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INTRODUCTION

Let X be a smooth, affine variety defined over C. Write @(X) for the
ring of differential operators on X. This paper is concerned with the
structure of % (X)-bimodules, specifically those which are finitely gener-
ated as left modules and as right modules and on which C acts centrally.
Such %(X)-bimodules are said to be noetherian. As 9(X) is a simple,
noetherian doamin a noetherian bimodule is automatically projective, as a
right module and as a left module. However, consider as bimodules,
noetherian bimodules have finite length. Much @-module theory concerns
holonomic modules, which have finite length. Thus we attempt in this
paper to connect the study of bimodules to the work on holonomic mod-
ules. In Section 2 we show that the category of noetherian %(X)-bimo-
dules is equivalent to a full subcategory of the category of holonomic %(X
x X)-modules. This result allows one to plug in to the holonomic theory.
In particular, we are able to use Kashiwara’s direct image functor to
prove our main result in Section 3.
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THEOREM. There is an exact, fully faithful functor F from the cate-
gory of holonomic W(X)-modules with singular support equal to T%X to
the category of noetherian 9(X)-bimodules. Further, if M is a holonomic
B(X)-module with SS(M) = TX then

rank F (M), = ranky iy F(M) = rank Mey,.

The holonomic @(X)-modules with SS(M) = T¥X are reasonably trac-
table; they are precisely the finitely generated, projective G(X)-modules
equipped with a flat connection. Thus the theorem gives a useful way of
producing examples of noetherian %(X)-bimodules. We illustrate this
with a number of examples in Section 4, in the special case of the Weyl
algebra A (which occurs when X is the affine line). In particular we prove
the following.

THEOREM. (a) For each k = 1 there exists a simple noetherian
Aj-bimodule M with rank, M = rank , = k.
(b) For each k = 0 there exist simple noetherian A\-bimodules M, N
such that

dimcExt! (M, N) = k.

We complete Section 4 by raising some open problems that have arisen
during the course of this work. In particular we conjecture that a noether-
1an 9(X)-module has the same rank as a left @(X)-module as it has as a
right @(X)-module.

1. RINGS OF DIFFERENTIAL OPERATORS

1.1. The following notation is used throughout the paper: X is a
smooth, connected, affine algebraic variety defined over C of dimension
n. The ring of regular functions on X is denoted O(X) and its ring of
differential operators is denoted by @(X). The latter is generated, as a
subalgebra of Endc0(X) by O(X) (acting by multiplication) and Derg(X),
the C-linear derivations of G(X).

In this section we collect some basic results on %(X) and its modules
that are used in the paper. More details and proofs of these results can be
found in [Bo].

1.2. The ring 2(X) has a natural filtration given by the order of a
differential operator. The ith term of the filtration is defined inductively by
DUAX) = C(X) and, fori = 1,

DUX) = {6 € DX):10,fl1 € BUX), forall fe G(X)}.



NOETHERIAN %-BIMODULES 445

One immediately checks that @'(X) = Derc(X) + O(X). The graded ring
gr D(X) associated to this filtration is isomorphic to the symmetric algebra
of the G(X)-module Derg(X), which is denoted S(Derc(X)). Geometri-
cally, gr 9(X) is isomorphic to the ring of regular functions on the con-
tangent bundle of X:T* X = Spec § (Derg(X)). The inclusion G(X) <
S(Derc(X)) induces the projection p: T* X — X.

Let M be a finitely generated right @(X)-module and let F,, be a finitely
generated O(X)-submodule of M that generates M. Now set F; =
GHX)M,, for each j = 1. Then F = {F;} is a filtration for M and gr* M is
finitely generated as a gr Z(X) = S(Derg(X))-module. Let 1 = Anngpercxy
(gr® M). It turns out that the radical V7 is independent of the particular
choice of generating set Fo. Thus the subvariety Z(V1) of T* X is an
invariant of M. It is called the characteristic variety or singular support of
M, and is denoted by SS(M). The dimension d(M) of M is defined to be
dim SS(M). It turns out that d(M) = GK M. To prove this, note that by
the main result of [MS] we have GK M = GK gr M. Now the latter is
evidently the Krull dimension of gr @(X)/Ann(gr M), which equals d(M).

