and to the many iso-

lated seizures that ensued over a couple of months prior to

death. The fact that many isolated seizures result in destruction

of hippocampal neurons (Kotloski et al., 2002) supports this idea.

A diversity of behavioral disorders has been identified in pa-

tients with epilepsy with a greater frequency than in other chronic

diseases, impairing the quality of life (Torta and Keller, 1999).

Anxiety disorders are the most common behavioral conditions

found in patients with epilepsy (Beyenburg et al., 2005). Animals

undergoing SE in the current study exhibited a striking reluc-

tance to enter the lighted compartment in the light-dark emer-

gence test. Based on the innate aversion of rodents to brightly

illuminated areas and on the spontaneous exploratory behavior

of rodents in response to mild stressors (novel environment

and light), the reluctance of mice undergoing SE to enter the

lighted compartment is a response thought to reflect anxiety.

Notably, this reluctance was eliminated in animals undergoing

TrkB kinase inhibition. Thus, enhanced TrkB kinase signaling

induced by SE not only results in recurrent seizures, but it also

renders the subject vulnerable to expressing anxiety-like
36 Neuron 79, 31–38, July 10, 2013 ª2013 Elsevier Inc.
behavior. Together, these findings raise the interesting possibil-

ity that experience-driven activation of TrkB kinase activity may

contribute to other CNS illnesses that, like epilepsy, can be

induced by an episode of pathological neuronal activity. A trau-

matic emotional experience inducing a lifelong anxiety disorder

would be one possibility. Evidence implicating TrkB signaling

in the induction of contextual fear conditioning (Rattiner et al.,

2004), an animal model mimicking some features of posttrau-

matic stress disorder, supports this idea.

The nature of the cellular consequences of enhanced TrkB

activation that underlies the pathological consequences of the

brief epoch of SE is presently unclear. Determining the cellular

and subcellular locale of the activated TrkB is a critical first

step to elucidating the cellular consequences, a determination

that can be made using high-resolution microscopy methods

to localize pTrkB (Helgager et al., 2013).

The present findings provide proof of concept evidence that

activation of TrkB kinase is required for the induction of chronic,

recurrent seizures and anxiety-like behavior after SE. This result

provides a strong rationale for developing selective inhibitors of

TrkB kinase for clinical use. That commencing TrkB kinase inhi-

bition after SE was effective together with the short latency of

access to emergencymedical care of many patients with SE (All-

dredge et al., 2001) enhances the feasibility of this approach to

preventive therapy. The fact that just 2 weeks of treatment was

sufficient to prevent TLE could minimize potential unwanted ef-

fects inherent in long-term exposure to preventive therapy. In

sum, TrkB signaling provides an appealing target for developing

drugs aimed at prevention of TLE.

EXPERIMENTAL PROCEDURES

Animals

TrkBF616A andWTmice in a C57BL/6 background (Charles River) were housed

under a 12 hr light/dark cycle with food and water provided ad libitum. Animals

were handled according to the National Institutes of Health Guide for the Care

and Use of the Laboratory Animals and the experiments were conducted un-

der an approved protocol by the Duke University Animal Care and Use

Committee.

Surgery and Amygdala Kainic Acid Microinfusion

Adult mice were anesthetized and a guide cannula was inserted above the

right amygdala and a bipolar electrode was inserted into the left hippocampus

under stereotaxic guidance (Figure S1A). After a 7-day postoperative recovery,

either kainic acid (KA) (0.3 mg in 0.5 ml PBS) or vehicle (0.5 ml of PBS) was

infused into the right basolateral amygdala in an awake, gently restrained an-

imal. Hippocampal EEG telemetry (Grass Instrument) and time-locked video

monitoring were performed usingHarmonie software (Stellate Systems).Moni-

toring started at least 5min before amygdala KA infusion for recording baseline

EEG and behavioral activity. SE was typically evident electrographically and

behaviorally (Mouri et al., 2008) 8–12 min after KA infusion (Figures S3A and

S4A). Forty minutes after onset of KA-induced SE, diazepam (10 mg/kg, intra-

peritoneally [i.p.]) was administered to suppress SE, and this was followed by

lorazepam (6 mg/kg, i.p.) 1 hr later. To assure similarity of SE intensity, we

quantified behavioral and EEG seizures after infusion of KA and for 1 hr inter-

vals after treatment with diazepam and lorazepam in both vehicle- and

1NMPP1-treated TrkBF616Amice (Figures S3 and S4). The EEG recording elec-

trode was placed in the left hippocampus so as not to confound histological

analyses of the hippocampus ipsilateral to the infused (right) amygdala; the

extensive commissural connections between the hippocampi notwith-

standing, it is possible that electrographic seizure activity localized to the right

hippocampus occurred and escaped detection.
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Unless specified otherwise, after SE, animals underwent continuous

video-EEG monitoring 24 hr/day, 7 days/week during weeks 1–2 and weeks

5–6 post-SE. Spontaneous recurrent seizures (SRSs) were identified by re-

view of video-EEG files by two independent trained readers blinded to

both genotype and treatment of mice. Behavioral seizures were classified

according to a modification of the Racine scale for mice (Borges et al.,

2003). All EEG SRSs were confirmed by corresponding behavioral seizures

documented by time-locked video review. Quantitative analysis of EEG en-

ergy content was performed as described in Lehmkuhle et al. (2009) (Figures

S3 and S4).

Treatment

In experiments examining effects of 1NMPP1 treatment on SE-induced spon-

taneous recurrent seizures, the first dose of 1NMPP1 (16.6 mg/g, i.p.) was in-

jected immediately after giving diazepam and a second dose of 1NMPP1

(16.6 ng/g) immediately after administration of lorazepam (Figure S1B). A third

dose of 1NMPP1 (16.6 mg/g, i.p.) was injected approximately 12 hr post-SE,

after which 1NMPP1 was administered daily (16.6 mg/g, i.p.) and also included

in drinking water (25 mM) for the ensuing 2 weeks, at which point it was tapered

and discontinued. WT mice and TrkBF616A mice injected under the same

regimen with vehicle (i.p. and in drinking water) served as controls.

Western Blotting

Animals were euthanized and decapitated. Crude membranes were prepared

from hippocampi and subjected to SDS-PAGE. After transfer, western blotting

was conducted as described in the Supplemental Experimental Procedures.

Behavioral Tests

After EEG and behavioral monitoring, KA-infused mice were examined for

spontaneous activity in the open field and anxiety-like behavior in the light/

dark box at 8 weeks post-SE as described in the Supplemental Experimental

Procedures. PBS-infused (amygdala) WT or TrkBF616A mice treated with

vehicle or 1NMPP1 were tested at 8 weeks postinfusion and served as

controls.

Neuropathology

At 10 weeks post-SE, mice were anesthetized and perfused with heparinized

PBS followed by 4% paraformaldehyde and brains prepared for immunoflu-

orescent study of neurons and astrocytes as described by Mouri et al.

(2008). NeuN-positive cell counting was performed by an investigator

blinded to the genotype and treatment conditions with ImageJ software (Fer-

reira and Rasband, 2011) as described in the Supplemental Experimental

Procedures.

Data Analysis

All data are presented as the mean ± SEM. Unless otherwise noted, compar-

isons between two groups were analyzed using unpaired Student’s t tests,

while multigroup comparisons were analyzed using two-way ANOVA followed

by Bonferroni post hoc tests. A p < 0.05 was considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.neuron.2013.04.027.
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