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Abstract

The joint spectral radius of a finite set of real d × d matrices is defined to be the maximum possi-
ble exponential rate of growth of long products of matrices drawn from that set. A set of matrices is
said to have the finiteness property if there exists a periodic product which achieves this maximal rate
of growth. J.C. Lagarias and Y. Wang conjectured in 1995 that every finite set of real d × d matrices sat-
isfies the finiteness property. However, T. Bousch and J. Mairesse proved in 2002 that counterexamples
to the finiteness conjecture exist, showing in particular that there exists a family of pairs of 2 × 2 matri-
ces which contains a counterexample. Similar results were subsequently given by V.D. Blondel, J. Theys
and A.A. Vladimirov and by V.S. Kozyakin, but no explicit counterexample to the finiteness conjecture
has so far been given. The purpose of this paper is to resolve this issue by giving the first completely
explicit description of a counterexample to the Lagarias–Wang finiteness conjecture. Namely, for the
set

Aα∗ :=
{(

1 1
0 1

)
, α∗

(
1 0
1 1

)}
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we give an explicit value of

α∗ � 0.749326546330367557943961948091344672091327370236064317358024 . . .

such that Aα∗ does not satisfy the finiteness property.
Crown Copyright © 2010 Published by Elsevier Inc. All rights reserved.

MSC: primary 15A18, 15A60; secondary 37B10, 65K10, 68R15
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1. Introduction

If A is a d × d real or complex matrix and ‖ · ‖ is a matrix norm, the spectral radius ρ(A) of
the matrix A admits the well-known characterisation

ρ(A) = lim
n→∞

∥∥An
∥∥1/n

,

a result known as Gelfand’s formula. The joint spectral radius generalises this concept to sets of
matrices. Given a finite set of d × d real matrices A = {A1, . . . ,Ar}, we by analogy define the
joint spectral radius �(A) to be the quantity

�(A) := lim sup
n→∞

max
{‖Ai1 · · ·Ain‖1/n: ij ∈ {1, . . . , r}},

a definition introduced by G.-C. Rota and G. Strang in 1960 [45] (reprinted in [44]). Note that
the pairwise equivalence of norms on finite dimensional spaces implies that the quantity �(A) is
independent of the choice of norm used in the definition.

The joint spectral radius has been found to arise naturally in a range of mathematical contexts
including control and stability [1,11,20,28], coding theory [37], the regularity of wavelets and
other fractal structures [12,13,36,42], numerical solutions to ordinary differential equations [19],
and combinatorics [4,14]. As such the problem of accurately estimating the joint spectral radius
of a given finite set of matrices is a topic of ongoing research interest [5,18,32,31,38,40,48,49].

In this paper we study a property related to the computation of the joint spectral radius of a
set of matrices, termed the finiteness property. A set of d × d real matrices A := {A1, . . . ,Ar}
is said to satisfy the finiteness property if there exist integers i1, . . . , in such that �(A) =
ρ(Ai1 · · ·Ain)

1/n. The finiteness conjecture of J.C. Lagarias and Y. Wang [34] asserted that ev-
ery finite set of d × d real matrices has the finiteness property; a conjecture equivalent to this
statement was independently posed by L. Gurvits in [20], where it was attributed to E.S. Pyatnit-
skiı̆. In special cases, this finiteness property is known to be true, see for example [10,25]. The
existence of counterexamples to the finiteness conjecture was established in 2002 by T. Bousch
and J. Mairesse [8], with alternative constructions subsequently being given by V.D. Blondel,
J. Theys and A.A. Vladimirov [6] and V.S. Kozyakin [29]. However, in all three of these proofs
it is shown only that a certain family of pairs of 2 × 2 matrices must contain a counterexample,
and no explicit counterexample has yet been constructed. The problem of constructing an explicit
counterexample has been remarked upon as difficult, with G. Strang commenting that an explicit
counterexample may never be established [44]. In this paper, we resolve this issue by giving
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the first completely explicit construction of a counterexample to the Lagarias–Wang finiteness
conjecture.