Since SS(M) is an involutive subvariety of T* X, we have that d(M) =

.dim SS(M) = n (if M # 0). A finitely generated @(X)-module M is called
nholonomic if M = 0 or d(M) = n. These modules play an important role in
the theory of %-modules.

1.3. Many calculations in @(X) are simplified by a good choice of
local coordinates. Let us explain precisely what this term means. Let
QY X) denote the O(X)-module of Kihler differentials and let d: 6(X) —
Q(X) denote the universal derivation. Since X is nonsingular, the 6(X)-
module Q'(X) is locally free. Given a point p € X we may choose f € 6(X)
such that p € D(f)) and Q' D(f)) = Q(X) has a free basis of the form dx;,
...y dx,, for some xy, ... x, € O(D(f)) = O(X); (see [MR, Theorem
15.2.13)]). Generally, if U is an open affine neighbourhood of p and Q'(U)
is free on a basis dxi, ..., dx,, for some x, ..., x, € O(U) we say that (x,
..., Xz)is a system of local coordinates in the neighbourhood U of p. Now
Derc(U) = Homg,,(Q1(U), 6(1)) and so we can choose a basis y, ..., 9,
of Derc(U) dual to dx,, ..., dx,. It follows that %(U) is generated by O(U)
and 9, ..., 9,. For short we write

DU) = 6(U)ay, ..., 9.).

1.4. It is traditional in @-modules to work with left rather than right
modules (because €(X) is a natural example of a left module). However,
in this paper it will be far more convenient to deal with right modules. It is
well known that such a choice is quite arbitrary, as the categories of right
and left @(X)-modules are equivalent. As we shall need the details of this
equivalence, we sketch it here. Let w(X) be the nth exterior power of
O(X). Then w(X) is a rank one projective O(X)-module. It is also a right
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@(X)-module. Here G(X) acts naturally and derivations act via the Lie
derivative: if d € Derg(X) and w € w(X) then w - d = —Lie{w). For the
details see [B), 6.2.4).

The ring of differential operators on w(X) is defined inductively, as
follows. First, 3% wX)) = Endex(w(X)). Then

D w(X)) = {6 € Endc(w(X)): 8, f]1 € 4" Yw(X)) for all f € O(X)},
for n = 1, and finally %(w(X)) = U @"(w(X)). There exists a natural map
¥ D(w(X)) = Endyx(@(X)e (X))

defined as follows. If 8 € W(w(X)) then ¥(6) is the endomorphism given
by right multiplication by 6. Here, o~ 4(X) = Home,x(w(X), C(X)) is the
dual of w(X). An easy calculation with local coordinates shows that ¥ is
an isomorphism of C-algebras. Note that Endy(2(X)e (X)) =
o (X)Z(X)w (X) as shown in [CH2, Proposition 3.8]. We summarise the
information we need concerning the equivalence between right and left
modules in the next proposition. First, though, we need some notation. If
R is any ring u,(R) denotes the category of finitely generated right R-
modules and p{R) denotes the category of finitely generated left R-mod-
ules.

PROPOSITION. (a) There exists an anti-isomorphism ®:%9(X) —
Dw(X)).
(b) 4(X) and D(w(X)) are Morita equivalent via the progenerator

DX )0 (X gy

(c) There is an equivalence of categories between u(W(X)) and
pADX)).

Proof. (a) Define @ ; D(X) — W(w(X)) by f—f, for f€ G(X) and § —
—Liey, for 8 € Derc(X). Now let p € X and choose (x, ..., x,) a system of
local coordinates in an open affine neighbourhood U of p. Then w(U) =
O(U) and 9 (w(U) = %(U). Thus the right action of U(X) on w(X) induces
aright action of @(U) on G(U). This is defined as follows: if § € @(U) and
g €EO(U) then g - 6 = 9(g). Here, as usual, the transpose of 8 = 2, f,8*
(written in multi-index notation) is ¢ = 2. (—1)0* f,. Because 6 — 6’
evidently gives an anti-automorphism of &(U), we see that @ is bijective,
as required.

(b) This is routine.

