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Abstract. A picture description is a word over the alphabet {u, d, r, l}, where u means "go one 
unit line up from the current point", and d, r, and I are interpreted analogously with down, right, 
and -left instead of up. By this, a picture description describes a walk in the plane--its trace is 
the picture it describes. A set of picture descriptions describes a (chain code) picture language. 

This paper investigates complexity and decidability questions for these picture languages. Thus 
it is shown that the membership problem is NP-complete for regular picture languages (i.e., picture 
languages described by regular languages of  picture descriptions), and that it is undeeidable 
whether two regular picture description languages describe a picture in common. After this we 
investigate so-called stripe picture languages (all pictures are within a stripe defined by two parallel 
lines), providing 'better' complexity and decidability results: Membership is decidable in linear 
time for regular stripe picture languages. Emptiness of intersection and equivalence is decidable 
for regular stripe picture languages. 

Introduction 

There is a big variety of formal models for picture recognition and description. 
In such a formal approach, pictures are often treated as sets of (labeled or unlabeled) 
cells or unit lines from the Cartesian integer grid-- ' labeled'  if colored pictures are 
considered-- 'unlabeled'  if only the shapes of pictures are investigated. Rosenfeld 
[12] surveys some of these models, being mainly acceptor models (automata), while 
generative models (grammars) constitute only a minor part of this survey. 

Maurer et al. [9] initiated the investigation of pictures (respectively languages of 
pictures) consisting of unit lines from the integer grid, using the following description 
concept: A picture is described by a word over the alphabet {u, d, r, l}, whose letters 
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mean "move (and draw) a unit line up (down, right, left, respectively) from the 
current point". 

Informally, such a wordmwe call it picture description--constitutes a traversal 
in the plane, and its trace describes a picture consisting of unit lines. Picture languages 
are now simply described by languages of picture descriptions. This concept 
resembles that of a chain code (see [3]), that is why we refer to these picture 
languages as chain code picture languages (in order to distinguish this approach 
from other models for picture languages). 

We continue here the systematic mathematical study of chain code picture 
languages as started in [9] and put effort on complexity and decidability questions 
for the classes of picture languages described by classes of picture description 
languages from the classical Chomsky hierarchy. 

The paper is organized as follows. We briefly recall necessary notions from formal 
language theory and from chain code picture languages in Section 2. For more 
detailed presentations we refer to the standard literature (as, e.g., Maurer [8], 
Hopcroft and Ullman [7], Salomaa [ 13] and Harrison [6]) for formal language theory 
and to Maurer et al. [9] for chain code picture languages. In Section 3 we investigate 
the shortest description of a picture in context-free, linear, and regular picture 
description languages, provided the picture is described at all. In Section 4 we show 
that the membership problem is NP-complete for regular (linear) picture languages 
(i.e., picture languages described by regular (linear) picture description languages). 
The undecidability of the emptiness of the intersection problem for regular picture 
languages is provided in Section 5. In Section 6 we consider so-called stripe picture 
languages (i.e., picture languages within the stripe between two parallel lines). The 
results for this restricted class are: It is decidable whether a context-free picture 
language is a stripe picture language. Membership in regular stripe picture languages 
is decidable in linear time. It is decidable whether two regular stripe picture languages 
have a nonempty intersection or whether they coincide. 

1. Preliminaries 

We assume the reader to be familiar with basic formal language theory. Perhaps 
only the following notational matters require an additional comment: Z denotes the 
set of integers. For an integer n, [hi denotes the absolute value of n. For a set A, 
2 A denotes the set of its subsets and if A is finite, then IA I denotes the cardinality 
of A. For sets A and B, A - B denotes the set-theoretical difference. A denotes the 
empty word. For a word w, Iwl denotes its length and if b is a letter, then # b(w) 
denotes the number of occurrences of b in w. The set of  prefixes of w is denoted 
by pref(w) and for a language L, pref(L) = [..~w~L pref(w). 

We will use context-free grammars as tuples G = (N, ,Y, P, S), where N is the set 
of nonterminals, ,Y the set of terminals (i.e., N n ,Y -- ~), P is the set of productions, 
and S e N is the axiom. If  we define a normal form, upper case letters represent 
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nonterminals ,  lower  case letters represent  terminals .  E.g., the C h o m s k y  normal  form 

would  be def ined as (A ~ BC, A ~ a )NF .  A determinis t ic  finite a u t o m a t o n  is a tuple 

A -  (Q,-~, 8, qo, F ) ,  wi th  Q being the set of  states, ,~ the input  a lphabet ,  8 the 
t ransi t ion funct ion,  qo the  initial state, a n d  F_c Q the set o f  accept ing  states. 

We turn  to no t ions  f rom the 'picture-part ' .  The two-fold Car tes ian  p roduc t  Z 2 of  
Z with i tself  is refer red  to as the universalpoint set Mo. The up-neighbor of  v = ( m, n) 

Mo is u (v) = (m, n + 1 ), the  down neighbor o f  v is d (v) = (m, n - 1 ), the  right neighbor 
of  v is r(v) = (m + 1, n), and,  finally, the  left neighbor of  v is l(v) = (m - 1, n). The 

neighborhood of  v is def ined as N ( v ) =  {u(v) ,  d(v), r(v), l(v)}. The  universal line 
set M1 is def ined by  Ml  ={{v, v'}] v~  Mo, v '~  N(v)} .  An attached basic picture p is 

a finite subset of  M1. For  an a t tached basic  picture p its point set V(p) is defined 

by V(p)={v~Mol{V ,  v '}~p for some v'~Mo}. If  for every pai r  v, v'~ V(p) with 
v ~ v', there  are poin ts  Vo, v ~ , . . . ,  v, in V(p)  such that  Vo = v, v, = v' and  {vi, v~+~} e p, 

for 0 <~ i <~ n - 1, t hen  p is connected. In w h a t  follows we assume every picture  to be 
connec ted  ! 

The no t ion  of  a d r a w n  picture is technical ly  useful. An attached drawn picture q 
is a triple q = (p, s, e),  such that  p is an a t t ached  basic picture and  ei ther  p is empty 

and s = e E Mo or p is n o n e m p t y  and  s, e ~ V ( p ) ;  p is the base of  q, deno t ed  base(q) ,  

s is the  start point o f  q, and  e is the end point of  q. The shift of  q is def ined by 

sh(q) = (x(e) - x ( s ) ,  y(e)  - y ( s ) ) .  (For  an  e lement  v = (m, n) ~ Mo, x(v)  = m and 
y(v) = n.) 

In fact we are m a i n l y  interested in the relative posi t ion o f  the  edges ra ther  than 

in their  absolute  pos i t ion  in Z 2. For integers  m and n we  def ine tin,, to be a 

mapp ing  f rom Mo to Mo such that,  for v = (i,j) e Mo, tm,.(v) = ( i + m , j + n ) .  Simul- 

taneously,  we use tin., as a mapp ing  f rom M~ to M l (for {v, v'} e M I ,  tm, n({V , V'}) = 

{tm,,(v), tm,.(V')}) a n d  in the obvious way for  subsets of  Mo and  Mi.  Let pl and  P2 

be two a t tached basic  pictures. We say Pl and P2 are equivalent, d e n o t e d  p~ ~P2, if  

there exist integers m and  n such that  Pl = tm,,(p2). Let ql = (Pl,  Sl, el) and  q2 = 

(P2, s2, e2) be two a t t ached  drawn pictures. We say ql and q2 are equivalent, deno ted  

ql ~ q2, i f  there exist  integers m and n, such that  Pl = t~ , (p2) ,  sl = t,,,,,(s2), and 
el =tm, n(e2). 

It is easily seen tha t  both  - and  = are equivalence  relat ions.  The equivalence  

class of  ~ con ta in ing  an a t tached basic  picture p, d e n o t e d  [p],  is cal led the 
unattached version of  p, s imply referred to as basic picture. Analogous ly ,  the 

equiva lence  class o f  -~ conta in ing  an a t t ached  drawn pic ture  q, d e n o t e d  (q), is 
cal led the unattached version of  q, s imply referred to as drawn picture. 

We are using the  four  letter a lphabe t  7r = {u, d, r, l} to descr ibe  these  pictures. 
Every word  in It* is cal led a picture description word (or rr-word),  every language 
over ~ is cal led a picture description language (or 7r-language) and  every g rammar  
genera t ing  a I t - language  is cal led a picture description grammar (or  7r-grammar). 

The drawn picture described by a 7r-word w, deno ted  dpic(w) ,  is def ined  induct ively 
as follows: 

If  w = A, then  d p i c ( w)  = (~, (0, 0), (0, 0)). 
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If  w = zb for some z in 7r*, b in or, where dpic(z) = (p, s, e), 
then dpic(w) _ (p  w {{e, b(e)}}, s, b(e)). 

If  dpic(w) = (p, s, e), then the basic picture described by w, denoted bpic(w), is 
defined by b p i c ( w ) = [ p ] .  We sometimes use shift directly for 7r-words, meaning 
sh(w) =sh(dpic(w)) .  In Fig. 1.1 we give some examples. For w---(ur)2dlr, Pl = 
bpic(w), ql = dpic(w),  q2 = dpic(wu), q3 = dpic(wr). The circle in the illustration of 
a drawn picture indicates the startpoint, a little square indicates the endpoint. Note 
that bpic(w)=-bpic(wu), while dpic(w) ~ dpic(wu);  sh(w) = sh(ql) = (2, 1), and 
sh(wu) = sh(q2) = (2, 2). 

