
Discrete Applied Mathematics 155 (2007) 327–336
www.elsevier.com/locate/dam

Approximating reversal distance for strings with bounded number
of duplicates

Petr Kolmana,1, Tomasz Waleńb,2

aDepartment of Applied Mathematics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
bFaculty of Mathematics, Informatics and Mechanics, Warsaw University, Banacha z, 02-097, Warsaw, Poland

Received 9 November 2004; received in revised form 28 March 2006; accepted 19 May 2006
Available online 7 September 2006

Abstract

For a string A=a1 . . . an, a reversal �(i, j), 1� i �j �n, transforms the string A into a string A′=a1 . . . ai−1aj aj−1 . . . aiaj+1 . . .

an, that is, the reversal �(i, j) reverses the order of symbols in the substring ai . . . aj of A. In the case of signed strings, where each
symbol is given a sign+ or−, the reversal operation also flips the sign of each symbol in the reversed substring. Given two strings,
A and B, signed or unsigned, sorting by reversals (SBR) is the problem of finding the minimum number of reversals that transform
the string A into the string B.

Traditionally, the problem was studied for permutations, that is, for strings in which every symbol appears exactly once. We
consider a generalization of the problem, k-SBR, and allow each symbol to appear at most k times in each string, for some k�1. The
main result of the paper is an O(k2)-approximation algorithm running in time O(n). For instances with 3 < k�O(

√
log n log∗ n),

this is the best known approximation algorithm for k-SBR and, moreover, it is faster than the previous best approximation algorithm.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Approximation algorithms; String comparison; Edit distance; Sorting by reversals; Minimum common string partition

1. Introduction

For a stringA=a1 . . . an, a reversal�(i, j), 1� i�j �n, transforms the stringA into a stringA′=a1 . . . ai−1ajaj−1 . . .

aiaj+1 . . . an, that is, the reversal �(i, j) reverses the order of symbols in the substring ai . . . aj of A. In a case of signed
strings, where each symbol is given a sign + or −, the reversal operation also flips the sign of each symbol in the
reversed substring. Given two strings, A and B, signed or unsigned, sorting by reversals (SBR) is the problem of finding
the minimum number of reversals that transform the string A into the string B; this number, denoted by SBR(A, B), is
called the reversal distance of A and B.

A necessary and sufficient condition for A and B to have a finite reversal distance is that each letter appears the same
number of times in A and B (for the signed version, we count together the occurrences of a letter with positive and
negative signs). We call such strings related.

1 Research done in part while visiting University of California at Riverside. Supported by NSF grants CCR-0208856 and ACI-0085910 and by
project 1M0021620808 of MŠMT ČR.

2 Partially supported by the Polish Scientific Research Committee (KBN) under grant GR-1946.
E-mail addresses: kolman@kam.mff.cuni.cz (P. Kolman), walen@mimuw.edu.pl (T. Waleń).

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.05.011

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82052759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:kolman@kam.mff.cuni.cz
mailto:walen@mimuw.edu.pl

328 P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336

To give an example, A= abcabc and B = bcbaac are related strings and �(3, 6), �(1, 4) is a sequence of reversals
that turns A into B, therefore SBR(A, B)�2. Similarly, �(1, 4), �(4, 4) turns A′ = +a − c − b − a + b + c into
B ′ = +a + b + c + a + b + c and thus, SBR(A′, B ′)�2.

In this paper we study a variant of the problem, denoted by k-SBR, in which each symbol is allowed to appear at
most k times in each string. Our particular interest is in the case of small values of k. The main contribution is an
O(k2)-approximation algorithm for k-SBR running in time O(n). In particular, for k = O(1) which is of interest for
comparisons of genomic sequences, we have a linear time O(1)-approximation algorithm.

Preliminary version of this work was presented at the 30th International Symposium on Mathematical Foundations
of Computer Science [15].

1.1. Terminology

For notational simplicity, we allow a few symbols to have slightly different meanings for signed and unsigned strings.
For a string P = a1 . . . an, we denote by −P the result of a reversal �(1, n) of P (e.g., for P =+a + b − d, we have
−P = +d − b − a). We use two different equivalence relations. Two strings A = a1a2 . . . an and B = b1b2 . . . bn,
signed or unsigned, are identical, A = B, if ai = bi for each i ∈ [n]. In a case of signed strings, by ai = bi we mean
also equality of the signs. Signed or unsigned strings A and B are congruent, A�B, if A= B or A=−B.

The length of a string A is denoted by |A|. A substring S of A is a proper substring if |S|< |A|. A partition of a string
A is a sequence P=(P1, P2, . . . , Pm) of strings whose concatenation is equal to A, that is, P1P2 . . . Pm=A. The strings
Pi are called the blocks of P and their number is the size of the partition. Given a partition P= (P1, P2, . . . , Pm), of
a string A, a pair l, l + 1 is a break of the partition P if l =∑i

j=1|Pj | for some i ∈ [m− 1]. Informally, a break of a
partition P of A is a pair of letters that are consecutive in A but are not consecutive in P.

For two strings A and B, we say that S is a common substring with respect to the relation= if S is a substring of A and
a substring of B; we say that S is a common substring with respect to the relation �, if S is a substring of A and there
exists a substring R of B such that S�R, or S is a substring of B and there exists a substring R of A such that S�R.
When not necessary, we will often avoid specifying the relation and will talk only about a common substring. If S is a
common substring of A and B, we use notations SA and SB to distinguish between the occurrences of S (or−S) in A and
B; if S occurs more than once in A then SA refers to an arbitrary but fixed occurrence of S in A and analogous convention
applies for the string B. Given two partitions A = (A1, . . . , Am) and B = (B1, . . . , Bm′), a common substring of A
and B is a string S such that S is a common substring of Ai and Bj , for some indices i, j .

1.2. Related work

String comparison is a fundamental problem in computer science with applications in text processing, data com-
pression or computational biology. The problem of SBR drew a lot of attention in the last years as a useful tool for
comparison of genomic sequences [1,4,6,14]. In that application, the letters in the strings represent different genes
and the reversal distance measures the similarity of two genomic sequences. A common assumption that a genome
contains only one copy of each gene is unwarranted for genomes with multi gene families such as the human genome
[16]. On the other hand, a weaker assumption that a genome contains at most k = O(1) copies of each gene is often
warranted (cf. [9]). That is why k-SBR is of interest. In this subsection we will briefly mention the most relevant known
results.

Under the assumption that every symbol appears in each input string exactly once, we have the well-known problem
of permutation sorting by reversals. The problem 1-SBR is solvable in polynomial time for strings with signs [1,14]
but is NP-hard [4] and even MAX-SNP hard [3] for strings without signs; the best known approximation ratio for
the unsigned 1-SBR is 1.375 by an algorithm of Berman et al. [2]. A recent result of Chen et al. [5] shows that the
signed k-SBR is NP-hard even for k = 2 (the unsigned k-SBR is obviously NP-hard for all k�2). There are O(1)-
approximation algorithms for signed 2-SBR and 3-SBR [5,7,13]. The best approximation ratio for the general signed
SBR is O(log n log∗ n), using an O(n log∗ n)-time3 algorithm for edit distance problem with block moves [8] (see
bellow for further details).

3 log∗ n=min{k ∈ N : g(k)�n} for a function g defined by g(1)= 2 and g(k)= 2g(k−1) for every integer k > 1.

P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336 329

Instead of bounding the number of duplicates, there is another way to restrict the general problem of SBR with
duplicates: bound the size of the alphabet. Unsigned SBR with unary alphabet is trivial; the NP-hardness of unsigned
SBR with binary alphabet was proved by Christie and Irving [6].

Closely related is a minimum common string partition problem (MCSP). Given a partition P of a string A and a
partition Q of a string B, we say that the pair �= 〈P,Q〉 is a common partition of A and B with respect to the relation
Rel ∈ {=, �}, if there exists a permutation � on [m] such that for each i ∈ [m], (Pi, Q�(i)) ∈ Rel. The MCSP is to
find a common partition of A, B with the minimum size, denoted by MCSP(A, B). The restricted version of MCSP,
where each letter occurs at most k times in each input string, is denoted by k-MCSP.

Similarly as for SBR, there is a signed and an unsigned variant of the problem. In unsigned MCSP, the input consists
of two unsigned strings, and the relation = is used; in signed MCSP, the input consists of two signed strings and the
relation � is used. For unsigned strings, we define yet another variant of the problem, reversed MCSP (RMCSP), in
which the (unsigned) strings are compared by the relation �.

The signed MCSP problem was introduced by Chen et al. [5] as a tool for dealing with SBR. They observed that for
any two related signed strings A and B, MCSP(A, B) and SBR(A, B) differ only by a constant multiplicative factor:
given a partition (P1, . . . , Pm) of A, (Q1, . . . , Qm) of B and the permutation � on [m] such that Pi�Q�(i) for each
i ∈ [m], it is possible to move the block P�−1(1)�Q1 to the beginning of A by one reversal and then, if necessary, to
reverse it by one more reversal; similarly it is possible to move the block P�−1(2)�Q2 to its right position in the first
string by at most two reversals without affecting the block P�−1(1)�Q1 at the beginning of the string, etc. On the other
hand, a reversal “breaks” at most two pairs of consecutive letters in the string and thus, from a sequence of m reversals,
we derive a common partition with at most 2m breaks. Analogous observation applies for related unsigned strings and
the problems RMCSP and SBR.

For k�2, k-MCSP is NP-hard, and even APX-hard [13]. Due to the close relation between signed SBR and signed
MCSP, the known approximation ratios for signed MCSP are within a constant factor of the approximation ratios for
signed SBR: O(1)-approximation ratios for 2-MCSP and 3-MCSP [7,13], O(log n log∗ n) approximation ratio for the
general MCSP [8].

Chrobak et al. [7] analyzed the behavior of a natural greedy heuristic for MCSP: start with the two strings A and
B and iteratively, find the longest common substring of A and B that does not overlap previously marked substrings,
and mark this substring. They showed that though GREEDY is a 3-approximation algorithm for 2-MCSP, even for
4-MCSP its approximation ratio is �(log n). For general MCSP, both signed and unsigned, the approximation ratio is
between �(n0.43) and O(n0.67). It is worth noting that two algorithms described in this paper are simple modifications
of GREEDY, yet their approximation ratios for k-MCSP are better, namely O(k2), in contrast to the �(log n) of GREEDY

for k�4.
In the edit distance (ED) problem, a set of string operations is given (e.g., DELETE, INSERT or CHANGE a character,

SUBSTRING_MOVE or SUBSTRING_REVERSAL) and the task is to find the minimum number of operations needed to
convert one string into the other. SBR can be also viewed as an edit distance problem where the only operation is
SUBSTRING_REVERSAL and the input strings are related. For any two related strings A and B, MCSP(A, B) differs by
a constant multiplicative factor from the edit distance of A and B with only SUBSTRING_MOVE operations, and the edit
distance using only SUBSTRING_MOVE operations differs also by a constant multiplicative factor from the edit distance
with operations {INSERT, DELETE a character, SUBSTRING_MOVE} [17].

On the other hand, MCSP can be utilized for approximating the edit distance even for unrelated strings. To give an
example, consider edit distance with operations {INSERT, DELETE a character, SUBSTRING_MOVE}: given strings A and
B, let B − A denote the multiset of letters that have more occurrences in B than in A (i.e., if x has xA occurrences in
A and xB occurrences in B then there are max{0, xB − xA} copies of x in B − A) and analogously for A − B. Then,
|A−B| + |B −A| is a lower bound on the edit distance ED(A, B). Let A′ denote a concatenation of the string A with
all letters from B −A (in any order), and similarly, let B ′ denote a concatenation of B with all letters from A−B; we
observe that ED(A′, B ′)�2ED(A, B). Exploiting the above-mentioned relation between ED and MCSP for related
strings we obtain ED(A, B)=�(1) · (|A− B| + |B − A| +MCSP(A′, B ′)).

For the edit distance problem with operations {INSERT, DELETE a character, SUBSTRING_MOVE}, Cormode and
Muthukrishnan [8] described an O(n log∗ n)–time O(log n log∗ n)-approximation algorithm which yields, by the rela-
tions described above, the O(log n log∗ n)-approximation for SBR mentioned earlier in this subsection.

The edit distance problem with a different set of string operations was studied by Ergun et al. [10]. For several edit
distance problems that allow SUBSTRING_DELETION, they describe an O(1)-approximation algorithm. This is in contrast

330 P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336

to the above-mentioned known approximations of ED without SUBSTRING DELETION where the best approximation ratio
is of order �(log n log∗ n).

The rest of the paper is organized as follows. In Section 2, we describe how to modify GREEDY to get the O(k2)-
approximation for (reversed) k-MCSPand thus, for k-SBR. Section 3 explains how to further improve the algorithm to
work in linear time.

2. REFINED GREEDY: O(k2)-approximation

In Section 1, we briefly described GREEDY algorithm and we recalled that its approximation ratio for k-MCSPand
k-SBR, for any k�4, is �(log n). In this section, we show that a simple modification of GREEDY, called REFINED

GREEDY, has an O(k2)-approximation ratio for k-MCSP, which implies also an O(k2)-approximation ratio for k-SBR.
A few more terms are needed. A duo is a string of length two. To cut a duo aiai+1 of a block P = aj . . . ak of

a partition of A, for some j � i < k, means to replace the block P in the partition by two blocks P1 = aj . . . ai and
P2 = ai+1 . . . ak . For a substring S = ai . . . aj of A= a1 . . . an, if i > 1 we say that ai−1ai is a (left) boundary duo of
S, and similarly, if j < n ajaj+1 is a (right) boundary duo of S.

For unsigned k-MCSP the algorithm is the following:

Algorithm. REFINED GREEDY.
Input: two related strings A and B

A ← (A), B ← (B)

while there are unmarked blocks in A and B do
S ← longest common substring of A, B that does not overlap

previously marked blocks
mark SA in A and SB in B

cut the boundary duos of SA in A and the boundary duos of SB in B
cut in unmarked blocks of A and B all occurrences of duos � ∈ �,

where � is the set of boundary duos of SA and SB

Output: (A,B)

To extend the algorithm for signed k-MCSP and for k-RMCSP, apart from considering common substrings with
respect to the other equivalence relation �, the difference is that in the cutting steps, we cut not only all occurrences
of � ∈ � but also all occurrences of −�.

To give an example, consider an instance of 4-MCSP,

A= abxyuvafxyuvddddhefxyuvebxyuvgggg,

B = abxyuvddddafxyuvhefxyuvggggebxyuv.

REFINED GREEDY first marks substring S1= xyuvdddd (we use overline to denote marking in this example) and cuts all
unmarked occurrences of duos from �={fx, dh, bx, da}. In the second iteration, REFINED GREEDY looks for the longest
unmarked substring in partitions A = (ab, xyuvaf , xyuvdddd, hef, xyuveb, xyuvgggg) and B = (ab, xyuvdddd, af ,

xyuvhef, xyuvggggeb, xyuv), marks substring S2 = xyuvgggg and cuts duos from � = {ge}. In the third iteration, the
algorithm looks for the longest unmarked substring in partitions A= (ab, xyuvaf , xyuvdddd, hef, xyuveb, xyuvgggg)

and B= (ab, xyuvdddd, af, xyuvhef, xyuvgggg, eb, xyuv), marks substring S3 = xyuv and cuts duos from �= {xa, ch}.
Eventually, REFINED GREEDY outputs the common partition

P= 〈(ab, xyuv, af, xyuvdddd, hef, xyuv, eb, xyuvgggg),

(ab, xyuvdddd, af, xyuv, hef, xyuvgggg, eb, xyuv)〉.
The optimal common partition has six blocks:

POPT = 〈(abxyuv,afxyuv,dddd,hefxyuv,ebxyuv,gggg),

(abxyuv,dddd,afxyuv,hefxyuv,gggg,ebxyuv)〉.
Compared to GREEDY, on a very high level, the advantage of REFINED GREEDY is that by introducing additional cuts

in each step, the algorithm confines the propagation of “mistakes” that are caused by the greedy choice of a common
substring.

P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336 331

Theorem 2.1. REFINED GREEDY is 2k2-approximation algorithm for unsigned and signed k-MCSP and 2(2k − 1)2-
approximation for k-RMCSP.

Proof. The output of the algorithm is clearly a common partition. We only have to prove the bound on its quality. For
simplicity of the presentation, we prove the claim in detail for the unsigned k-MCSP and then we briefly outline the
necessary modifications for signed k-MCSP and for k-RMCSP.

For technical reasons, it will be convenient to extend the notions of a partition and a common partition from
strings to sequences of strings. A partition of the sequence of strings A = (A1, . . . , Al) is a sequence of strings
A1,1, . . . , A1,k1 , A2,1, . . . , A2,k2 . . . , Al,1, . . . , Al,kl

, such that Ai = Ai,1 . . . , Ai,ki
for i ∈ [l]. For two sequences of

strings, the common partition is defined analogously as for two strings.

Observation 2.2. Let (Q,R) be a common partition of sequences of strings A and B, and let � be any duo that
appears in Q and R. Let Q′ denote the partition of A that is obtained from Q by cutting all occurrences of the duo �,
and let R′ denote the partition of B that is obtained from R by cutting all occurrences of the duo �. Then, (Q′,R′) is
a common partition of A and B.

Proof. Since Q is a permutation of R, every block P from Q that contains � appears also in R, and vice versa. Thus,
if we cut all occurrences of � in Q and R, the resulting new partitions Q′ and R′ will be again permutations of each
other. �

Let �= (P,Q) be a minimum common partition of A and B, m be its size and let � be the set of all boundary duos of
blocks in P and in Q. Let T denote the number of steps of the algorithm. We are going to iteratively construct common
partitions �i of A and B that will help us to estimate the size of the common partition found by REFINED GREEDY.
We define �1 as the common partition derived from � by cutting all occurrences of all duos in � (the fact that �1 is a
partition follows from Observation 2.2). The breaks in �1 are called initial breaks. For k-MCSP instances, the number
of blocks in �1 is at most k times greater than the number of blocks in � (if a letter a appears as a leftmost letter in a
block of �, then there are at most k blocks in �1 with a as a leftmost letter) and therefore the number of initial breaks
is at most km− 1.

Let Si denote the substring that REFINED GREEDY used in iteration i and let �i be the set of boundary duos of SA
i

and SB
i . For iteration i�1 of REFINED GREEDY, we define �i+1 as the common partition derived from �i by cutting all

occurrences of all duos in �i . For ease of reference, we denote the sets A and B at the beginning of iteration i by Ai

and Bi , and by si the first position of SA
i in A, by ti the last position of SA

i in A, by s′i the first position of SB
i in B, and

by t ′i the last position of SB
i in B.

Observation 2.3. For every iteration i and for every 0� l < |Si | − 1: the pair si + l, si + l + 1 is an initial break of A
if and only if the pair s′i + l, s′i + l + 1 is an initial break of B.

Proof. The observation follows from the definition of �1 and initial breaks: if one occurrence of a duo is cut in �1,
then all occurrences of this duo are cut. �

Given a break l, l + 1 of a partition of A, and a substring S = ai . . . aj of A, we say that the substring S goes over
the break l, l + 1 if i� l < j . Observation 2.3 can be informally stated like this: If the block SA

i goes over one or more
initial breaks, then the block SB

i goes over the same number of initial breaks, and, moreover, the relative positions of
the initial breaks in SA

i and SB
i are the same.

Let A′i ⊆Ai and B′i ⊆ Bi denote the subsets of unmarked strings of Ai and Bi , resp., at the beginning of phase
i, and let �′i denote the restriction of �i to A′i and B′i . Observation 2.3 implies the following important claim.

Observation 2.4. For every i, �′i is a common partition of A′i and B′i .

Proof. The proof is by induction. For i=1, nothing is marked, A′1={A}, B′1={B}, �′1=�1 and the claim is obvious.
For i > 1, Observations 2.2 and 2.3 imply that the blocks from �i corresponding to the newly marked block SA

i−1 are
the same as the blocks from �i corresponding to the newly marked block SB

i−1. Observing that outside SA
i−1 and SB

i−1,

332 P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336

cuts of the same duos (i.e., duos from �i−1) are used to obtain �′i from �′i−1 and (A′i ,B′i) from (A′i−1,B
′
i−1), the

proof is completed. �

Lemma 2.5. For every i,

• the block Si = asi . . . ati is an entire block in �i , or
• the block Si goes over an initial break.

Proof. The lemma follows from Observation 2.4 and from the greedy nature of REFINED GREEDY: for every
common substring S of A′i and B′i not satisfying any of the conditions in the lemma, there exists another
longer common substring S′ of A′i and B′i such that S is a proper substring of S′. �

Lemma 2.5 provides us a tool for bounding the number of breaks in the common partition �T after the last step of
the algorithm. If REFINED GREEDY chooses for Si an entire block of �i , then �i+1 = �i and there are no new breaks in
�i+1, compared to �i . If REFINED GREEDY chooses for Si a substring that goes over an initial break, then we need at
most 2k cuts (in the string A) to get �i+1 from �i and we charge all of them to the initial break that SA

i goes over. After
the last step of the algorithm, there are at most (2k + 1)(km− 1) breaks in �T (recall that km− 1 is an upper bound
on the number of initial breaks).

By construction, the common partition �T is a refinement of the common partition 〈AT ,BT 〉 computed by
REFINED GREEDY. Thus, the number of blocks in �T is an upper bound on the number of blocks in 〈AT ,BT 〉
and the approximation ratio of the algorithm is at most k(2k + 1). To slightly improve the ratio, we observe that
if REFINED GREEDY has chosen in L steps substrings that go over initial breaks (note that L�km − 1), then there
are at most 2kL + (km − 1 − L)�2k2m − 1 breaks in 〈AT ,BT 〉 which implies the desired approximation
ratio.

For signed k-MCSP and k-RMCSP we only need to adjust the proof to reflect the thing that now a substring S from
A can be matched with a substring R from B even if S 	= R but S = −R. Thus, in Observation 2.2we cut not only all
occurrences of duo �, but also all occurrences of duo−�. To get the common partition �1 from �, for each � ∈ � we cut
all occurrences of � as well as all occurrences of −�; for signed k-MCSP the number of breaks in �1 increases again
at most k times, for k-RMCSP it increases at most 2k − 1 times. In Observation 2.3, we distinguish whether SA

i = SB
i

or SA
i = −SB

i . In the latter case, we count the relative positions of the initial breaks in SB
i backwards (i.e., the claim

is: si + l, si + l + 1 is an initial break of A if and only if the pair t ′i − l − 1, t ′i − l is an initial break of B); the former
case is as before. For signed k-MCSP, the number of duos cut in A in one iteration is at most 2k, for k-RMCSP it is
at most 2(2k − 1). �

Considering the relation between signed MCSP and signed SBR, and between RMCSP and unsigned SBR, we get
the following theorem.

Theorem 2.6. There exists a polynomial time 4k2-approximation algorithm for signed k-SBR, and 8(2k − 1)2-
approximation algorithm for unsigned k-SBR.

Concerning the running time of REFINED GREEDY, we just note that a naive straightforward implementation of the
algorithm runs in time O(n3).

3. EDUCATED GREEDY

In the previous analysis, we never used the fact that Si was the longest common substring;we only used that Si was
never a proper substring of another common block of unmarked letters (proof of Lemma 2.5). Based on this observation,
here we present two implementations of a faster algorithm EDUCATED GREEDY. As in the case of REFINED GREEDY,
we describe them in detail for unsigned k-MCSP;the necessary modifications for signed k-MCSP and k-RMCSP are
the same as before. We start by giving a naive implementation of EDUCATED GREEDY running in time O(k2n). Then,
in the next Section 3.1 we describe a linear time implementation of EDUCATED GREEDY; crucial components of this
implementation are linear-time algorithms for construction of suffix trees [11] and for (a special case of) disjoint set

P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336 333

union problem [12]. The two algorithms for MCSP have the same structure described below and the difference is in
their choice of a common substring Si in each iteration (function FIND–UNEXTENDABLE):

Algorithm. EDUCATED GREEDY.
Input: two related strings A= a1 . . . an and B = b1 . . . bn

A ← (A), B ← (B)

i = 1
while i�n do

S ← FIND–UNEXTENDABLE(ai)

mark SA in A and SB in B

cut the boundary duos of SA in A and the boundary duos of SB in B
cut in A and B all unmarked occurrences of duos � ∈ �, where � is

the set of boundary duos of SA and SB

i ← min{j : j � i and j unmarked}
Output: (A,B)

Given an nonempty string C, the function FIND–UNEXTENDABLE(C) finds an unmarked common substring S of
A and B such that C is a substring of S and S is not a proper substring of any unmarked common substring of A
and B.

3.1. Naive implementation

A naive implementation of the function FIND–UNEXTENDABLE(C) is done as follows: check all k2 possibilities for the
positions of the desired substrings SA and SB ; this requires time O(k2|S|). Since all other operations over all iterations
require time O(n), the total running time of the algorithm is

∑
iO(k2|Si |)= O(k2n).

Concerning the correctness of the algorithm, we already observed earlier that the proof of Lemma 2.5 is the only
place in the proof of Theorem 2.1 that refers to the choice of the common substrings Si used by REFINED GREEDY.
However, as mentioned above, the proof only needs the fact that Si cannot be extended on either side. Thus, Lemma
2.5 holds also for the choices of EDUCATED GREEDY and the O(k2)-approximation ratio follows by the same reasoning
as for REFINED GREEDY. We get he following theorem.

Theorem 3.1. The naive implementation of EDUCATED GREEDY runs in time O(k2n) and computes an O(k2)-approx-
imation for unsigned and signed k-MCSP, k-RMCSP and k-SBR.

3.2. Fast implementation

The most time consuming part of the naive implementation is the search for the unextendable common substring of
A, B containing a given letter; in the worst case it takes time �(k2|S|) in a single iteration to find the substring S. With
an additional data structure, we show how to implement this step in (amortized) time O(|S|), yielding a linear time
algorithm. From now on, let X denote the concatenation of A, $ and B, where $ is a character that does not appear in A
and B, that is, X = A$B; observe that every suffix of B is also a suffix of X. We assume that the characters of A and B
are represented by integers of size O(log n) bits.

The idea is simple. We observe that given the strings A and B, a common substring Z of A and B, and a suffix tree of
X=A$B, one can easily find a common substring Z′ of A and B such that Z is a prefix of Z′ and Z′ is not a proper prefix of
any common substring of A and B (first, descent from the root of the suffix tree along edges with labels corresponding to Z,
and then descent along any edges such that their subtree has at least one leave corresponding to a suffix of X starting in the
A part of X and at least one leave corresponding to a suffix of X starting in the B part of X).To find an unextendable common
substring of A and B containing a letter a (i.e., containing a substring Z=a), we first find a common substring Z′ that starts
with a and that is not a prefix of any longer common substring. Then we find a common substring S′ of−A and−B that
has−Z′ as a prefix and that is not a prefix of any longer common substring of−A and−B;−S′ is the common substring
we are looking for (cf. Fig. 1). The rest of the subsection deals with the technical problems arising from the fact that after
the first iteration of EDUCATED GREEDY some duos in A and B are broken and some letters are marked and cannot be used
for S.

334 P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336

Z

Z'

S'

Fig. 1. Construction of unextendable common substring S by function FIND–UNEXTENDABLE.

We are going to describe a function EXTEND(A,B, Z) that finds in partitions A and B an unmarked common
substring Z′ such that Z is a prefix of Z′ and Z′ is not a prefix of any longer unmarked common substring. Fast
implementation of EXTEND is a key component of a fast implementation of FIND–UNEXTENDABLE:

function FIND–UNEXTENDABLE(Z)

Z′ ← EXTEND(A,B, Z)

S′ ← EXTEND(−A,−B,−Z′)
return(−S′)
For a string Z, we denote by Z[i →] the suffix of Z starting at position i. A rank of a suffix T of Z, denoted RANKZ(T),

is the number (rank) of the suffix T in the lexicographical order of all suffixes of Z. The ranks of all suffixes of Z can
be computed in linear time as a by-product of the construction of the suffix tree of Z [11]. Observe that the ranks of the
suffixes corresponding to leaves of any node of the suffix tree form an interval.

Throughout the runtime of EDUCATED GREEDY we maintain a tree T; at the beginning of the algorithm the tree T
is the suffix tree of the string X = A$B and in later iterations, T is a subtree of the original suffix tree of X. Recall
that in a suffix tree of X every edge has a label corresponding to a substring of X. For a node u of T, we denote by
Lu the concatenation of the labels of all edges on the path from root to u. For each node u of the original tree T, we
also compute an interval (iu, ju) of ranks of suffixes of X that correspond to leaves of the subtree of T rooted in the
node u.

In the following description of EXTEND, we work with the tree T of X; whenever we refer to (a label of) an edge
or a vertex, we refer to (a label of) an edge or a vertex in the tree T. For a string Z we denote by z−1 the last letter
in Z.

function EXTEND(A,B, Z)

(1) (u, v) ← an edge such that Lu is a proper prefix of Z and Z is a prefix of Lv

if Z = Lv then
foreach w ∈ children(v) do

y1 . . . yr ← a label of (v, w)

if z−1y1 is not a broken duo and EXISTS(A, w) and EXISTS(B, w) then
Z ← Zy1
goto (1)

(8) else remove the edge (v, w) from T
return(Z)

else
y1 . . . yr ← a label of (u, v)

i ← an index such that Luy1 . . . yi = Z

while i < r do
if yiyi+1 is not a broken duo then

Z ← Zyi+1
i ← i + 1

else return(Z)

goto (1)
The last part of the algorithm to be filled in is the description of the function EXISTS(Y, v) that answers the question

whether in the subtree of v exists a leaf corresponding to a suffix of X starting in the Y part of X (for Y =A or Y = B)
such that the first letter of the suffix is unmarked. We employ an algorithm for (a special case of) the disjoint set union
problem [12] for this task. In the version of the problem that is relevant to our setting, the sets correspond to disjoint
intervals of integers such that their union is the interval 1, . . . , m. The task is to perform an intermixed sequence of

P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336 335

two operations that access and modify the set of intervals:

• FIND(h)—returns the largest element from the interval containing h;
• UNION(h)—creates a new interval that is the union of the interval containing h and the consecutive interval (i.e.,

the interval containing FIND(h) + 1) and destroys the two old intervals; if there is no consecutive interval, the
operation does nothing.

Gabow and Tarjan [12] describe an algorithm that executes a sequence of m UNION and FIND operations in time O(m);
the amortized time for a single operation is O(1).

In our application, we use m= 2n+ 1 and we work with two systems of intervals: SA for the string A and SB for
the string B. In SA, resp. SB , an interval {l, l + 1, . . . , r} represents the fact that the first letter of a suffix with rank r
is not marked and that there is no suffix of X starting in the A part, resp. B part, with rank at least l but less than r. The
initialization of SA and SB is done as follows. Let �A and �B be two binary arrays of length m such that �A[i] = 1,
if the suffix of X with rank i starts in the A part of X and �B [i] = 1, if the suffix of X with rank i starts in the B part of
X. We set SA = {{l, l + 1, . . . , r} | �A[r] = 1, �A[i] = 0 for i = l, . . . , r − 1, and either l = 1 or �A[l − 1] = 1}; the
system SB is defined analogously. Such an initialization is computed in linear time as a byproduct of the construction
of the suffix tree of X. With the structures SA and SB we implement the function EXISTS as follows (Y = A, B):

function EXISTS(Y, u)

(iu, ju) ← the minimal rank and the maximal rank of the suffixes in the subtree of u

if SY .FIND(iu) > ju then return (False)
else return (True)

To keep the structures SA and SB up-to-date, we perform an operation UNION(RANK(X[i →])) whenever we
mark a letter ai in A, we perform an operation UNION(RANK(X[n + 1 + i →])) whenever we mark a letter bi in B.
This finishes the description of data structures for the function EXTEND(A,B, Z); for EXTEND(−A,−B,−Z′) we
maintain analogous data structures for the strings −A,−B and −X.

Theorem 3.2. The fast implementation of EDUCATED GREEDY runs in time O(n) and computes an O(k2)-approximation
for unsigned and signed k-MCSP, k-RMCSP and k-SBR.

Proof. With the help of the data structure for the disjoint set union problem, every iteration requires amortized time
O(|Si |) plus the time spent on removing edges from T (line (8)). Since every edge is removed at most once and the
number of edges in the original suffix tree of X is O(n), the total running time is also O(n). The correctness of the fast
implementation follows from correctness of the naive implementation. �

4. Conclusion

We presented an O(k2)-approximation algorithm for k-MCSP and k-SBR running in time O(n). A challenging open
problem is whether there exists a (simple and fast) O(k)-approximation algorithm for k-MCSP and k-SBR? Another
interesting question concerns the best possible approximation ratio for the general MCSP and SBR: is it possible to
get below the O(log n log∗ n) upper bound in polynomial time?

References

[1] A. Bergeron, J. Mixtacki, J. Stoye, Reversal distance without hurdles and fortresses, in: Proceedings of 15th Annual Combinatorial Pattern
Matching Symposium (CPM), Lecture Notes in Computer Science, vol. 3109, Springer, Berlin, 2004, pp. 388–399.

[2] P. Berman, S. Hannenhalli, M. Karpinski, 1.375-approximation algorithm for sorting by reversals, in: Proceedings of the 10th Annual European
Symposium on Algorithms (ESA), Lecture Notes in Computer Science, vol. 2461, Springer, Berlin, 2002, pp. 200–210.

[3] P. Berman, M. Karpinski, On some tighter inapproximability results, in: Proceedings of the of 26th International Colloquium on Automata
Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 1644, Springer, Berlin, 1999, pp. 200–209.

[4] A. Caprara, Sorting by reversals is difficult, in: Proceedings of the First International Conference on Computational Molecular Biology, ACM
Press, New York, 1997, pp. 75–83.

[5] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, T. Jiang, Assignment of orthologous genes via genome rearrangement, IEEE ACM
Trans. Comput. Biol. Bioinformatics 2 (4) (2005) 302–315.

[6] D.A. Christie, R.W. Irving, Sorting strings by reversals and by transpositions, SIAM J. Discrete Math. 14 (2) (2001) 193–206.

336 P. Kolman, T. Waleń / Discrete Applied Mathematics 155 (2007) 327–336

[7] M. Chrobak, P. Kolman, J. Sgall, The greedy algorithm for the minimum common string partition problem, ACM Trans. Algorithms, 1 (2) (2005)
350–366 (Preliminary version in: Proceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), 2004, pp. 84–95.)

[8] G. Cormode, S. Muthukrishnan, The string edit distance matching problem with moves, in: Proceedings of the 13th Annual ACM-SIAM
Symposium On Discrete Mathematics (SODA), pp. 667–676, 2002

[9] N. El-Mabrouk, Reconstructing an ancestral genome using minimum segments duplications and reversals, J. Comput. Syst. Sci. 65 (3) (2002)
442–464.

[10] F. Ergun, S. Muthukrishnan, S.C. Sahinalp, Comparing sequences with segment rearrangements, in: Proceedings of the 23rd Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), Lecture Notes in Computer Science, vol. 2914, Springer,
Berlin, 2003, pp. 183–194.

[11] M. Farach, Optimal suffix tree construction with large alphabets, in: Proceedings of the 38th Annual Symposium on Foundations of Computer
Science (FOCS), 1997, pp. 137–143.

[12] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, in: Proceedings of the 15th Annual ACM Symposium
on Theory of Computing, 1983, pp. 246–251.

[13] A. Goldstein, P. Kolman, J. Zheng, Minimum common string partition problem: hardness and approximations, Electr. J. Combin. 12 (1)
2005, paper R50 (Preliminary version in: Proceedings. of the 15th International Symposium on Algorithms and Computation (ISAAC), 2004,
pp. 484–495).

[14] S. Hannenhalli, P.A. Pevzner, Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals, J. ACM
46 (1) (1999) 1–27.

[15] P. Kolman, Approximating reversal distance for strings with bounded number of duplicates, in: Proceedings of the 30th International
Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Computer Science, vol. 3618, Springer, Berlin, 2005,
pp. 580–590.

[16] D. Sankoff, N. El-Mabrouk, Genome rearrangement, in: T. Jiang, Y. Xu, M.Q. Zhang (Eds.), Current Topics in Computational Molecular
Biology, The MIT Press, Cambridge, 2002, pp. 135–155.

[17] D. Shapira, J.A. Storer, Edit distance with move operations, in: 13th Symposium on Combinatorial Pattern Matching (CPM), Lecture Notes in
Computer Science, vol. 2373, Springer, Berlin, 2002, pp. 85–98.

	Approximating reversal distance for strings with bounded number of duplicates
	Introduction
	Terminology
	Related work

	REFINED GREEDY: O(k2)-approximation
	EDUCATED GREEDY
	Naive implementation
	Fast implementation

	Conclusion
	References