(c) Part (a) shows that u(%(X)) and u(%(w(X)) are equivalent catego-
ries. By part (b) the categories . (%(X)) and w(%(w(X))) are equivalent.
Hence the result.
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1.5. We complete this section by describing the version of Kashi-
wara’s theorem that we will need. Let A(X) C X X X be the diagonal
subvariety and let ¢ : A(X) — X X X be the natural inclusion. Let I be the
ideal of A(X) in G(X X X) = G(X) ®¢ U(X). Note that @(X x X) = D(X)
Q¢ D(X). We always identify G(X X X) = G(X) ® O(X) and 9(X X X) =
9(X) @ %(X). Now the idealiser

Lo (TDX X X)) = {6 € WX x X):6(I) C I}

is a subalgebra of (X X X) that contains /%(X X X) as a two-sided ideal.
Further, as is shown in [SS, Proposition 1.6], the natural homomorphism
induces an isomorphism:

GAX)) = WX x X9 (X X X).
Now define the direct image functor ¢, : w(DA(X))) — p(Z(X X X)) by
M—=M® ,ux DX X X)IBX X X).

Kashiwara’s theorem [Bo, Theorem VI1.7.11] shows that .. is well de-
fined, exact, full, and faithful. Since there is an isomorphism j: X — A(X)
there is an induced category equivalence j. : uA(X)) — p(D(A(X))).
Write A, = j, ..

THEOREM (Kashiwara). The functor A, : u(9(X)) = uA(X x X)) is
exact, full, and faithful.

2. NOETHERIAN BIMODULES

2.1. Let M be a 9(X)-bimodule. M is said to be noetherian if it is
finitely generated as a right @(X)-module and as left @(X)-module and C
acts centrally on M. That C acts centrally means that avn = ma, for all m
€ M and o € C. Let u,(%(X)) denote the category of noetherian bimo-
dules. We note that by Goodearl’s result in [Br, Theorem 10] a noetherian
9(X)-bimodule is projective as a left %(X)-module and as a right %(X)-
module.

Using the anti-isomorphism of the previous section we can turn a
noetherian bimodule M into a finitely generated right @(X) & D(w(X))-
module. In detail, if m € M, a € ¥(X), and b € Ww(X)) define
m - (a ® b) = & 1(b)ma. Denote M, with this right %(X) ® %(w(X))-
module structure by #,(M). Evidently,

481/168,2-6
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is exact, full, and faithful. It induces an equivalence of w,(%(X)) with the

full subcategory of w,(%(X) ® %(w(X))) whose objects are finitely gener-

ated as right @(X) ® C-modules and as right C ® %(w(X))-modules.
Now define a functor

Fo2 A B(X) ® D(w(X)) = pAD(X) @ D(X))
as follows. If M is an object of u((X) ® D(w(X))) then
F(M)=M ® LXRL (X)) (B(X) Q¢ w(X)D(X)).

By Proposition 1.4(b), we see that %, is an equivalence of categories.
Finally, we define a functor

H = Fro Fi plB(X)) = pDX) ® B(X)).

THEOREM. ¥ induces an equivalence of categories between p,(D(X))
and the full subcategory of u(B(X) & D(X) whose objects are finitely
generated modules over C @ %(X) and D(X) @ C. The objects in this
subcategory are holonomic WX X X)-modules.

Proof. As we observed above, %, induces an equivalence of u(%(X))
with the full subcategory of w(2(X) ® D(w(X))) whose objects are finitely
generated as right @(X) & C-modules and as right C @ @(w(X))-modules.
Finally, if M is an object of u(2(X) ® B(w(X))) it is apparent that F,(M) is
finitely generated over @(X) ® C and C ® @(X) if and only if M is finitely
generated over @(X) ® C and C & D (w(X)).

Now, let M be an object of u,(9(X)). By [Lo, Proposition 1.3.1] we
have

GK #H(M)uxzun = GK DX) ® C = 2n.

But, X X X has dimension 2n, so #(M) is a holonomic B(X X X) = D(X) &
a@(X)-module.

2.2. Remark. If M is an object of u(@(X X X)) that is finitely gener-
ated over @(X) & C and over C ® @(X) we denote the corresponding
noetherian bimodule by %A(M).

2.3. If M is a noetherian $(X)-bimodule we define Extl,,qx,(M, -)
to be the jth right derived functor of Hom(M, _) in the category of D(X)-
bimodules. This makes sense, because the category of @(X)-bimodules is
equivalent to the category of @(X) & @ (X)-modules (via a functor which
restricts to #).
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COROLLARY. [If M and N are noetherian 9(X)-bimodules then
Ext] (M, N)

is a finite-dimensional vector space, for j = 0. It is zero if j > 2n.

Proof. By the category equivalence,
Ext) oM. N) = ExUnsion(#(M), H#(N)).

Since #(M) and K(N) are holonomic and %(X X X) has global dimension
2n, by [MR, Theorem 15.3.7], the result follows from [Bj, Theorem 3.2.7,
p. 95].

3. BIMODULES AND VECTOR BUNDLES

3.1. In this section we show how noetherian 9(X)-bimodules can
be constructed from certain holonomic @ (X X X)-modules. In fact we
show how one can construct #(X X X)-modules which are finitely gener-
ated as D(X) ® C and C ® @(X)-modules and then use Proposition 2.1.
The holonomic modules that we use are very special. Let T%X denote the
zero section of the cotangent bundle. In other words,

T¥X = Z(Derg(X)S(Derg(X))) = X.

The holonomic modules that we need are those with singular support
equal to T¥X. Another characterisation of these modules is that they are
finitely generated as O(X)-modules. In fact, this is enough to force them to
be projective over G(X), by [Bo, Proposition VI.1.7].

THEOREM. Let M be a finitely generated right 9(X)-module with
SS(M) = T¥X. Then A, (M) is finitely generated and locally free as a right
W(X) @ C-module and as a right C @ @(X)-module. Further,

rank A+M(_1:(X)®C = rank A+M(:®3,(X] = rank M(;",\q.

Proof. We prove only that A, (M) is finitely generated and locally free
with rank equal to rank My, when considered as a @(X) ® C-module.
That it is also finitely generated and locally free of this rank, asa C ®
%(X)-module, follows symmetrically. We begin by establishing the nota-
tion that will be used in the proof. We keep the notation of 1.5. In particu-
lar, G(A(X)) = O(X) ® O(X)/1, where I is ideal of 0(X) ® O(X) generated
by f®1 - 1®f for f€ O(X). Note that, by 1.3, it is enough to prove that
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if M is a finitely generated right %(A(X))-module with SS(M) = T3, A(X)
then ¢, (M) is finitely generated and locally free with rank equal to rank
M-

We shall prove this statement locally. In order to do this, suppose that
there exist f, ..., f; € G(X) and a positive integer & such that:

(1) if we set U; = D(f;) then {U;: 1 = j =< t}is an open affine cover of
X, and

2)foreach 1 =j <1,
MjT@T ® YA DU, X Uj)/IED(Uj x U

is a free D(U;) ® C-module of rank k. (Here, :0(U)) ® G(U;) — C(A(U)))
is the canonical map.)

Now, using the fact that | ® f — f&® 1 € I, whenever f € 0(X), one obtains
that

DX X XYIBX X X) ® yne (D(U) @ C) = DU, x UNIBU; x U,).

Since D(A(U;)) = I U; x UNHD(U; x Uy and O(U; X Uy CIUIE(U; x
U))) it follows that

L+(M) ® S XIRC (QD(UJ) ® C) = Mi;@—] ® YAU,) QD((/J X Uj)/IED(UJ X Uj) (3)

It is clear that Eq. (3) will prove the theorem, provided that there exist f;
and k such that (1) and (2) hold. From 1.3 above, together with the quasi-
compactness of X, we can certainly find that f; € 0(X), for | =j < ¢, such
that {D(f)} is a cover of X and each D(f;) admits a system of local coordi-
nates. Thus, the theorem will follow if we can prove in the special case
when X admits a system of local coordinates.

So, suppose that there exist x|, ... x, € O(X) such that dx,, ..., dx,is a
free basis of the G(X)-module Q!(X). Clearly, we may also assume that x,
@1-1®x,...,x, 81— | & x, generate I. We show that if M is a right

9(A(X))-module that is free as an G(A(X))-module with basis uy, ...,
then «.(M) is a free @(X) ® C-module with basis u, @ I, ..., u; & 1.
Let a4, ..., 9, be the basis of Derc(X) dual to dx,, ... dx,. Note that we

then have that the G(X x X)-module Derc(X X X) is free on the basis
(8,®1+1®6,1515n, 6j®1]SJSn)

We interrupt the proof of the theorem to establish the following lemma,
which describes all the various objects under consideration, in terms of
the coordinates (x,, ..., x,). We write : B(X X X)— (X X X)/I9(X x
X), for the canonical map.
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3.2.LEMMA. (DIUDX X X)) =IBX X X)+ O X x )3, @1 +1®
)y (6, @1+ 18 3,)].

Q) DAX)=0X x X[, @1 +1®6d,...,, 1 +1®4,].
(3) W(X x X)/I9(X X X) is a free left D(A(X))-module with basis

M- (1, D) a, ..., a €N).

Proof. Recall that D(A(X)) = I(ID(X X X)). Thus, we prove (1) and (2)
together. Since 3, ® 1 + 1 ® d; commutes withx;® 1 — 1 Q@ x;, forl =j =
n,weseethat 9, ® 1 + 1 ® 9, € l(JWX X X)), for 1 =i =< n. The
isomorphism X — A(X) makes it clear that Q'(A(X)) is free on the basis

dx; T+ 1R®x), ...,dx, @1 + 1R x,)).

The derivatives (3, @1 + 1® 4y, ...,9,& 1 + 1R 9,) evidently give a dual
basis of Derc(A(X)). This proves (2) and (1) follows immediately.

Let us prove (3). We shall use multi-index notation. Thus, every ele-
ment of &(X x X) is of the form: 2, oy O3 ® 1), with @, € O(X X X)[o;
®1+1®a3]and Y a finite subset of N”. Hence (X x X)/I9(X X X) is
generated as a left 2(A(X))-module by the images of (0 & 1), fora & N".
It is enough to show that these images are linearly independent in 9(X X
X))/ IG(X x X). Suppose that they are not. Then there exist 8, € O(X X
XHo:,® 1+ 1® 9], for « € Y such that

Y 0,(0® 1) € IB(X X X). (4)

agY

Since the monomialsing, ® 1 + 1 ®9;and 9;® 1, for I =i = n, are afree
basis for @(X X X) as an O(X X X)-module, (4) implies that each ®, €
I%(X x X). This yields the desired independence.

3.3. Let us return to the proof of the theorem. Recall that (4, ...,
;) is a basis for M over G(A(X)). We want to show that (i, @ I, ..., u; @ 1)
is a basis for ¢,.(M) over @(X) & C. Since

M) = M ® iy DX X DX X X),

it follows that «.(M) is spanned, as a C-vector space, by elements of the
form u ® (0 ® 1)*, where u € M and « € N*. Now, if f€ G(A(X))and u €
M then

WR1l=uQf=u®g=u® g,

for some g € 0(X) ® C. Hence, as a @(X) ® C-module, ¢,(M) is generated
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by u; & 1, for 1 = j =< k. It remains only to prove that these elements are
independent over @(X) ® C.
Suppose that there exist 6y, ..., 6; € %(X) such that

A
> @00, 1) =0. (5)
Jj=1

Foreach | <j =< k write 6; = X ,c..» 43, where f], € G(X) and the sum has
finitely many non-zero terms. Together with (5) this implies that

&
2 (Z Ufl, @1 O yamy (3°® 1) = 0.

aEN" V=1

By Lemma 3.2, part (3), (0 @ 1:« € N7 is a free basis of (X x X)/
I9(X % X) as a left B(A(X))-module. Hence 25 u,f, ® 1 =0, forall a €
N~ But (i, ..., uy) is a basis for M over G(A(X)), and I N (G(X) ® C) = 0,
sofl, =0, foralla« € N"and all | = =< k. This shows that (i, @1, ..., 1, ®
1) is a basis for ¢.(M) over @(X) ® C, as required to finish the proof.

3.4. COROLLARY. M — B(A (M)) defines an exact, full, and faithful
functor from the category of holonomic D(X)-modules with singular sup-
port equal to T$X to the category of noetherian D(X)-bimodules. Fur-
ther, if M is a finitely generated D(X)-module with SS(M) = T%X then

rank M, = rank B(AL(M)),x, = rankyy, B(AL(M)).