Fig. 1.i. Examples of basic and drawn pictures. 

For a ~rr-language L, the drawn picture language described by L, denoted dpic(L), 
is defined by dpic(L) = {dpic(w) l w e L} and the basic picture language described by 
L, denoted bpic(L),  is defined by bpic(L) = {bpic(w) I w e L}. 

A drawn picture language D is a regular (linear, context-free) picture language if 
there is a regular (linear, context-free) rr-language L, such that D = d p i c ( L ) .  
Similarly, we define basic picture languages of different types. 

In [9] it has been shown that every picture language described by a recursively 
enumerable 7r-language can be described by a context-sensitive ~'-language. Con- 
sequently, we do not consider these classes, because decidability results (or better: 
undecidability results) can be obtained by straightforward arguments.  

Whenever we formulate a decidability result for a regular (linear, context-free) 
picture (or 7r-) language,  then we assume that this language is specified by a regular 
(linear, context-free, respectively) grammar!  

2. Optimality of picture description languages 

In [9] the length of  the shortest ~--word describing a given picture has been 
analyzed. Thus it has been shown that such a 'minimal'  word has length less than 
twice the size of  the basic picture it describes. Moreover, this bound  has been proved 
to be tight. 

Here we consider the length of a shortest description in L of  a picture p, provided 
the picture p is in bpie(L).  Let f be a computable function f rom the set of basic 
pictures into the set of  positive integers. Then a 7r-language L is f(p)-optimal if for 
every picture p in bpic(L),  there is a word w in L, such that  p = b p i c ( w )  and 
Iwl f(p). For example,  L1 = u+r ÷ is IPl-optimal, L2 = r+d÷u+r + is 21Pl-optimal 
and L3 = ( ru* rld* l) + is I P l 2- optimal. (So f ( p )  - optimal means that  the picture p has 
an optimal description in L with length not exceeding f (p) . )  



Chain code picture languages 177 

Of course, whenever a decidable 7r-language L is f ( p ) -op t ima l  for a computable 
function f, then for bpic(L) the picture membership problem is decidable. Moreover, 
if we can prove suitable bounds on f ( p )  for a class of  7r-languages, then this has 
implications for the picture membership complexity of  the class of  picture languages 
described by these 7r-languages. 

In this section we give asymptotically tight polynomial  bounds for f (p) of regular 
and linear ~--languages and we show that f ( p )  can be necessarily exponential  in 
the size of  the pictures for context-free 7r-languages. 

The following observations will be helpful in the proofs of this section 

2.1. Observation. L e t  v a n d  w be two 7r-words, such that dpic(v) = dpic(w). Then for 
every pair o f  It-words x a n d  y, we have dpic(xvy) = dpic(xwy).  

2.2. Observation. Let p be a nonempty basic picture. Then 

IPl/2 <lV(p)l<-tpl+ 1. 

Note that  in this observation it is essential that p is a connected picture (which 
we assume tacitly, anyhow). 

2.3. Theorem. (i) For every regular ~-language L there is a constant c, c > 0, such 
that L is clpl2-optimal. 

(ii) There is a regular ~r-Ianguage L and a constant C, C > O, such that: For every 

positive integer n there is a picture p,  in bpic(L) with I p .  I >~ n, for which every description 

w o fp ,  in L has length Iwl t> CIp~l 2. 

Proof. (i) Let G = (N, m P, S) be a regular 1r-grammar in (A --> aB, A --> a) -NF,  such 
that L = L(G) .  Consider now a nonempty  picture p in bpic(L) and a ~-word w of 
minimal length in L with bpic(w) =p.  Let q = (r, (0, 0), e )=  dpic(w). We show that 
a derivation of  w cannot be longer than INI  • I V ( r ) l  • Irl. This gives the same upper 
bound for the size of w, i.e., 

Iwl ~< INI • I V(r ) l -  Iris< INI • ( IPI+ 1)" Ipl <~ 2INI • Ipl =. 

To this end let 

S = A o ~  w~Al ~ w2A2:=:>" " ":=:> w,_~A,_ ~ w,, = w 

be a derivation D of w. Let Wo = A. 
We consider now the sequence 

dpic(Wo), dpic( Wl ) , . . . ,  dpic( w~_ ~) 

of drawn pictures induced by the derivation D. Let dpic(wi) = (ri, (0, 0), ei), 1 <~ i <~ 
n - 1 .  

Claim. If, for  1 <~ i <j<~ n - 1, dpic(wi) = dpic(wj), then Ai ~ Aj. 
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Proof  o f  the Claim. Assume that A = Ai = Aj. Then the derivation D can be written 
as follows for wj = w~ffj and  w = wjff: 

S ~  w ~ A ~  wiffpjA~ WiWjW 

with ~j # A. Since dpic(w~) = d p i c ( w ~ ) ,  we have dpic(wi~) = d p i c ( w ~ )  = dpic(w) 

(see Observation 2.1). But 

S ~  w ~ A ~  w,~ 

is now a derivation in G of a word wiff shorter than w which also describes p, a 

contradiction. 

This claim implies that  in the sequence 

(ro. eo. Ao), (rl ,  el, A,), (r2. e2. A 2 ) ,  • • • ,  ( r n - i ,  e . - 1 ,  A._,)  

no two triples are the same. It is easily seen that at most [N[. IV(r)["  Ir[ different 
triples are possible: [NI for the number of possible variables Ai; IV(r)l  for the 
number  of possible endpoints  ei; [rl for the number  of possible edge sets ri. Note 

that for 0 ~  < i<j<~ n - 1 ,  we have ri___ rj. This is why we have bound Irl instead of 

2 Irl. Consequently,  we have shown that n <~ INI • I V(r)l • Irl which proves part (i) of 
the theorem for c = 2IN[ (as mentioned above). 

(ii) Let L = (ru*rld*l)  +. For n 1> 1, we consider the words 

w, = ru l rld ' Iru2 rld21. . . ru" rld"l 

in L which describe the pictures p~ =bp ic (w, )  (see Fig. 2.1). 

- -  A 

I -  

Fig. 2.1. The picture  Ps. 

It is straightforward to verify that I p n ] = 2 n + l  and ]w , l=n2+5n .  We give an 

intuitive argument that  there is no word shorter than w, in L which describes pn. 
A ~r-word in L draws an arbitrarily long vertical line with horizontal lines of length 
one, so-called "thorns', on both sides. After drawing a left thorn it draws somewhere 
a right thorn and vice versa. If  a ~r-word in L draws a right thorn in p~, then it must 
draw the left thorn before drawing a new right thorn. Hence, a minimal  word 
describing p,, must have the shape of w,, with permutations of the ruirldil parts 

possible. This implies that  Iwl >¼1p l 2 for every description w o f p ,  in L. [] 

2.4. Theorem. (i) For every linear ~r-language L there is a constant c, c > 0, such that 
L is c[pl3-optimal. 
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(ii) There is a linear It-language L and  a constant C, C > O, such that: For every 

positive integer n there is a picture pn in b p i c ( L )  with I Pn [ ~ n, for  which every description 
w o f p ,  in L has length ]w[ i> Clp~l 3. 

Proof.  (i) Let G = ( N ,  Tr, P , S )  be a l i nea r  7r-grammar in (A-->aB, A-->Ba, A--> 

a ) - N F ,  such tha t  L =  L ( G ) .  We take an  arbi trary n o n e m p t y  picture p in bp i c (L)  
and a 7r-word w of  min imal  length in L which describes p, i.e., b p i c ( w ) = p .  Let 
q = (r, (0, 0), e ) =  dpic(w) .  Using a s imi la r  approach  as in the p roo f  of  Theorem 2.3, 

we show that  a der ivat ion of  w cannot  have  more t han  INI" [ V(r)l ~" Irl steps. This  
implies direct ly  that  Iwl ~<41NI" Ipl 3. To be precise, cons ider  a derivat ion D in G:  

S = A o : : : >  V i A l  w I ~ v 2 A 2  w2::=> - - • :::> Vn-lAn-~ w._~ ~ w 

of the word  w. Let v0 = w0 = A and  (p~, (0, 0), ei) = dpic(v,) ,  (ri, s~, e) = dp i c (w , ) - -w i th  
e being the endpo in t  in q =( r ,  (0, 0), e ) - - f o r  0 ~  < i ~  n - 1. 

Cla#n. I f  f o r  0 <~ i < j <~ n - 1, p~ u r~ = pj w ~, e~ = e~ and s~ = sj, then A~ ~ Aj. 

Proof  o f  the Claim. Assume that  A = Ai = Aj. Then the der ivat ion D can be wri t ten  

as fol lows for  vj = v~3j, w i = ~jw~, and w = vj#wj: 

S ~ v~A w~ ~ v~ejA ~jw~ ~ v~vjwwjw, = w 

with ~ffj ~ A. The assumpt ions  of  the C l a i m  imply tha t  dpic(v~ff, w~) = dpic(v~vjwwjwi). 