Let us define a pair of 2 × 2 real matrices by

A0 :=
(

1 1
0 1

)
, A1 :=

(
1 0
1 1

)
,

and for each α ∈ [0,1] let us define Aα := {A0, αA1}. The construction of Blondel, Theys and
Vladimirov [6] shows that there exists α ∈ [0,1] for which Aα does not satisfy the finiteness
property. The proof operates indirectly by demonstrating that the set of all parameter values α

for which the finiteness property does hold is insufficient to cover the interval [0,1]. In this paper
we extend [6] substantially by describing the behaviour of �(Aα) as the parameter α is varied in
a rather deep manner. This allows us to prove the following theorem:

Theorem 1.1. Let (τn)
∞
n=0 denote the sequence of integers defined by τ0 := 1, τ1, τ2 := 2, and

τn+1 := τnτn−1 − τn−2 for all n � 2,1 and let (Fn)
∞
n=0 denote the sequence of Fibonacci num-

bers, defined by F0 := 0, F1 := 1 and Fn+1 := Fn + Fn−1 for all n � 1. Define a real number
α∗ ∈ (0,1] by

α∗ := lim
n→∞

(
τ

Fn+1
n

τ
Fn

n+1

)(−1)n

=
∞∏

n=1

(
1 − τn−1

τnτn+1

)(−1)nFn+1

. (1.1)

Then this infinite product converges unconditionally, and Aα∗ does not have the finiteness prop-
erty.

The convergence in both of the limits given in Theorem 1.1 is extremely rapid, being of
order O(exp(−δφn)) where δ > 0 is some constant and φ is the golden ratio. An explicit error
bound is given subsequently to the proof of Theorem 1.1. Using this bound we may compute the
approximation

α∗ � 0.749326546330367557943961948091344672091327370236064317358024 . . .

which is rigorously accurate to all decimal places shown.
We shall now briefly describe the technical results which underlie the proof of Theorem 1.1.

For each α ∈ [0,1] let us write A
(α)
0 := A0 and A

(α)
1 := αA1 so that Aα = {A(α)

0 ,A
(α)
1 }. The

principal technical question which is addressed in this paper is the following: if we are given that
for some finite sequence of values u1, . . . , un ∈ {0,1}, the matrix

A(α)
un

A(α)
un−1

· · ·A(α)
u2

A(α)
u1

(1.2)

is “large” in some suitable sense – for example, if its spectral radius is close to the value �(Aα)n –
then what may we deduce about the combinatorial structure of the sequence of values ui , and
how does this answer change as the parameter α is varied? A key technical step in the proof of
Theorem 1.1, therefore, is to show that the magnitude of the product (1.2) is maximised when

1 This is the sequence A022405 from Sloane’s On-Line Encyclopedia of Integer Sequences.
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the sequence u1, u2, . . . , un is a balanced word. This result depends in a rather essential manner
on several otherwise unpublished results from the fourth named author’s 2005 PhD thesis [47],
which are substantially strengthened in the present paper.

In the following section we shall introduce the combinatorial ideas needed to describe bal-
anced words. We are then able to state our main technical theorem, describe its relationship to
previous research in ergodic theory and the theory of the joint spectral radius, and give a brief
overview of how Theorem 1.1 is subsequently deduced. The detailed structure of this paper is
described at the end of the following section.

2. Notation and statement of technical results

Throughout this paper we denote the set of all d × d real matrices by Md(R). The symbol
||| · ||| will be used to denote the norm on Md(R) which is induced by the Euclidean norm on Rd ,
which satisfies |||B||| = ρ(B∗B)1/2 for every B ∈ Md(R). Other norms shall be denoted using the
symbol ‖ · ‖. We shall say that a norm ‖ · ‖ on M2(R) is submultiplicative if ‖AB‖ � ‖A‖ · ‖B‖
for all A,B ∈ M2(R). For the remainder of this paper we shall also denote �(Aα) simply by �(α).

For the purposes of this paper we define a finite word, or simply word to be sequence u = (ui)

belonging to {0,1}n for some integer n � 0. We will typically use u, v or w to represent finite
words. If u ∈ {0,1}n then we say that u is length n, which we denote by |u| = n. If |u| is zero then
the word u is called empty. The number of terms of u which are equal to 1 is denoted by |u|1.
If u is nonempty, the quantity |u|1/|u| is called the 1-ratio of u and is written ς(u). The two
possible words of length one shall often be denoted simply by 0 and 1. We denote the set of all
finite words by Ω .

We will define an infinite word to be a sequence x = (xi) belonging to {0,1}N. We will typ-
ically use x, y or z to represent infinite words. If the word can be either finite or infinite, we
will typically use ω. We denote the set of all infinite words by Σ , and define a metric d on Σ as
follows. Given x, y ∈ Σ with x = (xi)

∞
i=1 and y = (yi)

∞
i=1, define n(x, y) := inf{i � 1: xi �= yi}.

We now define d(x, y) := 1/2n(x,y) for all x, y ∈ Σ , where we interpret the symbol 1/2∞ as
being equal to zero. The topology on Σ which is generated by the metric d coincides with the in-
finite product topology on Σ = {0,1}N. In particular Σ is compact and totally disconnected. For
any nonempty finite word u = (ui)

n
i=1 the set {x ∈ Σ : xi = ui for all 1 � i � n} is both closed

and open. Since every open ball in Σ has this form for some u, the collection of all such sets
generates the topology of Σ .