Proof. Combine Theorems 3.1 and 2.1.

4. EXAMPLES

4.1. In this section we illustrate the above results in the special
case of X = C. Note that the Weyl algebra A, = 9(C) = Clx, 4]. Let M be
a finitely generated right A,-module. Then it is easy to see that SS(M) =
TEC if and only if M = A,/J, where J is a right ideal of A, containing an
element of the form 8 = " + 287! a;07, with ¢; € C[x]. On the other hand,
A,/8A, is a free C[x]-module of rank n with basis 1, 4, ..., 8"~ '. In particu-
lar, if p € C[x] then A,/(8 + p)A, is free of rank one and there is a
corresponding right A;-module structure on C[x]. Here, C[x] acts natu-
rally and £+ 8 = —(8f/dx + pf), for f € Clx]. (In fact, these modules are
non-isomorphic for distinct p and give all the right module structures, for
which C[x] acts naturally, on C[x].)
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4.2. Let us compute AL (A /(3 + p)A;). Now writex; = x® |, x> = |
FxeOC xCland g, =aR 1,8, =18 &€ Derc(C x C). Note that 4, =
P(C x C) = Clxy, xa2, 9, 9;] is the second Weyl algebra and @(A(C)) =
Clx, + x2, 8, + 32]. We write ¢ = p(x;). By definition,

AL(AV(D + p)A)) = (DA 6; + 92 + PBAC))
= Ay/(x; — x2)A2 + (8) + 92 + g)As.

As A;/(3 + p)A, has rank one, A,(A,/(0 + p)A,) has rank one over
A ® C = Clx,, 4,} and over C ® A, = Clx,, 3,); in fact, 1 generates
A(A/(2 + p)A;)over A, ® C and C ® A,. Note that 1(—a,) = 1(3; + ¢). It
follows that the corresponding bimodule B(A.(4,/(8 + p)A)) is isomor-
phic to the A -bimodule ,A,, where o € Aut;A, is given by x — x and § —
d + p. Here, ,A, is the bimodule structure on A; given by a - b - ¢ =
ola)bc.
4.3. Our next result shows that u,(A,;) has simple objects of all
ranks.
PROPOSITION. Letn = 1. Then B(AL(A /(3" + x)A)) is a simple object
of u(@(C)) and has rank n as a left and right A,-module.
Proof. A/(0" + x)A, is evidently a simple A;-module. Thus, B(A,(A,/
(8" + x)A))) is a simple bimodule. The resuit follows from Corollary 3.4.

4.4, Set M(p) = B(A(A,/(0 + p)A})), for p € C[x]. It is a simple
bimodule. We have the following result.

PrOPOSITION. Let p, g € Clx]). Then
dimcExt ), (M(p), M(q)) = deg(p — q).
Proof. [MR2, Theorem 5.7] shows that
dimcExt,'h(AM(x + plA,, A/(x + @A) = deg(p — ¢g).

The result follows, by Corollary 3.4,

4.5. Finally, we show that there are simple noetherian A;-bimo-
dules with many self-extensions.

ProrosiTioN. Let p € Clx] be a polynomial of odd degree. Then M =
BA(A/(8? + p)A, is a simple noetherian A-bimodule of rank two and

dimcExt), 4 (M, M) = deg(p) — 1.

Proof. [MR2, Propositions 5.18, 5.19] combine to show that N = A4,/
(3> + p)A, is simple and has dim Ext(N, N) = deg(p) — 1. N is evidently
free of rank two as a C[x]-module. Corollary 3.4 applies again and the
proof is complete.
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4.6. We complete the paper with a couple of plausible conjectures.

Conjecture. If M is a noetherian @(X)-bimodule then
rank, M = rank M,

4.7. Let M be a noetherian %(X)-bimodule. If rank M.y, = 2 then
M., is automatically locally free, see [CH], and similarly on the left. If M
is an invertible @(.X)-bimodule and » = 1 then [CaH] shows that M is
locally free on either side. Thus there is good evidence to suggest that the
following should be true.

Conjecture. Let M be a noetherian %(X)-bimodule. Then M, , and
M are locally free.
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