In  this case, 

S : ~  viAwi =~ viff~wi 

is a der iva t ion  in G of  a word v~wi  shor te r  than  w which  describes p, a cont radic t ion .  

We know that  in the  sequence  

(poU ro, eo, So, Ao)(pl  ~ rl, el, st,  A i ) (P~- i  u r~-l,  en-,, sn-l,  An-l)  

no tuple  occurs twice which gives us an  upper  b o u n d  of  IN[ .  IV(r)[ 2. [r[ for  the  
length n o f  the der iva t ion  D. This proves  part  (i) o f  the  theorem for c = 4[N[. 

(ii) Cons ide r  the  l inear  7r-language 

L = {z ~ x(ru+12urdrd+l)lXl[x ~ (ru*rld*l)+}. 

Let Pn be the picture shown in Fig. 2.2. It is s t ra ight forward  to verify tha t  (1) 
[ p n [ = 2 n + 7 ,  and  (2) if  p n = b p i c ( x y ~ y 2 . . . y , , ) ,  where x ~ ( r u * r l d * l )  +, y i~  
ru*12urdrd*l, for  all i, l<~ i ~< m, and x y l y 2 . . .  Ym ~ L, then  Ix[ ~> c[p~[ 2 for some c > 0 
(see also the p roo f  o f  par t  (ii) of  T h e o r e m  2.3). Since m must  be equal to ]x[ and  
each y~ draws the uni t  square  on top a n d  the  horizontal  l ine at the  bot tom,  it fol lows 
that,  for  all i, l ~  < i<~ n, ]y~[/> n and,  consequent ly ,  [xy l y2 . . .  y,,[ ~ CIp~[ 3 for  some 

cons tan t  C > 0. []  

2.5. Theorem. (i) For every context-free 7r-language L there is a constant c, c > 0, 
such that L is clpl~-optimal. 
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% 
j 

C. _ 

n ' t h o r n s '  

Fig. 2.2. The picture p,. 

(ii) There is a context-free ~-language L and a constant C, C > 1, such that: For 

every positive integer n there is a picture p,  in bpic(L), with [P,I >>" n, for which every 
description w o f  p, in L has length Iw[>~ C Ipnt. 

Proof (sketch). (i) Let G = (N, ~r, P, S) be a context-free ~r-grammar in Chomsky- 
NF  with L = L(G) .  For some nonempty  picture p ~ bpic(L),  let w be a 7r-word of 
minimal length in L with p = bpic(w). Moreover, q = (r, (0, 0), e) = dpic(w). Assume 
that a derivation of w in G can be written as 

S ~  VlAWl ~ v 2 A w 2 ~  V 2 W W  2 : W 

with v2w2~ A and A~  N. Let (Pi, (0, 0), el)=dpic(v~),  (P2, (0,0), e2)=dpic(v2), 
(r~, Sl, e) = dpic(w~), and (r2, s2, e) = dpic(w2) (with e being the endpoint of q). If  
the tuple (pl u r~, e~, s~) equals ( p 2 u  rE, e2, s2), then the derivation 

S ~  v l A w l ~  vl ~wl 

in G gives a word v~ff~wl in L with b p i c ( v l # w l ) = p  which is shorter than w, a 
contradiction. This shows that in a derivation tree of w in (3, every path from the 
root to a leaf  has length at most [NI" IV(r)] 2" [r[~<41N] • [p]3. It is now an easy 

observation that  twl <~ (241Nt) t'13, which proves part (i) of the theorem for c = 16 INI. 

(ii) We show next that there are context-free or-languages L and pictures p 
bpic(L) such that  a word w in L which satisfies p = bpic(w) has at least length 2 Ipl. 
For this purpose we recall the fact, explicitly recorded in [1], that a two-way 
deterministic pushdown automaton (2D-PDA) can be used to count from 0 to 2" - 1 
using its input  tape of length n and two endmarkers together with its pushdown 
store. That is, the pushdown store begins with the string 0" representing, of course, 

the value zero in binary notation. (The low order bit is assumed to be on top.) In 
general, the pushdown operates by adding one to the binary encoded number in its 
pushdown store. It does so by deleting as many occurrences of the symbol 1 as 
occur on top of  the store while s imultaneously moving its input head one more cell 
away from the right endmarker. When an occurrence of the symbol 0 is encountered 
the 2D-PDA replaces this symbol with 1 and adds back as many O's to the pushdown 
store as there are cells between the input  head and the right endmarker. Fig. 2.3 
depicts the situation, when, e.g., the 2D-PDA adds one to 19. 
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¢ X X X X X X $ 
i i I I i i i i i i 

0 input head f ~  

pushdown store 0 
(containing L ~  
binary 19) 

2 moves 

. ¢.x.x.x.x x,x $. 

0 
0 
1 
0 
& 

¢ X X X X X X $ 
I a i i I I i I I ~ I i 

¢ X X X  X X X  $ 
i l t I i i I [ a i 

0 

1 1 
0 3 moves 

0 binary 20 0 
Z IZ°l I,, OI 

Fig. 2.3. The 2D-PDA adds 1 to binary 19 in its pushdown store (n = 6). 

1 m o v e  

We observe that the same type of computation can be simulated by a context-free 
picture language and the picture p, shown in Fig. 2.4. That is, let P be the one-way 
pushdown automaton (1-PDA) specified in Fig. 2.5. Intuitively speaking, the 1-PDA 
can always guess that the input  head of the simulated 2D-PDA is under  the right 
endmarker.  In this case, it accepts the substring drul, which means drawing a unit 
square. I f  the guesses were always correctly done, then the accepted word describes 

the picture p,. If  this is not the case, then we get additional unit squares in the 

picture described by the accepted word. (Note that P is actually a deterministic 
acceptor, so our ' lower bound'  holds even for deterministic context-free languages.) 

n I i n e s  

F 

Fig. 2.4. The picture p.. 

Let L be the context-free g- language accepted by P. Then p, E bpic(L) and any 
drawing o f p ,  by a zr-word w in L simulates a computation of the 2D-PDA counting 

from 0 to 2" - 1. An elementary calculation shows now that I P.I = 10 + n and that 
the length of the shortest word w describing p,  is 4+3  x2 "+~ (actually there is 

exactly one such word w). This shows that, for c =~o, Iwl/> 2 clp-I. That is, any string 
w in L with p,  =bpic(w)  has length exponential  in the size o fp , .  [] 

We conclude this section by pointing out a problem related to the one we 
considered here. Let L = (ru* rld*l)  ÷ be the language in the proof  of Theorem 2.3(ii). 
We have shown that it i s - - in  some sense--no better than cO pl2-optimal (for a suitable 
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read ~ from input I 
push O..into pushdown storeJ 

~ ' r e a d  druZ from input I 
L 

t o p ~ o ~  [ , 
.ushdow~ s ~ _ r ~  YESI read ~ from input I 

s v m ~ o C ~ ? ' ~  pop I from pushdown store 

~ NO ' (top symbolmust be 
~ ~ ~  initial pushdown symbol Zo) I 

YES ~- stop and accept 
"pop O"from pushdown store I 
ush I into pushdown ,store 

0 into pushdown s 

Fig. 2.5. The I-PDA P. 

constant c). But for L '=  r{u, rl, lr}*r we have bpic(L)=bpic(L') and L' is 2lpl- 

optimal. Hence we ask whether there is always a clp]-optimal regular 7r-language 
describing a given regular picture language or whether there are regular picture 
languages which are only describable by 'inherently' clpl2-0ptimal ~r-languages. 
The same problems arise for linear and context-free picture languages. 

3. Membership complexity for picture languages 

In this section we treat the complexity of deciding whether a given picture is in 
a picture language. We show that the problem is NP-complete for regular and linear 
picture languages. (NP denotes the class of problems, which can be solved in 
polynomial time by a nondeterministic Turing machine. A problem is NP-complete 
if it is complete for the class NP. For further and detailed definitions we refer to 

Garey and Johnson [4].) 

3.1. l.emma. The membership problem for basic and drawn linear picture languages 
is in NP. 

Proof. Let G be a linear 7r-grammar and p be a basic picture. Then Theorem 2.4(i) 
shows that for a suitable constant c it suffices to guess a word w with Iwl ~< clpl 3 
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and to check whether  w ~ L(G) and p = bpic(w). Both tasks can be done in poly- 
nomial time. It is easily seen that the proof  of  Theorem 2.4(i) works also for drawn 
pictures, so that we can proceed equivalently for drawn pictures. [] 

Let G = (N, m P, S) be the regular 7r-grammar with N = {S, So, T, U, Xi, X2, 
X3, F, G, H, Y} and the set of  productions 

S --> d2r2u2So, 

So'-> Tl F[ rd3ru 3, 

T--> uU] rE] d2ru2So, 

U ~ uU] ruiluXi 

X ~ r X ,  llX~ldrd'IY for i =  1,2,3,  

G -'> ru iludrd ilH ]uG 

Y--> dYI  rulrF, 

F--> uG ] rT] d2ru2So, 

H --> d i l l  rulrT. 