We define the shift transformation T :Σ → Σ by T [(xi)
∞
i=1] := (xi+1)

∞
i=1. The shift trans-

formation is continuous and surjective. We define the projection πn :Σ → Ω by πn[(xi)
∞
i=1] =

(xi)
n
i=1.

If u = u1u2 · · ·un and v = v1v2 · · ·vm are finite words, then we define the concatenation of u

with v as uv = u1u2 · · ·unv1v2 · · ·vm, the finite word of length n+m. Note that if u is the empty
word then uv = vu = v for every word v. The set Ω endowed with the operation of concatenation
is a semigroup.

Given a word u and positive integer n we let un denote the linear concatenation of n copies
of u, so that for example u4 := uuuu. If u is a nonempty word of length n, we let u∞ denote the
unique infinite word x ∈ Σ such that xkn+i = ui for all integers i, k with k � 1 and 1 � i � n.
Clearly any infinite word x ∈ Σ satisfies T nx = x for an integer n � 1 if and only if there exists
a word u such that x = u∞ and |u| divides n.

If u is a nonempty word, and ω is either a finite or infinite word, we say that u is a subword
of ω if there exists an integer k � 0 such that ui = ωk+i for all integers i in the range 1 � i � |u|.
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We denote this relationship by u ≺ ω. Clearly u ≺ ω if and only if there exist a possibly empty
word v ∈ Ω and a finite or infinite word ω′ such that ω = auω′. An infinite word x is said to be
recurrent if every finite subword u ≺ x occurs as a subword of x an infinite number of times.
A finite or infinite word ω is called balanced if for every pair of finite subwords u, v such that
u,v ≺ ω and |u| = |v|, we necessarily have ||u|1 − |v|1| � 1. Clearly ω is balanced if and only
if every subword of ω is balanced. An infinite balanced word which is not eventually periodic is
called Sturmian.

The following standard result describes the principal properties of balanced infinite words
which will be applied in this paper:

Theorem 2.1. If x ∈ Σ is balanced then the limit ς(x) := limn→∞ ς(πn(x)) exists. For each γ ∈
[0,1], let Xγ denote the set of all recurrent balanced infinite words x ∈ Σ for which ς(x) = γ .
These sets have the following properties:

(i) Each Xγ is compact and nonempty.
(ii) For each γ ∈ [0,1], the restriction of T to Xγ is a continuous, minimal, uniquely ergodic

transformation of Xγ . If μ is the unique ergodic probability measure supported in Xγ , then
μ({x: x1 = 1}) = γ .

(iii) If γ = p/q ∈ [0,1]∩Q in lowest terms then the cardinality of Xγ is q , and for each x ∈ Xγ

we have Xγ = {x,T x, . . . , T q−1x}. If γ ∈ [0,1] \ Q then Xγ is uncountably infinite.

Example 2.2. We have X2/5 = {(00101)∞, (01010)∞, (10100)∞, (01001)∞, (10010)∞}.

Theorem 2.1 does not appear to exist in the literature in the precise form given above, but
it may be established without difficulty by combining various results from the second chapter
of [35]. The key step in obtaining Theorem 2.1 is to show that x ∈ Xγ if and only if there exists
δ ∈ [0,1) such that either xn ≡ 
(n + 1)γ + δ� − 
nγ + δ�, or xn ≡ �(n + 1)γ + δ� − �nγ + δ�,
see Lemmas 2.1.14 and 2.1.15 of [35]. Once this identification has been made, the dynamical
properties of Xγ under the shift transformation largely follow from the properties of the rotation
map z �→ z + γ defined on R/Z.

Given a nonempty finite word u = (ui)
n
i=1 and real number α ∈ [0,1], we put

A(α)(u) := A(α)
un

A(α)
un−1

· · ·A(α)
u2

A(α)
u1

and

A(u) := AunAun−1 · · ·Au2Au1 = A(1)(u).

For every x ∈ Σ , α ∈ [0,1] and n � 1 we also define

A(α)(x, n) := A(α)
(
πn(x)

)
, A(x,n) := A

(
πn(x)

) = A(1)(x, n).

Note that the function A(x,n) satisfies the cocycle relationship

A(x,n + m) = A
(
T nx,m

)
A(x,n)

for every x ∈ Σ , n,m � 1.
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Our main task in proving Theorem 1.1 is to characterise those infinite words x ∈ Σ for which
A(x,n) grows rapidly in terms of the sets Xγ . To do this we must be able to specify what is
meant by rapid growth. Let us therefore say that an infinite word x ∈ Σ is a strongly extremal
word for Aα if there is a constant δ > 0 such that |||A(α)(x, n)||| � δ�(α)n for all n � 1, and weakly
extremal for Aα if limn→∞ |||A(α)(x, n)|||1/n = �(α). It is obvious that every strongly extremal
word is also weakly extremal. Note also that since all norms on M2(R) are equivalent, these
definitions are unaffected if another norm ‖ · ‖ is substituted for ||| · |||. We shall say that r ∈ [0,1]
is the unique optimal 1-ratio of Aα if for every x ∈ Σ which is weakly extremal for Aα we have
ς(πn(x)) → r. Note that the existence of a unique optimal 1-ratio is a nontrivial property, and
is shown in Theorem 2.3. For example, if A ⊂ M2(R) is a pair of isometries then no unique
optimal 1-ratio for A exists. It is not difficult to see that if Aα has a unique optimal 1-ratio which
is irrational, then Aα cannot satisfy the finiteness property, and it is this principle which underlies
the present work as well as the work of Bousch and Mairesse [8] and Kozyakin [29].

The principal technical result of this paper is the following theorem which allows us to relate
all of the concepts defined so far in this section:

Theorem 2.3. There exists a continuous, non-decreasing surjection r : [0,1] → [0, 1
2 ] such that

for each α, r(α) is the unique optimal 1-ratio of Aα . For each α ∈ [0,1], every element of Xr(α)

is strongly extremal for Aα . Moreover, for every compact set K ⊂ (0,1] there exists a constant
CK > 1 such that

C−1
K � ρ(A(α)(x, n))

�(α)n
� |||A(α)(x, n)|||

�(α)n
� CK (2.1)

whenever α ∈ K , x ∈ Xr(α) and n � 1. Conversely, if x ∈ Σ is a recurrent infinite word which
is strongly extremal for Aα then x ∈ Xr(α), and if x ∈ Σ is any infinite word which is weakly
extremal for Aα then (1/n)

∑n−1
k=0 dist(T kx,Xr(α)) → 0.

Remark 2.4. The definition of a strongly extremal infinite word is similar to the one previously
proposed by V.S. Kozyakin [30], whereas the definition of a weakly extremal infinite word is
similar to a definition used previously by the fourth named author [47]. In both instances the
infinite word is simply referred to as ‘extremal’.

Remark 2.5. Note that balanced/Sturmian words (and measures) arise as optimal trajectories in
various optimisation problems – see, e.g., [7,9,23,24].

Remark 2.6. A less general version of parts of Theorem 2.3 was proved in [47].

The structure of the paper is as follows: Sections 3 and 4 deal with important preliminaries,
such as general properties of joint spectral radius and of balanced words. In Section 5 we show
that every strongly extremal infinite word is balanced. In Section 6 we introduce an important
auxiliary function S defined as the logarithm of the exponent growth of the norm of an arbitrary
matrix product taken along balanced words with a fixed 1-ratio. In Section 7 we apply results
from preceding sections to prove Theorem 2.3. Finally, in Section 8 we deduce Theorem 1.1
from Theorem 2.3. Section 9 contains some open questions and conjectures.

We believe it is worth describing here briefly how Theorem 2.3 leads to Theorem 1.1. Once
we have established the existence of such a function r, we may take any irrational γ and conclude
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that any element α of the preimage r−1(γ ) is a counterexample to the finiteness conjecture (since
any weakly extremal word must be aperiodic).

To construct a specific counterexample, we take γ = 3−√
5

2 and choose the Fibonacci word u∞
as a strongly extremal word for this 1-ratio. Recall that u∞ = limn u(n), where u(1) = 1, u(2) = 0
and u(n+1) = u(n)u(n−1) for n � 2. Now consider the morphism h :Ω → M2(R) such that
h(0) = A0, h(1) = A1. Denote Bn := h(u(n)); we thus have Bn+1 = BnBn−1. One can easily
show that tr(Bn) = τn, the sequence described in Theorem 1.1. To obtain explicit formulae for α∗,

we show that the auxiliary function S introduced in Section 6 is differentiable at γ = 3−√
5

2 and

that − logα∗ = S′( 3−√
5

2 ). We then compute this derivative, which will yield (1.1).

3. General properties of the joint spectral radius and extremal infinite words

We shall begin with some general results concerning the joint spectral radius. The following
characterisation of the joint spectral radius will prove useful on a number of occasions:

Lemma 3.1. Let α ∈ [0,1] and let ‖ · ‖ be any submultiplicative matrix norm. Then:

�(α) = inf
n�1

max
{∥∥A(x,n)

∥∥1/n
: x ∈ Σ

} = sup
n�1

max
{
ρ
(

A(x,n)
)1/n

: x ∈ Σ
}
.

Proof. We review some arguments from [2,12]. Fix α ∈ [0,1] and a matrix norm ‖ · ‖, and
define

�+
n

(
α,‖ · ‖) := max

{∥∥A
(α)
i1

· · ·A(α)
in

∥∥: (i1, . . . , in) ∈ {0,1}n} = max
{∥∥A(α)(x,n)

∥∥: x ∈ Σ
}

and

�−
n (α) := max

{
ρ
(
A

(α)
i1

· · ·A(α)
in

)
: i1, . . . , in ∈ {0,1}} = max

{
ρ
(
A(α)(x,n)

)
: x ∈ Σ

}
.

Clearly each �+
n (α,‖ · ‖) is nonzero, and �+

n+m(α,‖ · ‖) � �+
n (α,‖ · ‖)�+

m(α,‖ · ‖) for every
n,m � 1. Applying Fekete’s subadditivity lemma [15] to the sequence log�+

n (α,‖ · ‖) we ob-
tain

lim
n→∞�+

n

(
α,‖ · ‖)1/n = inf

n�1
�+

n

(
α,‖ · ‖)1/n

.

In particular the limit superior in the definition of �(α) is in fact a limit. A well-known result of
Berger and Wang [2] implies that

lim
n→∞�+

n

(
α,‖ · ‖)1/n = lim sup

n→∞
�−

n (α)1/n,

which in particular implies that the value �(α) is independent of the choice of norm ‖ · ‖. Finally,
note that if ρ(A

(α)
i1

· · ·A(α)
in

) = �−
n (α) for some n, then �−

nm(α) � ρ((Ai1 · · ·Ain)
m) = �−

n (α)m

for each m � 1, and hence the limit superior above is also a supremum. �
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We may immediately deduce the following corollary, which was originally noted by C. Heil
and G. Strang [22]:

Lemma 3.2. The function � : [0,1] → R is continuous.

Proof. The first of the two identities given in Lemma 3.1 shows that � is equal to the pointwise
infimum of a family of continuous functions, and hence is upper semi-continuous. The second
identity shows that � also equals the pointwise supremum of a family of continuous functions,
and hence is lower semi-continuous. �
Lemma 3.3. For each α ∈ (0,1] there exists a matrix norm ‖ · ‖α such that ‖A(α)

i ‖α � �(α)

for i = 0,1. The matrix norms ‖ · ‖α may be chosen so that the following additional property is
satisfied: for every compact set K ⊂ (0,1] there exists a constant MK > 1 such that M−1

K ‖B‖α �
|||B||| � MK‖B‖α for all B ∈ M2(R) and all α ∈ K .

Proof. Let B = {B1, . . . ,Br } be any finite set of d ×d real matrices and let �(B) be its joint spec-
tral radius. We say that B is irreducible if the only linear subspaces V ⊆ Rd such that BiV ⊆ V

for every i are {0} and Rd . A classic theorem of N.E. Barabanov [1] shows that if B is irreducible
then there exists a constant MB > 1 such that for each n � 1,

max
{‖Bi1 · · ·Bin‖: ij ∈ {1, . . . , r}} � MB�(B)n.

Note in particular that necessarily �(B) > 0. It is then straightforward to see that if we define for
each v ∈ Rd

‖v‖B := sup
n�0

{
�(B)−n max |||Bi1 · · ·Binv|||: ij ∈ {1, . . . , r}},

where ||| · ||| denotes the Euclidean norm, then ‖ · ‖B is a norm on Rd which satisfies ‖Biv‖B �
�(B)‖v‖B for every i ∈ {1, . . . , r} and v ∈ Rd . It follows that the operator norm on M2(R)

induced by ‖ · ‖B has the property ‖Bi‖B � �(B) for each Bi . More recent results due to
F. Wirth [49, Thm. 4.1] and V.S. Kozyakin [33] show that the constants MB may be chosen
so as to depend continuously on the set of matrices B, subject to the condition that the perturbed
matrix families also do not have invariant subspaces. It is easily shown that Aα is irreducible for
every α ∈ (0,1] and so the lemma follows from these general results. �

We immediately obtain the following:

Lemma 3.4. For each α ∈ (0,1] we have �(α) > 1.

Proof. Assume �(α) � 1 for some α ∈ (0,1]. Then we have sup{‖A(α)(0n)‖α: n � 1} � 1
by Lemma 3.3 and consequently sup{|||An

0|||: n � 1} < ∞. Since An
0 = ( 1 n

0 1

)
, we have

limn→∞|||An
0||| = +∞ and therefore we must have �(α) > 1. �

Fix some norm ‖ · ‖α which satisfies the conditions of Lemma 3.3. The following key result
is a variation on part of [38, Thm. 2.2]. We include a proof here for the sake of completeness.
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Lemma 3.5. For each α ∈ (0,1] define

Zα :=
∞⋂

n=1

{
x ∈ Σ :

∥∥A(α)(x, n)
∥∥

α
= �(α)n

}
.

Then each Zα is compact and nonempty, and satisfies T Zα ⊆ Zα .

Proof. Fix α ∈ (0,1] and define for each n � 1

Zα,n := {
x ∈ Σ :

∥∥A(α)(x, n)
∥∥

α
= �(α)n

}
.

Clearly each Zα,n is closed. If some Zα,n were to be empty, then by Lemma 3.3 we would
have sup{‖A(α)(x, n)‖α: x ∈ Σ} < �(α)n, contradicting Lemma 3.1. For each n � 1 we have
Zα,n+1 ⊆ Zα,n, since if x ∈ Zα,n+1 then

�(α)n+1 = ∥∥A(α)(x, n + 1)
∥∥

α
�

∥∥A(α)
(
T nx,1

)∥∥
α

∥∥A(α)(x, n)
∥∥

α

� �(α)
∥∥A(α)(x, n)

∥∥
α

� �(α)n+1

using Lemma 3.3 and it follows that x ∈ Zα,n also. We deduce that the set Zα = ⋂∞
n=1 Zα,n is

nonempty. Since each Zα,n is closed, Zα is closed and hence is compact. Finally, if x ∈ Zα,n+1
then we also have

�(α)n+1 = ∥∥A(α)(x, n + 1)
∥∥

α
�

∥∥A(α)(T x,n)
∥∥

α

∥∥A(α)(x,1)
∥∥

α

� �(α)
∥∥A(α)(T x,n)

∥∥
α

� �(α)n+1

so that T x ∈ Zα,n, and we deduce from this that T Zα ⊆ Zα . �
The remaining lemmas in this section will be applied in the proof of Theorem 2.3 to charac-

terise the extremal orbits of Aα .

Lemma 3.6. Let α ∈ (0,1] and x ∈ Σ . If x is recurrent and strongly extremal for Aα , then x ∈ Zα .

Proof. Let α ∈ (0,1] and x ∈ Σ \ Zα , and suppose that x is recurrent. We shall show that
lim infn→∞ �(α)−n‖A(α)(x, n)‖α = 0 and therefore x is not strongly extremal, which proves the
lemma. Since x /∈ Zα , there exist ε > 0 and n0 � 1 such that ‖A(α)(x, n0)‖α < (1 − ε)�(α)n0 .
Since x is recurrent, it follows that for each k � 1 we may find integers rk > rk−1 > · · · > r2 >

r1 = 0 such that ‖A(α)(T ri x, n0)‖α < (1 − ε)�(α)n0 for each i. By increasing k and passing to
a subsequence if necessary, it is clear that we may assume additionally that ri+1 > ri + n0 for
1 � i < k. Define also rk+1 := rk + n0 + 1. We have

∥∥A(α)(x, rk+1)
∥∥

α
�

k∏
i=1

∥∥A(α)
(
T ri x, n0

)∥∥
α

∥∥A(α)
(
T ri+n0x, ri+1 − ri − n0

)∥∥
α

� (1 − ε)k�(α)rk+1 ,
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and since k may be taken arbitrarily large we conclude that

lim inf
n→∞ �(α)−n

∥∥A(α)(x, n)
∥∥

α
= 0,

as desired. �
The following lemma is a straightforward corollary of a more general result due to

S.J. Schreiber [46, Lemma 1]:

Lemma 3.7. Let (fn) be a sequence of continuous functions from Σ to R such that fn+m(x) �
fn(T

mx) + fm(x) for all x ∈ Σ and n,m � 1. Then for each x ∈ Σ and m � 1,

lim inf
n→∞

1

nm

n−1∑
k=0

fm

(
T kx

)
� lim inf

n→∞
1

n
fn(x).

Lemma 3.8. Let α ∈ (0,1] and suppose that the restriction of T to Zα is uniquely ergodic,
with μ being its unique T -invariant Borel probability measure. Then r := μ({x ∈ Σ : x1 = 1}) is
the unique optimal 1-ratio of Aα , and if x ∈ Σ is weakly extremal, then

lim
n→∞

1

n

n−1∑
k=0

dist
(
T kx, suppμ

) = 0.

Proof. Let M denote the set of all Borel probability measures on Σ equipped with the weak-*
topology, which is defined to be the smallest topology such that μ �→ ∫

f dμ is continuous for
every continuous function f :Σ → R. This topology makes M a compact metrisable space [41,
Thm. II.6.4]. Let us fix α ∈ (0,1] and suppose that x ∈ Σ is weakly extremal. For each n � 1
define μn := (1/n)

∑n−1
k=0 δT kx ∈ M, where δz ∈ M denotes the Dirac probability measure con-

centrated at z ∈ Σ . We claim that limn→∞ μn = μ in the weak-* topology.
Applying Lemma 3.7 with fn(x) := log‖A(α)(x, n)‖α and noting that fn(x) � n log�(α) for

all x and n, we obtain

lim
n→∞

∫
1

N
log

∥∥A(α)(z,N)
∥∥

α
dμn(z) = lim

n→∞
1

nN

n−1∑
i=0

log
∥∥A(α)

(
T ix,N

)∥∥
α

= log�(α) (3.1)

for every N � 1. As in the proof of Lemma 3.5 we let Zα,N = {z ∈ Σ : ‖A(α)(z,N)‖α = �(α)N }
for each N � 1, and we recall that Zα,N+1 ⊆ Zα,N for every N . Let ν ∈ M be any limit point
of the sequence (μn). If f :Σ → R is any continuous function then it follows easily from the
definition of (μn) that |∫ f dν − ∫

f ◦ T dν| � lim supn→∞|∫ f ◦ T dμn − ∫
f dμn| = 0 and it

follows that ν is T -invariant. For each N � 1 we have∫
1

N
log

∥∥A(α)(z,N)
∥∥

α
dν(z) = log�(α),

and since ‖A(α)(z,N)‖α � �(α)N for all z ∈ Σ it follows from this that ν(Zα,N ) = 1. Since this
applies for every N , and Zα,N+1 ⊆ Zα,N for every N , we deduce that ν(Zα) = 1. By hypoth-
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esis μ is the unique T -invariant element of M giving full measure to Zα , and it follows that
ν = μ. We have shown that μ is the only weak-* accumulation point of the sequence (μn), and
since M is compact and metrisable we deduce that limn→∞ μn = μ, which completes the proof
of the claim.

The proof of the lemma now follows easily. Let f :Σ → R be the characteristic function of
the set {x ∈ Σ : x1 = 1}, and note that f is continuous since this set is both open and closed.
Define a further continuous function by g(x) := dist(x, suppμ). Since μn → μ we may easily
derive

lim
n→∞ς

(
πn(x)

) = lim
n→∞

1

n

n−1∑
i=0

f
(
T ix

) = lim
n→∞

∫
f dμn =

∫
f dμ = μ

({x ∈ Σ : x1 = 1}) = r

and

lim
n→∞

1

n

n−1∑
i=0

dist
(
T ix, suppμ

) = lim
n→∞

∫
g dμn =

∫
g dμ = 0

as required. The proof is complete. �
4. General properties of balanced words

In this short and mostly expository section we present some combinatorial properties of bal-
anced words which will be applied in subsequent sections. We first require some additional
definitions.

Given two nonempty finite words u, v of equal length, we write u < v if u strictly precedes v

in the lexicographical order: that is, u < v if and only if there is k � 1 such that uk = 0, vk = 1,
and ui = vi when 1 � i < k. We define the reverse of a finite word u, which we denote by ũ,
to be the word obtained by listing the terms of u in reverse order. That is, if u = u1u2 · · ·un

then ũ = unun−1 · · ·u1. We say that a finite word p is a palindrome if p̃ = p. Since the reverse
of the empty word is also the empty word, the empty word is a palindrome. We say that two
finite words u and v of equal length are cyclic permutations of each other, and write u � v, if
there exist finite words a and b such that u = ab and v = ba. For each n � 0 this defines an
equivalence relation on the set of words of length n.

We begin by collecting together some standard results from [35]:

Lemma 4.1. Let γ ∈ (0,1) and x ∈ Xγ , and choose any N > max{�γ −1�, �(1 − γ )−1�}. Then
neither 0N nor 1N is a subword of x.

Proof. Let u ≺ x with |u| = N . By [35, Prop. 2.1.10] we have γ |u| + 1 � |u|1 � γ |u| − 1. In
particular we have |u|1 > γ �γ −1� − 1 � 0 and |u| − |u|1 > (1 − γ )�(1 − γ )−1� − 1 � 0, so
0 < |u|1 < |u| and u cannot be equal to 0N or 1N . �
Definition 4.2. Let W ⊂ Ω×Ω be the smallest set with the following two properties: (0,1) ∈ W ;
if (u, v) ∈ W , then (uv, v) ∈ W and (u, vu) ∈ W . We say that u ∈ Ω is a standard word if either
(v,u) ∈ W or (u, v) ∈ W for some v ∈ Ω .
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Lemma 4.3. The set of standard words has the following properties:

(i) If u is standard, with |u| = q and |u|1 = p, then u∞ ∈ Xp/q .
(ii) For every γ ∈ [0,1] there exists x ∈ Xγ such that for infinitely many q ∈ N the word πq(x)

is standard.

Proof. (i) If q = 1 then the result is trivial. For q > 1, [35, Prop. 2.2.15] shows that every stan-
dard word is balanced. If u is standard, then it is clear from the definition that un is a subword of
a standard word for every n � 1. In particular every un is balanced and therefore u∞ is balanced.

(ii) Let x be the infinite word defined by xn := 
γ (n+ 2)�−
γ (n+ 1)� ∈ {0,1} for all n � 1.
This word is called the characteristic word for γ . It is shown in [35, Prop. 2.2.15] that x has the
required properties. �

The following result is given in the proof of [35, Prop. 2.1.3]. Note that p may be the empty
word; for example, this is true in the case w = 0011.

Lemma 4.4. Let w be a finite word which is not balanced, let u and v be subwords of w of
equal length such that |u|1 � 2 + |v|1, and suppose that u, v have the minimum possible length
for which this property may be satisfied. Then there is a palindrome p such that u = 1p1 and
v = 0p0.

The following two results arise in the fourth named author’s PhD thesis [47]:

Lemma 4.5. Let w be a finite word and p a palindrome, and suppose that 0p0 and 1p1 are
subwords of w. Then there is a finite word b, which may be empty, such that either 0p0b1p1 or
1p1b0p0 is a subword of w.

Proof. Recall that u ≺ v means that u is a subword of v. Since 0p0 and 1p1 are both subwords
of w, the only alternative is that they occur in an overlapping manner: that is, there are finite
words d , e, f such that 0d1e0f 1 ≺ w, where d1e = e0f = p, or similarly with 0 and 1 inter-
changed. Since p̃ = p, the relation d1e = e0f = p implies ẽ1d̃ = e0f , and since |ẽ| = |e| we
obtain 1 = 0, a contradiction. We conclude that the words 0p0 and 1p1 cannot overlap, and the
result follows. �
Lemma 4.6. Let u be a finite word which is not balanced. Then there exist words a, w, b such
that awb ≺ u and one of the following two possibilities holds: either b̃ > a and w̃ > w, or ã > b

and w > w̃.

Proof. Combining Lemmas 4.4 and 4.5 we find that there exist words p, v such that p̃ = p and
either 0p0v1p1 ≺ u, or 1p1v0p0 ≺ u. In the former case we may take a := 0p, b := p1 and
w := 0v1, and in the latter case we may take a := 1p, b := p0 and w := 1v0. �

Finally, we require the following lemma which characterises those finite words for which all
cyclic permutations are balanced. This result appears to be something of a “folklore theorem” in
the theory of balanced words; to the best of our knowledge, the proof which we present here is
original. A version of this result appears as [3, Thm. 6.9]. Note that the word u := 1001 is an
example of a balanced word with the property that u∞ is not balanced.
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Lemma 4.7. Let u be a nonempty finite word. Then the following are equivalent:

(i) Every cyclic permutation of u is balanced.
(ii) The finite word u2 is balanced.

(iii) The infinite word u∞ is balanced.

Proof. It is clear that (iii) �⇒ (ii) �⇒ (i). To prove the implication (i) �⇒ (ii) by we shall show
that if u is a nonempty finite word such that u2 is not balanced, then there is a cyclic permutation
of u which is not balanced.

Let us then suppose that u is a finite nonempty word such that u2 is not balanced. Let a, b be
subwords of u2 of equal length such that ||a|1 − |b|1| � 2, and suppose that no pair of shorter
subwords may be found which also has this property. Clearly we have ||a|1 − |b|1| = 2, and
without loss of generality we shall assume that |a|1 = 2 + |b|1. By Lemma 4.4 there exists a
palindrome p such that a = 1p1 and b = 0p0, and it follows from Lemma 4.5 that |a|, |b| � |u|.
We may therefore choose words c and d such that |c| = |d| = |u| − |a| = |u| − |b| and ac �
bd � u. