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Abstract Based on the optimal ecological performance parameters of a heat pump with linear
phenomenological heat transfer law betweenworking fluid and heat reservoirs, the local stability analysis
of the endoreversible heat pump working in an ecological regime is studied. The steady state of the heat
pump working at the maximum ecological function is steady. After a small perturbation, the system state
exponentially decays to steady statewith either of the two relaxation times. The effects of temperatures of
heat reservoirs and heat transfer coefficients on the local stability of the system are discussed. Distribution
information of phase portraits of the system is obtained. It is concluded that both the energetic properties
and local stability of the system should be considered for designing the real heat pumps.
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1. Introduction

Since Curzon and Ahlborn [1] proposed an endoreversible
Carnot heat engine with Newton’s heat transfer law and
calculated its efficiency at maximum power output, i.e. ηCA =

1 −
√
TL/TH in 1975, Finite Time Thermodynamics (FTT) has

been made tremendous progress [2–10]. Blanchard [11] was
the first to extend the Curzon–Ahlborn analysis method [1] to
the analysis of heat pump cycles, and derived the coefficient
of performance bounds for the fixed heating load for an
endoreversible Carnot heat pump. Angulo-Brown [12] proposed
an ecological criterion E ′

= P − TLσ for finite time Carnot
heat engines, where TL is the temperature of cold heat reservoir,
P is the power output and σ is the entropy generation
rate. Arias-Hernandez et al. [13], Barranco-Jimenez et al. [14]
and Barranco-Jimenez [15] investigated the thermodynamic
optimization of heat engines; the ecological function has been
applied with different heat transfer laws. Chen et al. [16]
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provided a unified ecological optimization objective function
for all of the thermodynamic cycles, that is E = A/t −

T0∆S/t , where A is the exergy output of the cycle, T0 is the
environmental temperature, ∆S is the entropy generation of
the cycle, and t is the cycle period. For heat pump cycles, the
exergy output rate of the cycle is A/τ = QH(1 − T0/TH) −

QL(1 − T0/TL), where QL is the rate of heat transfer supplied by
the heat source, QH is the rate of heat transfer released to the
heat sink, and TH and TL are the temperatures of the heat sink
and heat source, respectively. The coefficient of performance
and the heating load of the heat pump are ϕ = QH/(QH − QL)
and π = QH , Therefore, one has:

E = π


1 −

T0
TH


−


1 −

1
ϕ


1 −

T0
TL


− T0σ . (1)

Eq. (1) represents the best compromise between the exergy
output rate and the exergy loss rate (entropy production rate)
of the thermodynamic cycles. Sun et al. [17] investigated the
ecological optimal performance of endoreversible Carnot heat
pumps with Newton’s heat transfer law based on the energy
analysis. The finite time thermodynamic performance of heat
pump is affected by heat transfer law. Zhu et al. [18] and Chen
et al. [19,20] have assessed the effect of the heat transfer law on
the ecological performance of endoreversible and irreversible
heat pumps.

Most of the previous works of FTT have concentrated
on the steady-state energetic properties of the systems.
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Nomenclature

C heat capacity (WK−1)
E ecological function (W)
F total surface area of heat exchangers (m2)
F1 surface area of the hot-side heat exchanger (m2)
F2 surface area of the cold-side heat exchanger (m2)
J heat flow (W)
J1 no-steady-state heat flows from heat pump to

warm working fluid (W)
J2 no-steady-state heat flows from cold working

fluid to heat pump (W)
Q heat exchange (W)
T temperature of reservoirs (K)
t relaxation time (s)
u⃗ eigenvector
x temperatures of the warm working fluid at no-

steady-state (K)
y temperatures of the cold working fluid at no-

steady-state (K).

Greek symbols

α, β thermal conductance (WK (m2)−1)
λ eigenvalue
τ temperature ratio of heat reservoirs
π heating load (W)
ϕ coefficient of performance.

Subscripts

H heat sink
L heat source
max maximum
0 environment.

Superscripts

– steady-state values.