Let R be the regular set generated by the grammar (3;. We can express the set of 
strings generated by the nonterminal  T as 

[u+( rulu (r + 1)* drdl + ru21u (r + l)*drd21 + 

rua lu( r + l)* drda l)d*rulr + r]F + d2ru2S  0 

and the set of  strings generated from the nonterminal F as 

[u+(ruludrdl + ru21udrd21 + ru31udrd31) d* rulr + r ] T + d2r/,/2S 0. 

We observe that the principal difference between the nonterminals T and F is that 

(1) from T we can go arbitrarily far up, make one of  the 'bends' rulu, ru21u, or 
ru31u, then make an arbitrarily long horizontal line segment, make the corresponding 
reverse 'bend '  drdl, drd21, o r  drd3L, go arbitrarily far down and then make a unit 
square, and (2) from F we can do the same except that the horizontal line segment 
cannot be drawn after going up (consult Fig. 3.1 for illustration). 

We show that it is NP-hard to decide if a given picture p is in dpic(R) by describing 
a reduction from the problem 3SAT (see Garey and Johnson [4]). The NP-hardness 

of  deciding whether a given picture p is  in bpic(R) follows as an easy corollary. 

3.2. Lemma. The membership problem for dpic(R) is NP-hard. 

Proof. Let w = C~C2...  C,,, be a well-formed formula (wff) in 3CNF with the 
variables xl, x 2 , . . . ,  xn. We construct a drawn picture p(w) such that p(w)  is in 



184 LH. Sudborough, E. Welzl 

I - 

(a) i 
(b) 

Pictures which can be drawn 'starting up '  from nonterminal T (for i = 2); (a) example for general case; 
(b) example,  if both 'bends '  are in the same position and start and end point  are on the same 'level'. 

(c) (d) 

Y 
Pictures which can be drawn 'starting up '  from nonterminal  F (again for i = 2); (c) example for general 

case; (d) example,  if  start and end point  are on the same 'level'. 

Fig. 3.1. Pictures drawn starting from T or F. 

dpic(R) if and only if w is satisfiable. The picture p(w) is constructed from 
component  pictures corresponding to the various clauses and variables of w. 

Let Ci = (yj + Yk + Yt) be the ith clause, where yj, Yk, and Yt are positive or negative 
instances of  variables. Construct a component  p(Ci) as shown in Fig. 3.2 where (1) 
the 'bend'  in the sth vertical line segment, is made  by ruSl, rdSl, or some equivalent 
sequence, for 1 <~ s ~< 3, (2) the unit squares containing the nodes labeled yj, y~, 
and Yl, shown in Fig. 3.2, are equally far below the horizontal line segment, and 
(3) the exact size of  the horizontal  line segment and the vertical line segments is as 

follows. 
For each variable xi there is a picture component  p(xi), which is shown in Fig. 

3.3. The component  p(xi) contains 4 m + 6  nodes. A principal feature of this com- 
ponent  is that  (1) each node labeled xl, which corresponds to the variable x~ and 
the clause Cj, is at a distance d(x~)-  0 (mod 4) from the left end of the component,  
and (2) each node labeled ~ ,  which corresponds to the negation of the variable xi 
and the clause Cj, is at a distance d(~{)-= 1 (mod4)  from the left end of the 
component.  Thus, if one imagines starting out  with T (F)  at the left end and 
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horizontal l ine 

i :s~ " ' "  ~ " ' "  ; -- i - segment 
I vertical - ~ 2 nd vertical I 3rd vertical 
l ine segment ~ line segment ~ l ine segment 

Fig. 3.2. A component p(Ci). 

xi ~ xi ~i xi xi i 1 i i 

Fig. 3.3. The component p(xi). 

alternating between these two values between successive vertices of  the component,  
then one has the same value T (F) at each vertex x{, 1 ~j<~ m, and at each vertex 
-J 1 ~<j<~ m. That is, choosing T (F) at the left end of the component  corresponds Xi, 
to choosing the truth value true (false) and this choice is held consecutively across 

the component.  
The entire picture p(w) is formed by (1) coalescing the nodes labeled yj, y~, and 

Yl in each component  p(Ci) with the correspondingly labeled nodes in the com- 

ponents constructed for the variables, (2) for all i, 1 ~< i ~< n, coalescing node Pi of 
the component  p(x~) with node x~÷l of  the component p(xi+~), (3) separating 
horizontal line segments in distinct clause components by five vertical positions by 
adding a sufficient number  of  nodes in their vertical line segments, (4) attaching 
the end of  the drawn picture d2r2u 2 to the node xl~, and (5) attaching the beginning 
of the drawn picture gd3ru 3 to  the node P, of  the component p(x,). An example 

of the picture p(w) is shown in Fig. 3.4. (It should perhaps be noted that the size 
of the horizontal  line segments in the clause components is determined by the literals 
the clause contains and the manner  in which the variable components have been 
catenated together. Also, many nodes in vertical line segments of  clause components  
will be coalesced with nodes in horizontal line segments of other clause components 
in forming the picture p(w) as specified by the above rules.) 

Let w be a satisfiable well-formed formula. We show that p(w) is in dpic(R). Let 
A be an assignment of  truth values that makes w true. In drawing p(w) we must, 
of course, pass through each of  the vertices xl, x l , . . . ,  x~. At each such vertex we 
enter the nonterminal  So via the sequence d2ru 2 from either the nonterminal T or 
the nonterminal  F. Then from So we enter either the nonterminal T or the nonterminal  
F. We enter the nonterminal  T at node x~ if and only if A(xi)= true. In passing 
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L x  x 

P 

x Y ~ y y Z Z Z 

Fig. 3.4. The picture p(w) corresponding to the wff w=(x+y+z)(x+~+z)(~+y+z)(~+y+~). 
(x+~+~)(~+;+~). 

from xl to Pi in the component  p(xi) we draw all of the vertical line segments in 

any of the clause components  that  are attached. In addition, each time a vertical 
line segment is encountered in the nonterminal  T the entire horizontal  line segment 
of that clause component  is drawn. The fact that all of p(w) can be drawn follows 
from the fact that each clause contains a true literal under  the assignment A and, 
consequently, all of the horizontal line segments can be drawn in this way. Therefore, 
p(w) is in dpic(R).  

Let p(w) be in dpic(R).  From the description of the regular set R it should be 

apparent that if  the horizontal line segment in the component  p(Ci) is drawn by 
coming up from the sth vertical line segment of that component  (for 1 ~< s ~< 3), then 
one must return down the same sth vertical line segment. That  is, each vertical line 
segment is coded with a special 'bend '  and the regular set R requires the code used 
to go through this unique bend going up to agree with the code to pass through the 
bend going down. Furthermore, the horizontal line segment in the component  p(Ci) 
can only be entered from a vertical line segment belonging to this component.  That 

is, the regular set R ensures that a horizontal  line segment can be drawn after going 
up a vertical line segment only after having just  passed through a 'bend'.  Since the 

'bends'  are located in p(w) on the vertical line segments just  before the horizontal 
line segments of the same component ,  it is only possible to enter this horizontal 
line segment when coming up the correct vertical line segments. Furthermore, one 
cannot enter one of these horizontal line segments going down, since the regular 
set R ensures that the path going down stops at a unit  square and unit squares 
appear only in the components corresponding to variables. 

Since p(w) is in dpic(R) ,  there is a string z in R such that dpic(z) =p(w) .  Define 
the truth assignment A by: A(x~) = true if and only if a horizontal line segment of 

a clause component  is drawn in going up from a vertex x~, 1 <~j ~< m, in the component 
p(x~). It should be clear from our previous discussion and the construction of p(w) 
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that each horizontal line segment can be drawn only by going up from and returning 

to some vertex either of the form x] or ~ ,  for some 1 <~j ~< m. 
We show that the well-formed formula w is true under the assignment A. We 

need only show that each clause contains one true literal under the assignment A. 
By the construction of p(w) and the regular set R, if a horizontal line segment is 
drawn going up from a vertex x~, then no horizontal line segment in p(w) can be 
drawn going up from a vertex ~k. That is, each such vertex x{ is at an odd numbered 
distance from each such vertex gk and it is not possible by any substring of the 
regular set R to go up on vertical line segments which are at an odd numbered 

distance apart in a component and draw horizontal line segments. Consequently, 
since each horizontal line segment must be drawn, it follows that each clause contains 
a true literal under the assignment A and, therefore, w is true under this 

assignment. [] 

3.3. Corollary. The membership problem for bpic(R) is NP-hard. 

The corollary easily follows from the observation that the only way the picture 
p(w) described in the proof of Lemma 3.2 can be drawn from a string in R is 
starting at the beginning of the unique portion of this picture drawn by d2r2u 2 and 
ending in the unique portion of this picture drawn by d3ru 3. 

We summarize the results of this section in the following theorem. 

3.4. Theorem. The membership problem for drawn and basic regular and linear picture 
languages is NP-complete. 

Of course, the membership problem for context-free picture languages is NP-hard, 
too, but we are not able to show that the problem is in NP. Recall the result in 
Theorem 2.5(ii). It shows that the direct approach as used for regular and linear 
picture languages in Lemma 3.1 does not work for context-free picture languages. 

