
Theoretical Computer Science 293 (2003) 243–259
www.elsevier.com/locate/tcs

A note on the strong and weak generative powers
of formal systems

Aravind K. Joshi ∗; 1

Department of Computer and Information Science, and Institute for Research in Cognitive Science,
University of Pennsylvania, Room 555 Moore School, Philadelphia, PA 19104, USA

Abstract

This paper is a note on some relationships between the strong and weak generative powers
of formal systems, in particular, from the point of view of squeezing more strong power out of
a formal system without increasing its weak generative power. We will comment on some old
and new results from this perspective. Our main goal of this note is to comment on the strong
generative power of context-free grammars, lexicalized tree-adjoining grammars (and some of
their variants) and Lambek grammars, especially in the context of crossing dependencies, in
view of the recent work of Tiede (Ph.D. Dissertation, Indiana University, Bloomington, 1999).
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Crossing dependencies; Lambek grammars; Lexicalized tree-adjoining grammars;
Multi-component grammars; Strong generative capacity; Tree insertion grammars

1. Introduction

Strong generative power (SGP) relates to the set of structural descriptions (derivation
trees, directed acyclic graphs, proof trees, etc.) which a formal system is capable
of assigning to the strings it speci<es. Weak generative power (WGP) refers to the
set of strings characterized by the formal system. SGP is clearly the primary object
of interest from the linguistic point of view. WGP is often used to locate a formal
system within one or another hierarchy of formal grammars. Clearly, a study of the
relationship between WGP and SGP is highly relevant, both formally and linguistically.
Although almost from the beginning of the work in mathematical linguistics, there has
been interest in the study of this relationship, the results are few, as this relationship

∗ Tel.: +1-215-898-8540; fax: +1-215-898-0587.
E-mail address: joshi@linc.cis.upenn.edu (A.K. Joshi).
1 This work was partially supported by NSF Grant SBR8920230.

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00347 -4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82052553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


244 A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259

is quite complex and not always easy to study mathematically (see [13] for a recent
comprehensive discussion of SGP).
Our main goal in this note is to comment on the SGP of context-free grammars

(CFGs), lexicalized tree-adjoining grammars (and some of their variants) and Lambek
grammars, especially in the context of crossing dependencies, in view of the recent
work of Tiede [21].

2. Context-free grammars

McCawley [12] was the <rst person to point out that the use of context-sensitive
rules by linguists was really for checking structural descriptions (thus related to SGP)
and not for characterizing strings (i.e., WGP), suggesting that this use of context-
sensitive rules possibly does not give more WGP than CFGs. Peters and Ritchie [15]
showed that this was indeed the case. These results are closely related to the notion
of recognizable sets of trees as explained below.
In a CFG, G the derivation trees of G correspond to the possible structural descrip-

tions assignable by G. It is easily shown that there are tree sets whose yield language
is context-free but the tree sets are not the tree sets of any CFG.
T in Fig. 1 is not a set of derivation trees for any CFG. Clearly, in any CFG G

the rules for A will get mixed up and there will be no way we can make sure that
all a’s are on the left and all b’s are on the right. The string language is, of course,
{anbm|m; n¿1}, which is a context-free language. What is the relationship between the
trees of the CFG corresponding to this language and the set T? Thatcher [20] showed
that the relationship is very close. Sets such as T , called recognizable sets, are the
same as the tree sets of CFGs except possibly for relabeling. In Fig. 1 if the A’s on
the right-hand side are labeled by B’s then it is easily seen that the new tree set can be
easily generated by a CFG. It turns out that the tree sets ‘analyzable’ (i.e., checkable)
by context-sensitive rules, as suggested by McCawley are indeed recognizable sets.

.

.

.

.

.

.

S

A

a

A
a

A

b

A

b

A
b

A

a

A

b

Let T be the set of trees defined by trees such as 

Fig. 1. A recognizable set of trees.