However, it is worthwhile to consider the local stability of the
system. Santillan et al. [21] firstly studied the local stability
of a Curzon–Ahlborn–Novikov (CAN) engine working in a
maximum-power-like regime considering the heat resistance
and the equal high- and low-temperature heat transfer
coefficients with Newton’s heat transfer law. Chimal-Eguia
et al. [22] analyzed the local stability of an endoreversible
heat engine working in a maximum-power- like regime with
Stefan–Boltzmann heat transfer law. Guzman-Vargas et al. [23]
studied the effect of heat transfer laws and heat transfer
coefficients on the local stability of an endoreversible heat
engine operating in a maximum-power-like regime. Barranco-
Jimenez et al. [24] investigated the local stability analysis
of a thermo-economic model of a Novikov–Curzon–Ahlborn
heat engine. Paez-Hernandez et al. [25] studied the dynamic
properties in an endoreversible Curzon–Ahlborn engine using a
vanderWaals gas asworking substance. Chimal-Eguia et al. [26]
analyzed the local stability of an endoreversible heat engine
working in an ecological regime. Sanchez-Salas et al. [27]
studied the dynamic robustness of a non-endoreversible engine
working in an ecological regime. Huang et al. [28] studied
the local stability analysis of an endoreversible heat pump
operating at minimum input power for a given heating load
with Newton’s heat transfer law. Huang [29] analyzed the local
Figure 1: Schematic diagram of an endoreversible heat pump.

asymptotic stability of an irreversible heat pump subject to total
thermal conductance constraint. Wu et al. [30] studied the local
stability of an endoreversible heat pump with Newton’s heat
transfer law working at the maximum ecological function.

This paper will analyze the local stability of an endore-
versible heat pump working in an ecological regime based on
the optimal ecological performance parameters of the heat
pumpwith linear phenomenological heat transfer law between
working fluid and heat reservoirs, and discuss the effects of
temperatures of heat reservoirs and heat transfer coefficients
on the local stability of the system, and obtain the distribution
information of phase portraits of the system.

2. Ecological performance of an endoreversible heat pump

Considering amodel of an endoreversible heat pump [11,17,
28] as shown in Figure 1, its working conditions are as follows:

(1) The working fluid flows through the system in a steady-
state fashion. The cycle consists of two isothermal and two
adiabatic processes.

(2) Because of the heat resistance, the working fluid’s
temperatures (x and y) are different from the reservoirs’
temperatures (TH and TL) and the four temperatures are of the
following decreasing order: x > TH > TL > y. The heat transfer
surface areas (F1 and F2) of the high- and low-temperature-side
heat exchangers are finite. The overall heat transfer surface area
(F ) of the two heat exchangers is assumed to be a constant:
F = F1 + F2. Assume that the heat transfer surface area ratio
is f = F1/F2, the working fluid’s temperature ratio is m = y/x
and the temperature ratio of heat reservoirs is τ = TL/TH . Thus,
0 < y/x < TL/TH < 1.

When there is only the heat resistance loss, the second law
of thermodynamics requires that

QHC

x
=

QLC

y
. (2)

The first law of thermodynamics gives the heating load, the
power input of the cycle and the coefficient of performance of
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the heat pump, respectively:

π = QHC , (3)
P = QHC − QLC , (4)
ϕ = π/P = QHC/(QHC − QLC ). (5)

From Eqs. (2) to (4), the rate (QLC ) of heat flow from the heat
source to the working fluid and the rate (QHC ) of heat flow from
the working fluid to the heat sink can be expressed as:

QLC =
y

x − y
P, (6)

QHC =
x

x − y
P. (7)

Because heat transfer between working fluid and heat reser-
voirs obeys linear phenomenological heat transfer law, one has:

QHC = αF1(1/x − 1/TH), (8)

QLC = βF2(1/TL − 1/y), (9)

where α and β are the overall heat transfer coefficients of
the high- and low-temperature-side heat exchangers, and are
negative, respectively.

When the heat transfer surface area ratio is:

f = F1/F2 =


β/α/m = B/m, (10)

the optimal ecological function (E) at a certain temperature
ratio (m) is:

E = −
βF

(1 + B/m)2
[m(2T0/TL − 1) − (2T0/TH − 1)]

×


1

m2TH
−

1
mTL


. (11)

Taking the derivative of E with respective to m and setting it
equal to zero (dE/dm = 0) yields that the optimal temperature
ratio corresponding to the maximum ecological function and
the maximum ecological function are [17–20], respectively:

m =
(2T0/TL − 1)TLB + (2T0/TH − 1)THB + 2(2T0/TH − 1)TL
(2T0/TL − 1)TL + (2T0/TH − 1)TH + 2(2T0/TL − 1)THB

, (12)

Emax = −
βF [(2T0/TL − 1)TL − (2T0/TH − 1)TH ]

2

4THTL(TL + THB)[TLB + (2T0/TH − 1)]
, (13)

where B =
√

β/α.

3. The steady state of the heat pump working in an
ecological regime

Assume that the working fluid’s temperatures of the steady
state are x and y, respectively. In this paper, the variables with
over-bars denote the steady-state values and x > y. The rates
of heat flows can be given by:

J1 =
x

x − y
P, (14)

J2 =
y

x − y
P, (15)

where J1 and J2 are rates of the steady-state heat flows from the
heat pump to x and from y to the heat pump, respectively, and
P is steady-state power input. When the heat pump operates in
a steady state, it means that the rate (QHC ) of heat flow from x to
TH equals to J1 and the rate (QLC ) of heat flow from TL to y equals
to J2, i.e.:

J1 = α F1 (1/x − 1/TH) , (16)

J2 = β F2 (1/TL − 1/y) . (17)

The coefficient of performance of heat pump is:

ϕ = J1/P = x/(x − y). (18)

The working fluid’s temperatures (x and y) can be expressed as:

x = TH
1 + Bϕ/(ϕ − 1)

1 + B/τ
, (19)

y = TL
B + (ϕ − 1)/ϕ

B + τ
. (20)

The temperatures of hot reservoir and cold reservoir (TH and TL)
can be expressed as functions of x and y, respectively, i.e.:

TH =
xy + xyB/τ

y + xB
, (21)

TL =
xyτ + xyB
y + xB

. (22)

The steady-state power input as a function of x and y can be
expressed as:

P =
βF

y + xB


y − xτ
xτ + xB


x − y
y

. (23)

4. Local stability analysis of the heat pump

In order to analyze the local stability of an endoreversible
heat pump, assume that the temperatures corresponding
to macroscopic objects with heat capacity C are x and y,
respectively. The dynamical equations with respect to x and y
are [21,28]:

dx/dt = [J1 − α F1 (1/x − 1/TH)] /C, (24)
dy/dt = [β F2 (1/TL − 1/y) − J2] /C, (25)

respectively, where J1 and J2 are rates of heat flows from x to
the working fluid and from the heat pump to y, respectively.
According to Eqs. (14) and (15), J1 and J2 can be written as:

J1 =
x

x − y
P, (26)

J2 =
y

x − y
P. (27)

When the system works in the steady state of the maximum
ecological function, the optimal temperature ratio of the
working fluid with the case of T0 = TL is given by Eq. (12):

m =
y
x

=
τB + (2τ − 1)B + 2τ(2τ − 1)

τ + (2τ − 1) + 2B
. (28)

The temperature ratio of heat reservoirs can be written as a
function of x and y (see Eq. (29) given in Box I).
By using Eqs. (18)–(20) and (28), the steady-state values x and
y can be obtained:

x = 2TH
(2τ − 1)B + τB + (2τ − 1)τ + B2

[(2τ − 1)B + τB + 2(2τ − 1)τ ](1 + B/τ)
, (30)

y = 2TL
(2τ − 1)B + τB + (2τ − 1)τ + B2

[τ + (2τ − 1) + 2B](τ + B)
. (31)
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9)
τ =
(2 + 3y/x − 3B) +


(3B − 2 − 3y/x)2 − 16(y/x − B − 2By/x)

8
. (2

Box I
4)

5)
dx/dt =
αF
C


B2

y + xB


y − xτ
τ + B


1
y

−
B

y + xB


1 −

x
TH


, (3

dy/dt =
βF
C


1

y + xB


y
TL

− 1


−
1

y + xB


y − xτ
xτ + xB


, (3

where

τ =
(2 + 3y/x − 3B) +


(3B − 2 − 3y/x)2 − 16(y/x − B − 2By/x)

8
.

Box II
Substituting Eq. (29) into Eq. (23) yields:

P(x − y) =
βF

y + xB


y − xτ
xτ + xB


x − y
y

. (32)

Consider the Taylor’s formula of no-steady-state power input
P (x, y) about the point (x, y), neglecting the two and more
orders, P (x, y) = P (x, y) + (x − x) (∂P/∂x) + (y − y) (∂P/∂y).
When the heat pump works out of the steady state but not too
far away, the distances (x − x) and (y − y) are small enough to
be neglected, one can assume that P (x, y) ≈ P (x, y). It has been
applied to the local stability analysis [21–30]. The power input
of the heat pump depends on x and y in the same way that it
depends on x and y at the steady state, i.e.

P (x, y) = P (x, y) =
βF

y + xB


y − xτ
xτ + xB


x − y
y

. (33)

Substituting Eqs. (26), (27) and (33) into Eqs. (24) and (25) yields
Eqs. (34) and (35) as given in Box II.

To analyze the system stability near the steady state, based
on linearization and stability analysis [31], one can define two
functions:

f (x, y)

=
αF
C


B2

y + xB


y − xτ
τ + B


1
y

−
B

y + xB


1 −

x
TH


, (36)

g (x, y)

=
βF
C


1

y + xB


y
TL

− 1


−
1

y + xB


y − xτ
xτ + xB


. (37)

The eigenvalues at maximum ecological function can be
obtained [21–31]:

λ1 =


fx + gy −


(fx − gy)2 + 4 fy gx


/2, (38)

λ2 =


fx + gy +


(fx − gy)2 + 4 fy gx


/2, (39)

and the corresponding eigenvectors are:

u⃗1 =


fx − gy −


(fx − gy)2 + 4 fy gx


/2gx, 1


, (40)

u⃗2 =


fx − gy +


(fx − gy)2 + 4 fy gx


/2gx, 1


, (41)
Figure 2: Relaxation times vs. τ with (a) β/α ≤ 1 and (b) β/α ≥ 1.

where fx = (∂ f /∂x)x,y, fy = (∂ f /∂y)x,y, gx = (∂g/∂x)x,y and
gy = (∂g/∂y)x,y are given in Appendix.

According to Eqs. (38) and (39) and Appendix, the eigenval-
ues (λ1 and λ2) are function of C , F , α, β , τ and TL. The final
expressions are quite lengthy, moreover, our calculations show
that both eigenvalues are real and negative (λ1 < λ2 < 0).
Thus, the characteristic relaxation times (which are defined as
t1,2 = 1/

λ1,2
) can be written as:

t1 = −2/[fx + gy −


(fx − gy)2 + 4 fy gx], (42)
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.1)

.2)

.3)

.4)
fx =
αF
C


B2(1 − aτ/TL)

(Ba + b)2
+

B
TH(Ba + b)

−
B3(b − ad/8)

y(Ba + b)2(B + d/8)

+


B2

3b
8a

−
ac

16(d − 2 + 3B − 3b/a)
−

d
8


b(Ba + b)


B +

1
8
d


−


B2


−
3b
a2

+
c

2(d − 2 + 3B − 3b/a)


b −

ad
8


8b(Ba + b)


B +

d
8

2


, (A

fy =
αF
C


B(1 − aτ/TL)

(Ba + b)2
+

B2(10 − ac/(d − 2 + 3B − 3b/a))
16b(Ba + b)(B + d/8)

−
B2(b − ad/8)

b(Ba + b)2(B + d/8)

−
B2(b − ad/8)

b2(Ba + b)(B + d/8)
−


B2

3(b − ad/8)

a
+

c(b − ad/8)
2(d − 2 + 3B − 3b/a)


[8b(Ba + b)(B + 1/d)2]


, (A

gx =
βF
C


−

B(−1 + b/TL)
(Ba + b)2

+
B(b − ad/8)

(Ba + b)2(Ba + ad/8)

+


B −

3b
8a

+
ac

16(d − 2 + 3B − 3b/a)
+

d
8


b −

ad
8


(Ba + b)


Ba +

ad
8

2


−


3b
8a

−
ac

16(d − 2 + 3B − 3b/a)
−

d
8


[(Ba + b)(Ba + ad/8)]


, (A

gy =
βF
C


1

TL(Ba + b)
−

−1 + b/TL
(Ba + b)2

+
b − ad/8

(Ba + b)2(Ba + ad/8)
+


3 +

ac
2(d − 2 + 3B − 3b/a)



×


b −

ad
8


8(Ba + b)


Ba +

ad
8

2


−
10 − ac/(d − 2 + 3B − 3b/a)

(Ba + b)(Ba + ad/8)


, (A

where:

a = 2
TL
τ

(2τ − 1)B + τB + (−1 + 2τ)τ + B2

[(2τ − 1)B + τB + 2(−1 + 2τ)τ ](1 + B/τ)
,

b = 2TL
(2τ − 1)B + τB + (2τ − 1)τ + B2

[τ + (2τ − 1) + 2B](τ + B)
,

c =
b
a2


4 − 14B −

18b
a


,

d = 2 − 3B +
3b
a

+


2 − 3B +

3b
a

2

− 16


−B +
b
a

−
2Bb
a


.

Box III
t2 = −2/[fx + gy +


(fx − gy)2 + 4 fy gx]. (43)

Because both λ1 and λ2 are real and negative, any perturbation
decays exponentially to the steady state with time and the
steady state of the heat pump working at the maximum
ecological function is steady. Eqs. (42) and (43) are general
expressions of the characteristic relaxation times. It is shown
that the characteristic relaxation times are proportional to heat
capacity C , inversely-proportional to the overall heat transfer
surface area F , relative to τ , TL, α and β .

Relaxation times of the system working at the maximum
ecological function vs. heat reservoirs’ temperature ratio τ for
different β/α are shown in Figs. 2. For the given heat transfer
coefficient ratio β/α, it can be seen that t1 and t2 decrease as
τ increases, that means the stability improves as τ → 1. As
shown in Figure 2a, in the region of β/α ≤ 1, t1 and t2 increase
as β/α decreases, if β/α → 0, t2 → ∞, the stability of the
system is lost. As shown in Figure 2b, in the region of β/α ≥ 1,
t1 and t2 decrease as β/α increases, the stability of the system
is improved.

As mentioned before, eigenvalues are real and negative
(λ1 < λ2 < 0). Thus, 0 < t1 < t2, i.e., 0 < t1/t2 < 1 and the
corresponding eigenvectors u⃗1 and u⃗2 can be described as fast
eigendirection and slow eigendirection, respectively. According
to the numerical calculations by using the relaxation time ratio
and corresponding eigenvectors, the phase portraits can be



1524 X. Wu et al. / Scientia Iranica, Transactions B: Mechanical Engineering 19 (2012) 1519–1525
Figure 3: Phase portrait of x(t) vs. y(t) with β/α = 1, τ = 0.9.

plotted and the distribution information of phase portraits of
system may be obtained. The phase portrait of x(t) vs. y(t) for
β/α = 1, τ = 0.9 and TL = 300 K is shown in Figure 3. It is
calculated that the relaxation time ratio is t1/t2 = 0.60 and the
eigendirections are u⃗1 = (1, 1.1) and u⃗2 = (1, −0.56). There
are two different linear trajectories named fast eigendirection
and slow eigendirection, respectively. The phase portraits show
that any perturbation on x and y values tend to approach the
steady-state point (x, y).

5. Conclusion

The local stability of an endoreversible heat pump with
linear phenomenological heat transfer law working in an
ecological regime is analyzed, the general expressions of the
relaxation times with heat capacity C , overall heat transfer
surface area F , heat reservoirs’ temperature ratio τ , and
heat transfer coefficients α and β are obtained. The steady
state of the heat pump working at the maximum ecological
function is steady, after a small perturbation the system
state exponentially decays to steady state with either of two
relaxation times. According to the numerical calculations, both
relaxation times t1 and t2 decrease as τ increases, and decrease
as β/α increases, and thus, the local stability of the system is
improved. There are two different linear trajectories named fast
eigendirection and slow eigendirection, respectively. The phase
portraits show that any perturbation on x and y values tend to
approach the steady-state point (x, y). It is concluded that both
the energetic properties and local stability of the system should
be considered for designing real heat pumps.
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Appendix

See Box III.
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