4. An undecidability result for regular picture languages 

We can give simple examples which show that, in general, the intersection of two 
regular basic picture languages is not a regular basic picture language. Consider 
B~ = bpic(r÷d+l+u+) and B2 = bpic(l+u+r+d+). It is easily seen that B~ n B2 is exactly 
the set of rectangles and it can be shown that this is not a regular picture language. 
(We refer to Maurer et al. [9] for proof techniques for showing that a picture 
language is not regular.) It is even conceivable that this is not a context-free picture 
language. In this section we show that the emptiness of the intersection of two 
regular basic picture languages is undecidable. This will be done by a reduction to 
the halting problem of so-called two-counter automata, which have been investigated 
by Minsky [11] (see also Hopcroft and Ullman [7]). A two-counter automaton is a 



188 LH. Sudborough, E. Welzl 

triple M = (Q, P, A0), where Q is a finite set o f  states, Ao in Q is an initial state, 

and P is a finite set of  instructions, being tuples in 

(Q x {addl,  add2, subl ,  sub2, if l ,  if2} x Q) u Q ×{halt}. 

The automaton is working on two nonnegative counters, whose values can be 
increased, decreased (if  nonzero) and checked for zero. The meanings of the tuples 
in P are listed in Fig. 4.1. (We neglect here the input  tape of M!)  

Instruction Meaning  

(A, add l ,  B) 

(4,  add2, B) 

(A, subl ,  B) 

(A, sub2, B) 

(A, ifl,  B) 

(A, if2, B) 

(A, halt) 

Move  f rom state A to state B, while adding one to counter  1 

Move  f rom state A to state B, while adding one to counter  2 

I f  counte r  1 is nonzero, then move from state A to state B, while subtracting 
one f rom counter  1 

If  counte r  2 is nonzero, then move f rom state A to state B, while subtracting 
one f rom counter  2 

Move  f rom state A to state B if counter  1 is zero 

Move  f rom state A to state B if  counter  2 is zero 

The computa t ion  terminates in state A 

Fig. 4.1. Meaning of  two-counter  instructions. 

A configuration of a two-counter automaton is a triple (A, n~, n2), A in Q, n~ and 
n2 two nonnegative integers where A describes the current state of  the automaton, 
n~ the value of  counter 1, and n2 the value of  counter  2. The move relation ~ of M 

is defined on configurations in the obvious way. E.g., (A, n~, n2)~-(B, n t -  1, n2) if 

(A, subl ,  B) ~ P and nl ~ 0, or (A, n~, 0)W(B, n~, 0) if (A, if2, B) ~ P. ~* is the 
reflexive transitive closure of  ~. Since two-counter  automata can simulate every 
Turing machine [11], we have the following proposition. 

4.1. Proposition. For a two-counter automaton M = (Q, P, Ao) it is undecidable 

whether there is an integer n such that (Ao, n, 0)~-*(B, nl, n2) and (B, halt) ~ P, for 

some nl, n2, and B, i.e., whether there is an integer n such that there is a computation 

o f  M which halts on input (n, 0). 

4.2. Theorem. It is undecidable whether or not, for two regular zr-languages L~ and 

L2,  bpic(L~) c~ bpic(L2) ~ 0 holds. 

Proof. The intuitive idea of  the proof  is as follows. We simulate a two-counter 
automaton by a walk (drawing) in the plane starting from some point  (4n, 0), n I> 0. 
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That is, for i , j  >10, the point (4i, 4j) stands for "counter  1 contains i" and "counter  
2 contains j " .  Thus, e.g., instead of  an instruction (A, addl ,  B) of M, we will have 
a production A--> r4B in a corresponding regular 7r-grammar (describing the so- 
called M-simulating picture language). Of course, we cannot test for zero in a regular 
grammar. Instead of  this we will simply guess the appropriate counter to be zero. 
This will be done by drawing little squares starting from the points (4i, 4j), namely, 
rdlu for testing counter 1 and, uldr for testing counter 2. E.g., we take A--> rdluB 
for an instruction (A, ifl ,  B) of  M. A drawing of  a picture is now a correct simulation 
of a computat ion of  A, (i) if all the squares rdlu are attached to points (4i, 0) and 
all the squares uldr are attached to points (0, 4j), and (ii) if the drawing never leaves 
the area of  points (4i, 4j), i , j  >i O. In order to specify the origin (0, 0) in an unat tached 
picture, we will draw a 3 x 3 square and define its upper right corner to be the origin 

(0, 0). 
A second regular  ~r-language (so-called test picture language) will describe all 

pictures with one 3 x3 square, little squares in the appropriate positions (on the 
axes) and a drawing between (4i, 4j)-points,  i , j  >10. We show that there is a picture 
in the intersection of  the M-simulating picture language and the test picture language 
if and only if there is an integer n such that M halts on input (n, 0). 

Let M = (Q, P, Ao) be a two-counter automaton. We construct a regular 7r- 
grammar G ~  = (N~,  zr, P~, Bo) which has nonterminals NM = Q u {Bo, BI, BE, B3} 

and productions PM as follows: 

uldrd4 Bo ] uldrla d3 r3 u3 Bl, B o --> 

Bi --> rdlur4Bl j rdluB2, 

B2--> 14B2JAo (Ao is the initial state of  M), 

X-*ray if (X, add l ,  Y) in P, 

X--~ u 4 y  if (X, add2, Y) in P, 

X-~I4y if (X, subl ,  Y) in P, 

X -~ d 4 Y if (X, sub2, Y) in P, 

X - > r d l u Y  if (X, if l ,  Y) in P, 

X ~ u ldrY  if (X, if2, Y) in P, 

X --> B 3 if (X, halt) in P, 

B 3--~ u4B3J d4B3 It4B3 IrWin. 
Let LM = L(GM). Secondly, we define a regular g-language Lr  by the following 
expression: 

Lr = u3 r3( ( rdul)u 4* d4*( drlu ) r4)*14* d31a r3 u3( ( ulrd ) r4*14*( ludr ) u 4) *. 

We start the analysis of bpic(LM)c~ bp ic (Lr )  by some simple observations: 
(O1) LM C R = { r  4, 14, d 4, u 4, uldr, rdlu, 13d3r3u3} *. 
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(02)  A picture p is in bpic(LT) n bpic(R)  if and only if it has the shape as, e.g., 
described in Fig. 4.2. That is: (1) We have a single 3 x3  square (whose topright 
comer  we define as origin (0, 0)). (2) The horizontal axis contains unit squares rdlu 
attached to positions (4i, 0), 0 <~ i<~ io, for some io I> 0. (3) The vertical axis contains 
unit squares uldr attached to positions (0, 4j), 0 <~j <~Jo, for some jo ~> 0. (4) There 
are upgoing vertical (rightgoing horizontal) lines of  arbitrary length 4n, n/> 0, starting 
from positions (4i, 0), 0 ~< i <~ i0 (respectively (0, 4j), 0 <~j ~<jo). 

Let M halt on input (no, 0) for some no I> 0. Let 

C'(Ao,  no, O) = (Ao, no, mo)~(A,,  nl, m,)b-. • "~-(Ak, nk, mk) 

V 

I- 

I- 

i;V 
- -  - v 

L \ I  - I - - ,A i = = I I = : = - - - 

~ ( o , o )  

Fig. 4.2. An example of a picture in bpic(Lr)nbpic(R). 

be a computation of  M such that (Ak, halt) is in P. Let Io, I I , - .  - ,  Ik - I  be the sequence 
of  instructions in P such that for all /, 0 ~< i <~ k - 1 ,  Ii is an instruction that takes 
M from configuration (Ai, n, m~) to the configuration (A~÷~, ni÷~, mi÷~). For all i, 
0 ~  i <  k -  1, let prod(I~) be the production of GM that corresponds to I~. (The 
correspondence is described in the construction of the grammar GM.) Let b = 
max{n,[0<~ i<~k} and a=max{mi[0<~ i<~k}, i.e., a and b are the maximal values 
of  counter two and one during the computat ion C. We observe that GM can generate 
strings of the form 

w( a, b, no)= ( uldrd4)auldrla da r3 ua( rdlura)b rdlula(b-nO)Ao, 

using its initial rules. The string w(a, b, no) corresponds to a picture as shown in 
Fig. 4.3. Let w(C) be the string generated by the sequence of productions 

prod(Io),  p r o d ( I 1 ) , . . . ,  prod(Ik_l) .  
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I 
4a 

Ii 

F- 

i - -  i : :  

4n 0 
r 7 " 1  _ . . . . . - -  - . 

i i "  ' "  =ii°:T_I i!  i i  
4b =- 

Fig. 4.3. The picture produced by w(a, b, no). 

We observe that the rightmost symbol of this string is the nonterminal Ak, since the 
computat ion terminates in state Ak. Since (Ak, halt) is an instruction of M, we see 
that GM can generate terminal strings of the form 

w = w(a, b, no)w(C)Wh 

for any W h ~ {/,/4, d 4, r 4, /4},. 
The picture produced by the string w(a, b, no)w(C) represents the computation 

C in the following way: I f  after the sequence of  instructions Io, 11 , . . . , / j_~ ,  j~> 1, 
M, started with counter values (no, 0) in state Ao, has the counter values (nj, ms) 
and is in state As, then the string generated by the sequence of  productions 
prod(Io),  p r o d ( I f ) , . . . ,  prod(/ j_l)  has the nonterminal A s and produces a picture 
which terminates at position (4ns, 4ms). (Recall that  we took (0, 0) to be the top 
right comer  position of  the 3 x 3 square.) Furthermore,  there are no additional unit 
squares in the picture except for those which were already produced by the prefix 
w( a, b, no). 

Finally, we take a suffix Wh, such that Wh rasters the whole rectangle {(n, m)10~  < n <~ 
b, 0 ~< m ~< a} with line distance 4, so that we end up with a picture as shown in Fig. 
4.4. This picture is in bp ic (Lr )  as seen from observation (02).  That is, b p i c ( L a ) n  
bpic(LT) ~ O. 

Conversely, let b p i c ( L r ) n  bp ic (LM)~  0. As we have seen, bpic(Lr)c~ bpic(R) is 
the set of  all pictures of  the form indicated in observation (O2)(1)-(4) above. We 
have also seen that pictures in bp ic (L~)  correspond to computations by the two- 
counter automaton M. I f  a picture p is in bp ic (L~)  c~ bpic(Lr) ,  then it follows that 
all of  the "branch on zero" instructions simulated by the rules of the grammar G~, 
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-I 
I I  

I I I 1 

4a 

__t 

4b 

Fig. 4.4. The picture bpic(w(a, b, no)w(C)wh). 

i 7 " - - 2  I 

are valid, i.e., occur only when the appropriate  counter is zero, since in pictures in 
bpic(LT) unit squares occur only appropriately on the horizontal  axis and on the 

vertical axis. Also, we note that only one 3 x3 square exists in a picture of bpic(LT) 
and, consequently, the positions represented in the computat ion simulated by the 
rules of GM are correct with respect to both  axes. 

It follows that there is a valid computat ion by M on some counter values (n, 0) 
that halts. That is, if bpic(LM) n bpic(Lr)  ~ 0, then there is an n such that M halts 
on input (n, 0). [] 

It is straightforward to verify that it is partially decidable for two regular 7r- 
languages Li and L2 whether b p i c ( L l ) n b p i c ( L 2 ) ~ 0 .  That is, one can simply 
enumerate all pictures and test each for membership in b p i c ( L l ) n  bpic(L2). Con- 
sequently, the complement problem must not be partially decidable. Thus we have 
the following corollary. 

4.3. Corollary. It is not partially decidable for two regular picture languages LI and 
1.2 whether bpic(Ll) n bpic(L2) = O. 

5. Stripe picture languages 

A stripe picture language is a picture language whose pictures 'fit' into a stripe 
defined by two parallel lines. In this section we give decidability and complexity 
results for this restricted class of picture languages which differ significantly from 
the ones we learned in Section 3 and 4. 
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The main  lemma states that for a given stripe there is an (injective) correspondence 
between regular picture languages within this stripe and regular string languages 
over some alphabet 2. As straightforward implications we have, e.g., that picture 
membership  is decidable in linear time for regular stripe picture languages and that 
the emptiness of the intersection problem of two regular stripe picture languages is 
decidable. This correspondence, of  course, is only possible, because stripe picture 
languages contain in some sensemonly  one-dimensional  objects, i.e., pictures can 
'extend" arbitrarily only in two colinear directions. But the last result mentioned in 
this section reveals that already linear stripe picture languages are more complex 
than l inear string languages. 

For real numbers k, dl, d2, dl<d2, the (k, dl, d2)-stripe (M~o k'd''a2) for short) is 
the subset of  points of the universal point set Mo defined by 

M~o k'a''a2) = {( i, j )  ~ Mo[ ki + dl <~j <~ ki + d2}. 

M~o k, a,, a2) contains simply the integer grid points which are between the parallel 
lines defined by the equations y = kx + dt and y = kx + d2. (The reader might miss 
here the case of the vertical stripe (i.e., k = 00). Clearly, our results would hold also 
if we add the special case o f  M(o~'dl"d2)={(i,j)E Mold1 <~ i<~ d2}. But this would 
cause the necessity of considering special cases in every proof which follows. The 
interested reader can easily check these special cases, but we omit them here.) 

A drawn picture q =(r ,  (0, 0), e) is a drawn (k, dl, d2)-stripe picture if V ( r ) c  
M~o k, d,, a~). A basic picture p is a basic (k, di, d2)-stripe picture if  there is an attached 
basic picture p', such that p = [p'] and V(p') c_ M~o k, dl, rig. Note that the drawn picture 
q in Fig. 5.1 is a drawn (~, -2 ,  4)-stripe picture. While q is not a drawn (~, -2 ,  3)-stripe 
picture, its basic picture p = base(q) is a basic (~, _2, 3)-stripe picture. 

Fig. 5.1. A drawn (~, _5, 4)-stripe picture. 

A drawn (basic) picture language B is a drawn (basic) (k, dl, d2)-stripe picture 
language i f  every picture in B is a drawn (basic) (k, d~, d2)-stripe picture. A drawn 
(basic) picture language D is called a stripe picture language if there are real numbers 
k, d~, and  d2 such that D is a drawn (basic) (k, dl, d2)-stripe picture language. (As 
a consequence,  every finite picture language is a stripe picture language.) The 
following proofs are always given for drawn stripe picture languages. The case of 
basic stripe picture languages can always be treated analogously with minor modifica- 
tions. 
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First we show that for a context-free ~r-grammar G it is decidable whether 
dp ic (L(G) )  (respectively, bp ic (L(G)) )  is a stripe picture language or not. This 
generalizes the result of  the decidability of picture finiteness in [9] and we also use 
some of  the ideas of  the proof  given there. 

5.1. Lemma. Let G = ( N, 7r, P, S) be a reduced context-free 7r-grammar and x be a 
nonempty lr-word such that A :~ x A  y or A A> y A x  for some A ~ N, y ~ 17"*. I f  dpic( L( G ) ) 
is a drawn ( k, dl, d2)-stripe picture language, then, for  sh(x) = (m, n), we have m = n = 
0 o r n / m = k .  

Proof. We observe that if dp ic (L(G))  is a drawn (k, d~, d2)-stripe picture language, 
then, for all w ~ L ( G ) ,  sh(w)~M~o ~a''d2). Assume that A ~ x A y ,  s h ( x ) =  (m, n ) ~  
(0, 0) and  m ~ 0. (The case n ~ 0 and m = 0 is left to the reader.) Then there are 
~r-words z~, z2, z3, such that z~xiz2YiZ3 is in L ( G )  for all positive integers i. Note 
that if dpic(zlxiz2YiZ3) is a (k, d~, d2)-stripe picture, then dpic(z~x i) is a (k, dr, d2)- 
stripe picture. Hence sh(z~x ~) = ( m ' +  ira, n ' +  in), for (m',  n ' ) =  sh(z~) and we have 

i.e., 
dl <~ n'+ in - k ( m ' +  im) <<- d2, 

dl <~ n ' -  kin '+ i(n - km) <~ d2, 

for all i =  1, 2, . . . .  This can be true for all i i f a n d  o n l y i f n - / c m  = 0,i.e., n / m  = k. [] 

As an easy consequence we have the following corollary. 

5.2. Corollary. I f  k is a nonrational real number, then a context-free drawn (basic) 
(k, dl, d2)-stripe picture language is finite. 

Proof. Let G = (N, zr, P, S) be a reduced context-free zr-grammar. Note that (i) if 
for all A ~ N, x, y ~ ~r*, A : ~ x A y  implies that sh(x) = sh(y) = (0, 0), then dpic(L(G))  
is finite (see [9, Lemma 5.8]), (ii) if for A ~  N, y, x ~  rr*, A~:>xAy or A~:>yAx and 
sh(x) = (m, n) ~ (0, 0), then dpic(L(G))  is an ( n / m ,  d~, d~)-stripe picture language 
for some real numbers d~ and d~ (if it is a stripe picture language), and (iii) 
M(On/m'd~'d2) c~M(o k'dPd2) is finite unless k =  n/m.  [] 

5.3. Theorem. It is decidable wheth.er a context-free drawn (basic) picture language 
D is a drawn (basic) stripe picture language or not. 

Proof. First we observe that, for a ~r-language L, D = dpic(L) is a stripe picture 
language if and only if D ' =  dpic(pref(L)) is a stripe picture language. Second, if 
L = pref(L) ,  then D = dpic(L) is a (k, d~, d2)-stripe picture language if and only if, 
for every word w in L, sh(w)eM~o k'dl'd2) Hence, w.l.o.g we assume that D =  
dp ic (L(G))  for some reduced context-free I t -grammar G = (N, ~r, P, S) in Chomsky 
normal form such that  L ( G ) =  pref(L(G)) .  
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Claim. I f  there is a real number k, such that for  all words x in 

T = { x ~  7 r * [ A ~ x A y o r A ~ y A x  for some y ~  7r*, A ~  N}  

we have sh(x) = (m, n) = (0, 0) or n / m = k, then D is a drawn ( k, dl, d2)-stripe picture 
language for  two real numbers d, and d2. 