A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259 245

Thatcher’s result shows that this notion of ‘locality’ can be captured by <nite state
tree automata. Later Joshi et al. [4] and Rogers [16] showed that the notion of ‘local
context’ (or local tree domains) can be made substantially richer yet maintaining char-
acterizability by <nite state tree automata. These results can be interpreted as attempts
to squeeze more strong power out of a formal system without increasing WGP beyond
CFGs. 2

3. Lexicalized tree-adjoining grammars (LTAG)

LTAGs were motivated by several considerations, one of which is directly relevant
to the topic of this paper. This motivation is concerned with assigning a crossing
dependencies type of structural description to a language such as {anbn|n¿1}; which
is a context-free language. Such a description is not obtainable by a CFG. It is possible
to assign such a structural description by an LTAG as will be shown later (see Fig. 17).
LTAGs are more powerful than CFGs but only slightly. LTAGs and related systems
are characterized as mildly context sensitive grammars. Several variants of LTAG have
been studied. Two of these variants are directly relevant to the main points of this
note. One variant (tree-local multi-component LTAG, MC-LTAG) is concerned with
augmenting the SGP of LTAGs without increasing their WGP. The other variant (tree
insertion grammar, TIG) is concerned with adding some restrictions to LTAG such that
the WGP of the system is the same as that of CFGs, however, the SGP is more than
that of CFGs. These grammars are relevant to the Lambek grammars (LG) as LGs are
weakly equivalent to CFGs but they have more SGP than CFGs.
LTAG is a formal tree rewriting system. LTAGs have been extensively studied both

with respect to their formal properties and their linguistic relevance. The motivations for
the study of LTAG are both linguistic and formal. The elementary objects manipulated
by LTAG are structured objects (trees or directed acyclic graphs) and not strings. Using
structured objects as the elementary objects of the formal system, it is possible to
construct formalisms whose properties relate directly to the study of strong generative
capacity (SGP), which is more relevant to the linguistic descriptions than the weak
generative capacity (WGP).
Each grammar formalism speci<es a domain of locality, i.e., a domain over which

various dependencies (syntactic and semantic) can be speci<ed. It turns out that the
various properties of a formalism (syntactic, semantic, computational) follow, to a large
extent, from the initial speci<cation of the domain of locality.

2 We must point out here the work of Uwe MLonnich and his colleagues which bear on the issues of
strong and weak generative capacities. They have investigated the algebraic technique of ‘lifting’ to code
executable information into context-free trees, which are later unpacked into the intended trees, covering the
non-context-free yields. This work appears in this issue [8].



246 A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259

Fig. 2. Domain of locality of a context-free grammar.

3.1. Domain of locality of CFGs

In a context-free grammar (CFG) the domain of locality is the one-level tree corre-
sponding to a rule in a CFG (Fig. 2). It is easily seen that the arguments of a predicate
(for example, the two arguments of likes) are not in the same local domain. The two
arguments are distributed over the two rules (two domains of locality) — S→NP VP
and VP→V NP. They can be brought together by introducing a rule S→NP V VP.
However, then the structure provided by the VP node is lost. We should also note here
that not every rule (domain) in the CFG in (Fig. 2) is lexicalized. The three rules on
the right are lexicalized, i.e., they have a lexical anchor. The rules on the left are not
lexicalized. The second and the third rules on the left are almost lexicalized, in the
sense that they each have a preterminal category (V in the second rule and ADV in
the third rule), i.e., by replacing V by likes and ADV by passionately these two rules
will become lexicalized. However, the <rst rule on the left (S→NP VP) cannot be
lexicalized. Can a CFG be lexicalized, i.e., given a CFG, G, can we construct another
CFG, G′, such that every rule in G′ is lexicalized and T (G), the set of (sentential)
trees (i.e., the tree language of G) is the same as the tree language T (G′) of G′? It
can be shown that this is not the case [5]. Of course, if we require that only the string
languages of G and G′ be the same (i.e., they are weakly equivalent) then any CFG
can be lexicalized. This follows from the fact that any CFG can be put in the Greibach
normal form where each rule is of the form A→wB1B2 · · ·Bn where w is a lexical
item and the B’s are non-terminals. The lexicalization we are interested here requires
the tree languages to be the same, i.e., we are interested in the ‘strong’ lexicalization.
To summarize, a CFG cannot be strongly lexicalized by a CFG. This follows from the
fact that the domain of locality of CFG is a one-level tree corresponding to a rule in
the grammar. Note that here we are concerned with two issues — (1) lexicalization
of each elementary domain and (2) the encapsulation of the arguments of the lexical
anchor in the elementary domain of locality. The second issue is independent of the
<rst issue. From a mathematical point of view the <rst issue, i.e., the lexicalization of
the elementary domains of locality is the crucial one. We can obtain strong lexical-
ization without satisfying the requirement that the arguments of the lexical anchor are



A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259 247

Fig. 3. Substitution.

Fig. 4. Tree substitution grammar.

encapsulated in the elementary domain. Of course, from the linguistic point of view
this encapsulation is very crucial. What this means is that among all possible strong
lexicalizations we should choose only those that meet the requirements of encapsula-
tion. For our discussions in this note we will assume that we always make such a
choice.

3.2. Lexicalization of CFGs

Now we can ask the following question. Can we strongly lexicalize a CFG by a
grammar with a larger domain of locality? Figs. 3 and 4 show a tree substitution
grammar (TSG) where the elementary objects (building blocks) are the three trees in
Fig. 4 and the combining operation is the tree substitution operation shown in Fig. 3.
Note that each tree in the TSG, G′ is lexicalized, i.e., it has a lexical anchor. It is easily
seen that G′ indeed strongly lexicalizes G. However, TSGs fail to strongly lexicalize
CFGs in general. We show this by an example. Consider the CFG, G, in Fig. 5 and a
proposed TSG, G′. It is easily seen that although G and G′ are weakly equivalent they
are not strongly equivalent. In G′, suppose we start with the tree �1 then by repeated
substitutions of trees in G′ (a node marked with a vertical arrow denotes a substitution
site) we can grow the right-hand side of �1 as much as we want but we cannot grow
the left-hand side. Similarly for �2 we can grow the left-hand side as much as we want
but not the right-hand side. However, trees in G can grow on both sides. Hence, the
TSG, G′, cannot strongly lexicalize the CFG, G [5].



248 A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259

Fig. 5. A tree substitution grammar.

Fig. 6. Adjoining.

We now introduce a new operation called ‘adjoining’ as shown in Fig. 6. Adjoining
involves splicing (inserting) one tree into another. More speci<cally, a tree � as shown
in Fig. 6 is inserted (adjoined) into the tree � at the node X resulting in the tree �.
The tree �, called an auxiliary tree, has a special form. The root node is labeled with
a non-terminal, say X and on the frontier there is also a node labeled X called the
foot node (marked with ∗). There could be other nodes (terminal or non-terminal) on
the frontier of �. These non-terminal nodes will be marked as substitution sites (with
a vertical arrow). Thus if there is another occurrence of X (other than the foot node
marked with ∗) on the frontier of � it will be marked with the vertical arrow and
that will be a substitution site. Given this speci<cation, adjoining � to � at the node
X in � is uniquely de<ned. Adjoining can also be seen as a pair of substitutions as
follows: The subtree at X in � is detached, � is substituted at X and the detached
subtree is then substituted at the foot node of �. A tree substitution grammar when
augmented with the adjoining operation is called a tree-adjoining grammar (lexicalized
tree-adjoining grammar because each elementary tree is lexically anchored). In short,
LTAG consists of a <nite set of elementary trees, each lexicalized with at least one
lexical anchor. The elementary trees are either initial or auxiliary trees. Auxiliary trees
have been de<ned already. Initial trees are those for which all non-terminal nodes on
the frontier are substitution nodes. It can be shown that any CFG can be strongly
lexicalized by an LTAG [5].
In Fig. 7 we show a TSG, G′, augmented by the operation of adjoining, which

strongly lexicalizes the CFG, G. Note that this LTAG looks the same as the TSG
considered in Fig. 5. However, now trees �1 and �2 are auxiliary trees (the foot nodes
marked with ∗) that can participate in adjoining. Since adjoining can insert a tree in
the interior of another tree it is possible to grow both sides of the tree �1 and tree �2,



A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259 249

Fig. 7. Adjoining arises out of lexicalization.