Proof o f  the Claim. Let w be a word in L(G)  whose derivation can be written as 

S ~  z l A z 2 ~  z l x A y z 2 ~  zlxz3Yz2 = w 

for some variable A e  N and xy # A. Then z~z3z2 is in L(G)  and for sh (w)=  (m, n) 
and sh(z~z2z3)= (m', n') we have n - k m  = n ' - k m ' .  (This can easily be seen by 
elementary calculation.) Consequently,  

km + d~ <~ n <~ km + d 2 

if and only if 

km' + dl <~ n' <~ km'  + d2. 

We can apply a ' reduct ion '  as used above to every word in L with Iwl > 2 INE-~. This 
implies that if, for all words w with Iwl <~2 INI-~, sh(w)= (m, n), we have 

k m + d l  <~n<~km+d2, 

then this holds for all words in L(G) .  Hence, we set d2=21Nl-~+lk].  2 INI-1 and 
d~ = - d 2  and we are done. 

Together with Lemma 5.1 this Claim implies that dpic(L(G))  is a stripe picture 
language iff the assumptions of the claim hold for some k. 

The language T described in the claim is obviously a context-free ~-language. 
The property stated in the claim is fulfilled if and only if  for all words x in T we 
have either 

# u ( x ) - # a ( x ) = O  and # r ( x ) - # t ( x ) = O  

or 

~ ' r (X)- -  ~ I(X) = k(  ~ u(X)-- ~ d(X)).  

The set of Parikh vectors fulfilling this property, say P1, is a semilinear set. Moreover, 
the set of  Parikh vectors of  words in T, say P2, is a semilinear set. So, dpic(L(G))  
is a stripe picture language iff P2-P~.  This is decidable for semilinear sets (see 
Ginsburg [5]). [] 

5.4. Theorem. Let k be a rational number, d~ and d2 be real numbers (we assume 
that dl <~ 0 <~ d2). The set o f  ~r-words describing drawn ( k, dl, d~)-stripe pictures, denoted 
by 

ddes(k, dl, d2)= {w ~-rr* I dpic(w ) is a drawn (k, dl, d2)-stripe picture} 
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is a regular It-language. Analogously, 

bdes(k, d~, d2) = {w e ~r*lbpic(w) is a basic (k, d~, d2)-stripe picture} 

is a regular It-language. 

Proof. Let k = n~ m, such that  m and n have no common divisor and m > 0. Then 

the ( m, n, d~, d2)-unit point field is defined by 

Fo = {(i, j)  e M(o k" a,'dPlo<~ i< m}. 

A deterministic finite automaton accepting ddes(k, dr, d2) is A = 

(Fow {$}, rr, 8, (0, 0), Fo), where F0w{$} is the set of states, (0, 0)~ Fo the initial 
state, and Fo the set of accepting states, and the transition function ~ : (F0 w {$}) × zr -~ 

Fo w {$} is defined by the following two cases: 

v e Fo, b e "rr: 8(v, b) = 

and 

"b(v) if b(v) e Fo, 

tm,.(b(v)) if t,. , .(b(v)) e Fo, 

t_m,_n(b(v)) if t -m.- . (b(v))eFo,  

$ else, 

b ~ rr: 8($, b)= $. 

The correctness of the construction essentially stems from the fact that 

M¢ok'a"dP= U t,m.,,(Fo). [] 

5.5. Corollary. Let k be a rational number. The set of  drawn (basic) (k, dl, d2)-stripe 
pictures in a context-free picture language is a context-free picture language. 
Analogously, the ( k, dl, d2)-stripe pictures in a linear (regular) picture language form 
a linear (regular) picture language. 

Note that such a closure property does not hold for a nonrat ional  number k (see 
Corollary 5.2). 

5.6. Corollary. Let k be a rational number, dr and d2 be real numbers. It is decidable 
whether a drawn context-free picture language (i) contains drawn (k, dl, d2)-stripe 
pictures or not, (ii) contains finitely many ( k, dl, d2)-stripe pictures or not, and (iii) is 
a drawn (k, dl, d2) -stripe picture language or not. Analogous statements hold for" basic" 
instead of  "drawn'. 

For the next lemma we will use so-called two-way finite state generators, which 

have been introduced in [2]. The following definition is a modification of the one 
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given in [2] and  covers a special case sufficient for our purposes. (We use only 
two-way finite state generators with so-called set-interpretations.) 

Intuitively speaking, this device has a two-way writing head with finite control 
and a two-way infinite working tape. Every cell of the tape contains an initially 
empty set of symbols from a finite printing alphabet  A. In every step the writing 
head adds a symbol to the set currently under  the writing head (if the symbol is 

already in the cell, then its contents does not change), moves in either direction 
and changes its state (without reading capacity). The output string is a sequence of  
sets, i.e., the output alphabet  is 2~ = 2 a. 

Formally, a two-way finite state generator, 2FSG for short, is a system 

H=(Q,  8, d, ao, Ay; A, pr), 

where (i) Q is a finite nonempty  set of  states, (ii) 8:Q-> 2 ° is a transition function, 
(iii) d: Q->2 ~-1"°'1~ is a direction function, (iv) Ao~ Q is an initial state, (v) Af~ Q 
is an accepting state, (vi) A is a finite printing alphabet, and finally (vii) pr:  Q -> A 
is a printing function. The output alphabet is ,~ = 2 'a. 

Computat ions of a 2FSG H are described by strings over (Q × Z ) ,  where (A,j) 
Q x Z stands for "current  state is A" and "current  position on the tape is j " .  The 
move relation F- associated with a 2FSG is defined as follows. Let c E(Q x Z ) * ,  
(A, j )~ Q xZ.  Then 

c(A, j)f-c(A, j) (A', j + i) 

if A ' e  8(A), ie d(A). The reflexive transitive closure of ~- is denoted by ~*. 
The set of  valid computations of H is 

c o m p ( H ) =  {c ~ (Q x Z)*({As} × Z)  I (Ao, 0)~-* c}. 

For a prefix of a valid computat ion c~ (Q x Z ) *  the leftmost (rightmost) position 
visited by c- - lm(c)  (rm(c)) for short-- is  defined as the minimal (maximal) j such 

that c can be written as c = c~(A,j)c2 for some cl, c2~ (Q ×Z)* ,  ( A , j ) ~  Q ×z .  In 
order to examine the final contents of  a cell, the history-j-homomorphism h~ : (Q x 
Z ) * ~  Q* is defined for (A, i)~ Q x Z :  

hi(A, i) = i f i ¢ j .  

Intuitively, for a valid computat ion c, hi(c) describes the sequence of  states of the 

finite control, in which the writing head passed position j on the tape. Finally, the 
cell will contain the element ou t j ( c )=  {pr(A)]A e alph(hj(c))} of  .~. (For a word w, 
alph(w) denotes the set of  symbols which occur in w.) 

Thus the word generated by a computation c is 

word(c) = OUta (C)OUto+, (C) . . .  OUtb-I (C)OUtb(C) ~ ~,*, 

where a = lm(c) and b = rm(c). The language generated by H is 

l ang(H)  = {word(c) I c c comp(H))  _~ .,~*. 
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5.7. Proposition (Culik and Welzl [2]). Let H be a 2FSG. Then lang(H)  is a regular 
language. 

Now we have prepared the notions to prove the following lemma. 

5.8. Lemma (String Representation Lemma). 
(I) Let k be a rational number and d,, d2 be real numbers, d~ < d2. Then there is 

an alphabet ~ and an encoding tz from the set of  drawn ( k, d~, d2)-stripe pictures into 
* with the following properties: 
(1) For two drawn ( k, dl, d2)-stripe pictures q~ and q2 we have/z(ql)  =/z(q2) if and 

only if ql = q2. 
(2) For a drawn (k, dl, d2)-stripe picture q we can compute Iz(q) in linear time 

(linear in the size of  q). 
(3) I f  D is a regular drawn (k, d~, d2)-stripe picture language, then 

tx( D) = {tz( q) l q ~ D} 

is a regular string language, which can be effectively constructed from D. 
(II) A corresponding statement holds for basic ( k, d~, d2)-stripe pictures and picture 

languages. 

Proof. The idea of the proof is very simple. We divide every picture into vertical 
stripes of equal width. By this we get a sequence of subpictures. If  we consider the 
subpictures as unattached objects (which are possibly disconnected), then in a stripe 
picture language there occur only finitely many different subpictures. We take this 
set of possible subpictures as alphabet. The encoded picture is now simply the 
sequence of unattached subpictures we obtained by 'slicing' the picture (with 
additional markers which give information about start and end point). See Fig. 5.2 
for an example of such an encoding. 

We will show that for a regular ~r-grammar G which describes a drawn stripe 
picture language D = dpic(L(G))  there is a 2FSG which generates exactly the strings 
of encoded pictures in D. This will prove the regularity o f /z (D) .  

Let k = n/m,  with m and n being two integers without a common divisor, and 
m > 0  (if k = 0 ,  then m = 1, n =0).  We need again the (m, n, d~, d2)-unit point field, 

Fo = {(i,j) ~ M~o k" a~' a2)[ 0<~ i < m} 

and additionally we define a ( m, n, dl, d2)-unit line field, 

Fl = {{v, v'} ~ M1 Iv ~ Fo and v'c (FoU tm.n(Fo)} 

(see Fig. 5.3). The alphabet Z is now the set of subsets of F1 u F0 u {¢, $} (where the 
subpicture in the sliced portion will be a subset of Fz, an element in F0 and a $ will 
indicate the position of the endpoint in a field--provided it is in the corresponding 
sliced port ion--and ¢ indicates the startpoint in a sliced portion, whose position 
will be explicitly (0, 0 )e  M0). Clearly, • is a finite set. 
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Fig. 5.2. A drawn (½, 3 5 -5 ,  ~) stripe picture and its corresponding sequence/~(q). 

Fig. 5.3. The (2, 1, -3 ,  ~) unit point field F0, the (2, 1, _3, 5) unit line field F~ and the extended (2, 1, 3 5 - -  5 ,  5 )  

unit point field Fo- 

Cons ide r  now a drawn (k, dl, d2)-str ipe picture q --:' (r, (0, 0), e). For  the encod ing  
we define,  for  all integers i, 

( r n  F]) u {¢} i f i = O , e ~ F o ,  

( rc~Ft )w{¢ ,$ ,e}  i f  i = 0 ,  e e  F o, 

o.-' ='1' tim.i,(r) n F l  i f  i ~  0, t,m,i,(e)~Fo, 
I 
[(tim, in(r ) t'~ El )  u {$, ti,~in(e)} 

i f  i # O, tim, in(e) ~ Fo. 

For  the d rawn  (½, _3, 5)_stripe pic ture  in Fig. 5.2, we have, e.g., o'_ 4 = {{(1, 1), (1, 2)}, 

{(1, 1), (2, 1)}}, 0-_3=o-_2, o-2={(0, 1),$} and  o.i = 0  for i < - 5  or  i > 2 .  Let a b e t h e  
min imal  i such that  o.i ~ 0 and b be the  maximal  i such that  o'i ~ 0. The s t r i ng / z (q )  
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encoding the picture q is now 

/x(q) = o'atr~+ 1 . . .  t r0 . . ,  o't,_l try, 

It is straightforward to see tha t /x (q )  can be computed in linear time and that,  for 
two drawn (k, dl, d2)-stripe pictures,/z(q~) = ~(q2) holds if and only if ql = q2. 

Our final goal is to define a 2FSG which generates /~(D) for a regular drawn 

(k, dl, d2)-stripe picture language. For this purpose let G = (N, cr, P, S) be a reduced 
regular zr-grammar in ( A ~  aB, A ~  )t)-NF, such that D=dpic(L(G))  is a drawn 
(k, d~, d2)-stripe picture language. 

The cells of  the working tape of  our 2FSG will correspond to the fields 0-~ of  the 
encoded stripe picture. As states we use tuples (A, v~, v2, i), where A e N, i e 
{ -  1, 0, + 1 } and vi, 122 E Fo = {(i,  j )  ~ M~0 k" d,. d2)[0 <~ i ~< m}. (See Fig. 5.3 for an example 

of an extended (m, n, d~, d2)-unit pointfield Fo.) Such a tuple means for the 2FSG 
simulating the derivation (respectively drawing) of a word w in L(G):  (i) The 
derivation just 'uses' the nonterminal  A, (ii) just drew line {v~, v2} in the field 
(respectively cell) under the writing head, (iii) v2 is the current position of  the 
drawing head in the field, and (iv) i indicates the direction of the next move ( -1  
for 'left', 0 for 'no move',  and +1 for 'right'). The reader might realize that  the 
assignment of  points on the 'border '  between two fields is not unique. This stems 
from the fact that for such a point  v2, the line {v~, v2} could belong to each of  the 
adjacent fields. 

Additionally,  the state (S, ¢, (0, 0), i) means that the drawing starts, and the states 
()t, v, $, 0) mean that the drawing ended in position v of the cell under the writing 
head. Formally, we define the 2FSG H = (Q, S, d, Ao, Ay; A, pr) as follows: 

(i) Q={Ao, ay} 
u{(A,  v,, v2, i) lA~ N, {vl, v2}e F1, i e  {--1, 0, 1}} 
u{(S,  ¢, (0, 0), i)lS the axiom of G, i~ {-1 ,0 ,  1}} 

u {(h, v, $, 0) l v ~ F0}. 

(ii) 8(Ao)={(S,¢,(O,O),i)[i~{-1,  O, 1}}; 
8(A ) =0; 
8((h, v, $, 0)) = {As} for v c Fo; 

- for CB, wl, wz, j), CA, vl, vz, i)~ Q (v~ possibly $) CB, wx, wz, j)~ 8(CA, v,, vz, i)) if  
and only if, for b ~ r ,  wz=b(wl), the production A ~ b B  is in P and w~= 

t- i , , , , - i ,  (V2) ; 
- CA, v, $, 0)~ 8(CA, vl, v2, i)) if  and only if A ~ A  ~ P and v = t-,m.-in(V2). 
(iii) The direction function for CA, v~, v2, i)~ Q, A~ N u { A } ,  v~ ~ PoU{¢}, v2~ 

/~oU {$}, i ~ { - 1 ,  0, 1} is defined as d((A, v,, v2, i ) )={i};  d(Ao)={0}; d(As)=C0}. 
(iv) z~ = F, u Fo u {$, ¢}. 
(v) pr:  Q ~ A, is defined as 

pr(Ao) = ¢, 
pr((S, ¢, (0, 0), i)) = ¢, 
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pr((h, v, $, 0)) = v, 
pr((A, DI, V2, i)) = {v,, v2}, v~ # ¢, v2 # $, 
pr(A/) = $. 

The equivalence of lang(H) and ~,(D) should be clear from the intuitive arguments 
given above. [] 

5.9. Corollary. For regular 77-1anguages L1 and I-.2 where dpic(L2) is a stripe picture 
language, it is decidable whether (1) dpic(L1)=dpic(L2), (2) bpic(Ll)=bpic(L2),  
(3) dpic(L~) c~ dpic(L2) = 0, and (4) bpic(L~) c~ bpic(L2) = 0. 

Proof. Let k, d~, d2 be such that dpic(L~) is a drawn (k, d~, d2)-stripe picture 
language. If  dpic(L~) is finite, then the decidability of the above problems (1) 
through (4) follows immediately. If dpic(Ll) is infinite, then k is a rational number 
(see Corollary 5.2). Hence, it is decidable whether dpic(L2) is a (k, d~, d2)-stripe 
picture language (see Corollary 5.6(iii)). 

If this is not the case, then dpic(L~)--dpic(L2) does not hold. If dpic(L2) is a 
(k, dl, d2)-stripe picture language, then we apply the construction of Lemma 5.8 to 
obtain two 2FSG's HI and 1-12 such that lang(Ht)=/~(dpic(L~)) and lang(H2)= 
/~(dpic(L2)). (Note that the mapping/z in the construction is unique, as soon as k, 
dl, and d2 are chosen.) Then dpic(Ll)= dpic(L2) holds if and only if lang(Hl)= 
lang(H2). From [2, proof of Proposition 5.7] it can be seen that we can effectively 
find two regular grammars Gl and G2 with L(GI )  = lang(Hl) and L(G2) = lang(H2). 
Hence, problem (1) has been reduced to the equivalence problem for regular 
grammars, which is known to be decidable. 

To show that (3) is decidable, we first construct a regular grammar G2 such that 
dpic(L(t~2)) consists of all drawn (k, dl, d2)-stripe pictures in dpic(/_.2). (~2 is simply 
the regular grammar generating/-,2 n ddes(k, dl, d2). Since a regular grammar gen- 
erating ddes(k, d~, d2) can effectively be constructed (see proof of Theorem 5.4), 
the grammar (~2 can be effectively constructed. Now, problem (3) can be reduced 
to the intersection emptiness problem for regular grammars, in a similar way as 
shown above for (1). [] 

The next result directly follows from the String Representation Lemma 5.8. 

5.10. Corollary. For a regular drawn (basic) stripe picture language the membership 
problem can be decided in linear time. 

We compare these results with the following theorem for linear 77-grammars. 

5.11. Theorem. For a linear 77-language L~ and a regular 77-1anguage L2, where both 
bpic(Ll) and bpic(L2) are stripe picture languages, it is undecidable whether or not 
bpic(L~) c~ bpic(L2) = 0. 

B ~ h e s k  
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Proof. We refer to [10, proof of Theorem 16]. There it is shown that for a linear 
7r-language L1 c {r, l, ud}* and a regular 7r-language L2 c_ {r, l, ud}* it is undecidable 
whether bpic(L~)nbpic(L2)= ~. Obviously, both bpic(L~) and bpic(L2) are basic 
(0, 0, 1)-stripe picture languages. [] 

6. Discussion 

We have continued the investigations of chain code picture languages, considering 
complexity and decidability problems. We conclude by stating some problems which 
are related to the results presented here: 

(i) Is there always a regular clpl-optimal ~r-language which describes a given 
regular picture language? (ii) Is it decidable whether two regular ~r-languages 
describe the same picture language? (So far we have a similar situation as in the 
case of deterministic context-free string languages, where intersection emptiness is 
known to be undecidable and the equivalence problem is still open.) (iii) What is 
the membership complexity of context-free picture languages? (iv) Find other 
restricted classes of picture languages, for which we get 'better' decidability and 
complexity results. 
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