Fig. 8. LTAG: elementary trees for likes.

which was not possible earlier with substitution alone. In summary, we have shown that
by increasing the domain of locality we have achieved the following: (1) lexicalized
each elementary domain, (2) introduced an operation of adjoining, which would not
be possible without the increased domain of locality (note that with one-level trees
as elementary domains adjoining becomes the same as substitution since there are no
interior nodes to be operated upon), and (3) achieved strong lexicalization of CFGs.

3.3. Lexicalized tree-adjoining grammars

Rather than giving formal de<nitions for LTAG and derivations in LTAG we will
give a simple example to illustrate some key aspects of LTAG. We show some ele-
mentary trees of a toy LTAG grammar of English. Fig. 8 shows two elementary trees
for a verb such as likes. The tree �1 is anchored on likes and encapsulates the two



250 A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259

Fig. 9. LTAG: sample elementary trees.

arguments of the verb. The tree �2 corresponds to the object extraction construction.
Since we need to encapsulate all the arguments of the verb in each elementary tree
for likes, for the object extraction construction, for example, we need to make the
elementary tree associated with likes large enough so that the extracted argument is
in the same elementary domain. Thus, in principle, for each ‘minimal’ construction
in which likes can appear (for example, subject extraction, topicalization, subject rel-
ative, object relative, passive, etc.) there will be an elementary tree associated with
that construction. By ‘minimal’ we mean when all recursion has been factored away.
This factoring of recursion away from the domain over which the dependencies have
to be speci<ed is a crucial aspect of LTAGs as they are used in linguistic descriptions.
This factoring allows all dependencies to be localized in the elementary domains. In
this sense, there will, therefore, be no long distance dependencies as such. They will
all be local and will become long distance on account of the composition operations,
especially adjoining.
Fig. 9 shows some additional trees. Trees �3; �4, and �5 are initial trees and trees

�1 and �2 are auxiliary trees with foot nodes marked with ∗. A derivation using the
trees in Figs. 8 and 9 is shown in Fig. 10. The trees for who and Harry are substituted
in the tree for likes at the respective NP nodes, the tree for Bill is substituted in the
tree for think at the NP node, the tree for does is adjoined to the root node of the tree
for think tree (adjoining at the root node is a special case of adjoining), and <nally
the derived auxiliary tree (after adjoining �2 to �1) is adjoined to the indicated interior
S node of the tree �2. This derivation results in the derived tree for who does Bill
think Harry likes as shown in Fig. 11. Note that the dependency between who and
the complement NP in �2 (local to that tree) has been stretched in the derived tree in
Fig. 11. This tree is the conventional tree associated with this sentence.
However, in LTAG there is also a derivation tree, i.e., the tree that records the

history of composition of the elementary trees associated with the lexical items in the
sentence. This derivation tree is shown in Fig. 12. The nodes of the tree are labeled by
the tree labels such as �2 together with the lexical anchor. The derivation tree is the
crucial derivation structure for LTAG. We can obviously build the derived tree from the
derivation tree. For semantic computation the derivation tree (and not the derived tree)



A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259 251

Fig. 10. LTAG derivation for who does Bill think Harry likes.

Fig. 11. LTAG derived tree for who does Bill think Harry likes.

Fig. 12. LTAG derivation tree.



252 A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259

Fig. 13. Adjoining as Wrapping 1.

is the crucial object. Compositional semantics is de<ned on the derivation tree. The
idea is that for each elementary tree there is a semantic representation associated with
it and these representations are composed using the derivation tree. Since the semantic
representation for each elementary tree is directly associated with the tree there is
no need to reproduce necessarily the internal hierarchy in the elementary tree in the
semantic representation [6]. This allows the so-called ‘Oat’ semantic representation. It
also helps in dealing with some non-compositional aspects as in the case of rigid and
Oexible idioms.
The two key properties of LTAG are (1) the extended domain of locality (EDL)

(as compared to CFG), which allows (2) factoring recursion from the domain of de-
pendencies (FRD), thus making all dependencies local. All other properties of LTAG
(mathematical, linguistic, and computational) follow from EDL and FRD. LTAGs be-
long to the so-called class of mildly context-sensitive grammars [3]. Context-free lan-
guages (CFLs) are properly contained in the class of languages of LTAG, which in
turn are properly contained in the class of context-sensitive languages.

4. Some variants of LTAG

4.1. Multi-component LTAG (MC-LTAG)

MC-LTAG can be motivated by taking an alternate perspective on adjoining. This
perspective also shows how a particular class of MC-LTAG, the so-called Tree-local
MC-LTAGs increase SGP of LTAGs without increasing WGP.
In adjoining we insert an auxiliary tree, say, with root and foot nodes labeled with

X , in a tree at a node with label X . In Figs. 13 and 14 we present an alternate
perspective on adjoining. The tree � which receives adjunction at X can be viewed as
made up of two trees, the supertree at X and the subtree at X as shown in Fig. 13.
Now, instead of the auxiliary tree � adjoined to the tree � at X we can view this
composition as a wrapping operation — the supertree of � and the subtree of � are
wrapped around the auxiliary tree � as shown in Fig. 14. The resulting tree � is the
same as before. Wrapping of the supertree at the root node of � is like adjoining at
the root (a special case of adjoining) and the wrapping of the subtree at the foot node
of � is like substitution. Hence, this wrapping operation can be described in terms of
substitution and adjoining. This is clearly seen in the linguistic example in Figs. 15



A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259 253

Fig. 14. Adjoining as Wrapping 2.

Fig. 15. Wrapping as substitution and adjunction 1.

Fig. 16. Wrapping as substitution and adjunction 2.

and 16. The auxiliary tree � can be adjoined to the tree � at the indicated node in
� as shown in Fig. 15. Alternatively, we can view this composition as adjoining the
supertree �1 (the wh tree) at the root node of � and substitution of the subtree �2 (the
likes tree) at the foot node of � as shown in Fig. 16. The two ways of composing �
and � are semantically coherent.
The wrapping perspective can be formalized in terms of the so-called multi-compo-

nent LTAGs (MC-LTAGs). They are called multi-component because the elementary
objects can be sets of trees. In our examples, we have two components (in which � was



254 A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259

split). When we deal with multi-components we can violate the locality of the compo-
sition very quickly because the diPerent components may be ‘attached’ (by adjoining
or substitution) to diPerent nodes of a tree and these nodes may or may not be part
of an elementary tree, depending on whether the tree receiving the multi-component
attachments is an elementary or a derived tree. We obtain what are known as tree-local
MC-LTAGs if we put the constraint that the tree receiving multi-component attachments
must be an elementary tree. It is known that tree-local MC-TAGs are weakly equiva-
lent to LTAGs, however they can give rise to structural descriptions not obtainable by
LTAGs, i.e., they are more powerful than LTAG in the sense of strong generative ca-
pacity (as characterized by the derivation trees 3). Thus, the alternate perspective leads
to greater strong generative capacity without increasing the weak generative capacity.
The whole range of recent works [2, 6, 7, 10] can be seen as attempts to get more SGP
from LTAG without going beyond the WGP of LTAG.

4.2. Tree insertion grammars (TIG)

LTAGs provide more SGP than CFGs. However, LTAGs have more WGP than
CFGs. Schabes and Waters [18] were motivated to <nd a subclass of LTAGs which is
weakly equivalent to CFGs but is powerful enough to lexicalize CFGs and also provide
structural descriptions not obtainable by CFGs.
TIGs are similar to LTAGs. They have the same two operations — substitution and

adjoining. However, adjoining is limited in the following way. First, in each auxiliary
tree the foot node is the leftmost (or rightmost) daughter of the root node. If the foot
node is the leftmost daughter of the root node then there can be nodes to its left as long
as their yield is empty. That is, modulo an empty string, the foot node is the leftmost
daughter of the root node. Similarly, if the foot node is the rightmost daughter of the
root node then there can be nodes to its right as long their yield is empty. Secondly,
adjoining is allowed only on the right (or left) frontier of the elementary or derived
trees. 4 Schabes and Waters [18] have shown that TIGs are weakly equivalent to CFGs.
However, TIGs are strong enough to lexicalize CFGs and they can give rise to structural
descriptions that are not obtainable by CFGs.
Consider the TIG shown in Fig. 17. Note that the trees of this TIG satisfy the

constraints described above. t denotes an empty string. It can be interpreted as the
‘trace’ of ‘a’ in the same tree. Now consider a derivation as follows. Starting with b1
we adjoin another instance of b1 to the <rst b1 at the S node immediately dominating
the trace t (which happens to be on the right frontier of b1). We now take another
instance of b1 and adjoin it to the previously derived tree at the S node which is

3 Weir [22] compares tree-local MC-TAGs and LTAGs and comments that they are weakly equivalent
and also strongly equivalent. He is considering the strong equivalence in terms of the derived trees and not
in terms of the derivation trees.

4 Actually, internal adjoining is allowed as long as adjoining by a pair of left and right adjunctions at
the same node does not ePectively lead to wrapping around the node. If this allowed then we will have a
system equivalent to LTAG. We will not need these internal attachments for our current purpose.



A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259 255

Fig. 17. A TIG for degenerate crossing dependencies.

Fig. 18. A derivation in the example TIG.

immediately dominating the rightmost trace t. Finally, we adjoin this derived tree to
the indicated S node in a1. Continuing the derivation in this fashion it is easily seen
that the TIG generates a string of a’s and t’s, where the corresponding (i.e., being in
the same elementary tree) a’s and t’s are indexed for convenience, are in a crossed
order as in a(1)a(2)a(3) · · · t(1)t(2)t(3) (see Fig. 18). The derived tree corresponding
to these crosssings is not obtainable by any CFG. Thus TIGs have more SGP than
CFGs although they are weakly equivalent CFGs. We will return to this example in
the context of Lambek grammars.

5. Lambek grammars (LG)

It is well known that the Ajdukiewicz and Bar-Hillel categorial grammars (CG(AB))
are weakly equivalent to CFGss. The derivation trees of CG(AB) are essentially the
same as the derivation trees of CFGs. However, for Lambek Grammars (LG) (this is an
associative system [11]), the situation is diPerent. In LG, the assignment of categories
to lexical items is similar to the assignments in CG(AB) but we have the inference
rules associated with the calculus. Although LGs were long conjectured to be weakly
equivalent to CFGs it was only relatively recently Pentus [14] proved this conjecture to
be true. So now the question arises: Do LGs provide more strong generative power than
CFGs? In other words, is it possible to characterize the proof trees of LG in terms of
something like the recognizable sets or even beyond recognizable sets? This question



256 A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259

Fig. 19. Non-degenerate crossing dependencies.

was originally raised by Buszkowski and van Benthem. 5 Recently, Tiede [21] has
investigated this question. He covers a number of aspects and, in particular, shows that
the proof trees of LG can be beyond recognizable sets, i.e., there is a Lambek grammar
whose proof tree language is not regular. In fact, one of his examples (our example in
Fig. 20) can be interpreted as showing that it will be possible to characterize certain
kinds of crossing dependencies. We want to point out that Tiede’s example is a case
where the dependencies are between a lexical item and a lexically empty element. We
will call these dependencies as ‘degenerate’ crossing dependencies, to be distinguished
from the case where both elements are lexically non-empty.
We might ask whether it would be possible for the proof trees of a Lambek grammar

to characterize true or, non-degenerate crossing dependencies (i.e., when the dependen-
cies are between lexically non-empty elements). We suspect that this would not be
possible. If it is possible then it would be indeed quite surprising because, for any
known formal system that characterizes crossing dependencies (as between a’s and b’s
in anbn) it turns out that the system is weakly more powerful than CFGs. Some exam-
ples of such systems are LTAGs, combinatory categorial grammars (CCG) as in [19],
linear indexed grammars (LIG) among others. They all generate some context sensitive
languages, for example, the language {anbncn|n¿1}.

The left-hand side tree in Fig. 19 shows the topology needed to obtain the non-
degenerate crossing dependencies in LTAG. The derivation proceeds as follows.
The left-hand side tree in Fig. 19 is repeatedly adjoined to the S node that is in
the center of the spine, starting with the elementary tree and then the derived trees.
The resulting derived tree represents crossed dependencies between the corresponding
(i.e., belonging to the same elementary tree) a’s and b’s. The right-hand side tree in
Fig. 19 also generates the same language. We interpret the t’s as ‘traces’ or empty
elements. It is easily seen that the a’s and t’s are nested and t’s and b’s are nested.
Thus, the crossing between the a’s and b’s is the result of two ‘coordinated’ nested
dependencies, coordinated through the empty elements. Note that the empty elements

5 See the discussion in [1, pp. 688–736].



A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259 257

Fig. 20. Degenerate crossing dependencies in a Lambek grammar.

are in the interior and not at the periphery, a crucial point to which we will return in
the context of Lambek grammars.
Now, once we have a tree with this topology it is easy to see that the same topology

can be used to generate the language {anbncn|n¿1}. The relevant tree will be the same
as the left-hand side tree in Fig. 19 with a and b as left and right daughters of the
central S and c as the right daughter of the root node S.
Let us now look at Tiede’s example (see Fig. 20) of a Lambek derivation where

crossing dependencies appear. These crossing dependencies are degenerate, i.e., they
are dependencies between pairs, where the <rst element is a non-empty lexical item and
the other element is an empty element. In this example, L denotes the string language,
a has been assigned three types, and in the proof tree the a’s and t’s are indexed for
convenience. E and I denote the elimination and introduction rules, respectively.
By suitably arranging the introduction and discharge of assumptions in the hypothet-

ical reasoning in LG we have crossing dependency relations between the a’s and the
t’s, where the t’s are the empty elements. These two empty elements t(1) and t(2)
correspond to the two assumptions in the proof tree. Each one of these assumptions
is then withdrawn using the [=I ] rule, the introduction rule. The [=E] rule is used for
elimination. Both the assumptions are withdrawn in the deduction, as is required in a
natural deduction proof. The assumptions that are introduced and then withdrawn have
to appear always at the periphery of the proof tree, as they do so in this example. The
dependencies between the a’s and t’s (corresponding to the assumptions) can be seen
as follows. In the second [=E] step in the deduction (second from the top) the category
A=A is eliminated in combination with S=(A=A) corresponding to a(2). The category
A=A in this step resulted from the withdrawal of the assumption [A] (corresponding to
t(2)) at the top level. Thus a(2) corresponds to t(2). Similarly a(1) corresponds to
(t1). It is easy to see that a natural deduction proof can be constructed for each string
in L. Thus we have crossing dependencies between the a’s and t’s. 6

For true (i.e., non-degenerate) crossing dependencies both the elements have to be
non-empty. One of the ways this is accomplished in most systems I know of is to

6 We talk here of crossing dependencies as represented by the proof tree. Of course, in the corresponding
proof net representation the net is planar and there are no crossings, as was correctly noted by a reviewer.



258 A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259

create two sets of nested dependencies, say between a’s and t’s and between t’s and
b’s, as we have seen before, where the t’s are empty elements, as can be seen in
the right-hand side tree in Fig. 19. Then the resulting dependencies between the a’s
and b’s become crossed. It is not possible to achieve this in LG because the empty
elements have to be at the periphery in the Lambek deduction.
We now return to the tree insertion grammars (TIG) introduced earlier. TIGs are

weakly equivalent to CFGs but they are capable of providing structural descriptions
not obtainable by CFGs, as we have discussed earlier in Section 4.2. The example in
Section 4.2 (see Fig. 18) is exactly the same kind of example as given by Tiede in the
context of Lambek deductions. Thus, it is clear that this kind of crossing dependency
can be captured in TIGs. It is tantalizing to show that Lambek deductions can be
simulated in TIGs. We have not been able to prove this conjecture yet.

6. Summary

We discussed some relationships between the strong and week generative powers
of formal systems, in particular, from the point of view of squeezing more strong
power out of a formal system without increasing its weak power. More speci<cally, we
commented on these issues from the perspectives of context-free grammars, lexicalized
tree-adjoining grammars, their two variants (multi-component tree-adjoining grammars
and tree insertion grammars), and Lambek grammars (in particular, the associative
system). We discussed crossing dependencies (degenerate as well as non-degenerate)
and their relationship to the strong generative power. Finally, we suggested a possible
relationship between Lambek deductions and the derivations in tree insertion grammars.

Acknowledgements

I would like to thank the two reviewers of this paper whose valuable comments
helped to improve the presentation of this paper.

References

[1] J. Benthem, A. ter Meulen, in: J. Benthem, A. termeulen (Eds.), Handbook of Logic and Language,
MIT Press, Cambridge, MA, 1998, pp. 683–736.

[2] M. Candito, S. Kahane, De<ning DTG derivations to get semantic graphs, Proc. TAG+4 Workshop,
University of Pennsylvania, August 1998, pp. 25–28.

[3] A.K. Joshi, Tree-adjoining grammars: how much context sensitivity is required to provide reasonable
structural descriptions?, in: D. Dowty, L. Karttunen, A. Zwicky (Eds.), Natural Language Parsing,
Cambridge University Press, Cambridge, 1985, pp. 206–250.

[4] A.K. Joshi, L. Levy, K. Yueh, Local constraints on transformations, J. Comput. System Sci. 8 (1972)
22–33.

[5] A.K. Joshi, Y. Schabes, Tree-adjoining grammars, in: G. Rosenberg, A. Salomaa (Eds.), Handbook of
Formal Languages, Springer, Berlin, 1997, pp. 69–123.



A.K. Joshi / Theoretical Computer Science 293 (2003) 243–259 259

[6] A.K. Joshi, K. Vijay-Shanker, Compositional semantics with lexicalized tree-adjoining grammar
(LTAG): how much underspeci<cation is necessary?, in: H.C. Bunt, E.G.C. Thijsse (Eds.), Proc. Third
Internat. Workshop on Computational Semantics (IWCS-3) Tilburg, 1999, pp. 131–145.

[7] L. Kallmeyer, A.K. Joshi, Factoring predicate argument and scope semantics: underspeci<ed semantics
with LTAG, Proc. Twelfth Amsterdam Colloq., University of Amsterdam, Amsterdam, 1999,
pp. 169–174, a revised version will appear in Language and Comput., 2001.

[8] H. Kolb, J. Michaelis, U. MLonnich, An operational and denotational approach to non-context-freeness,
Theoret. Comput. Sci. (this Vol.) (2003).

[9] A. Kroch, A.K. Joshi, Linguistic relevance of tree-adjoining grammars, Tech. Report, Department of
Computer and Information Science, University of Pennsylvania, 1985.

[10] S. Kulick, Constrained non-locality: long-distance dependencies in TAG, Ph.D. Dissertation, University
of Pennsylvania, Philadelphia, USA, 2000.

[11] J. Lambek, The mathematics of sentence structure, Amer. Math. Monthly 65 (1958) 154–169.
[12] J.W. McCawley, Concerning the base component of a transformational grammar, Found. Language 4

(1967) 55–81.
[13] P.M. Miller, Strong Generative Capacity, CSLI Publications, Stanford University, Stanford CA, 1999.
[14] M. Pentus, Lambek grammars are context-free, Proc. 8th Ann. Symp. on Logic in Computer Science,

1993.
[15] S. Peters, R. Ritchie, Context sensitive immediate constituent analysis: context-free languages revisited,

ACM Symp. on Theory of Computing, Marina del Rey, 1969, pp. 1–8.
[16] J. Rogers, Grammarless phrase structure grammar, Linguistics Philos. 20 (1997).
[17] Y. Schabes, S, Shieber, An alternative conception of tree-adjoining derivation, Computat. Linguistics

20 (1) (1994) 91–124.
[18] Y. Schabes, R.C. Waters, Tree insertion grammars, Tech. Report TR-94-13, Mitsubishi Electric Research

Laboratories, Cambridge, 1994.
[19] M. Steedman, Surface Structure and Interpretation, MIT Press, Cambridge, MA, 1996.
[20] J.W. Thatcher, Characterizing derivation trees of context-free grammars through a generalization of

<nite automata theory, J. Comput. System Sci. 1 (1967) 317–322.
[21] H. Tiede, Deductive systems and grammars, Ph.D. Dissertation, Indiana University, Bloomington, 1999.
[22] D. Weir, Characterizing mildly context-sensitive grammar formalisms, Ph.D. Dissertation, University of

Pennsylvania, Philadelphia, 1988.


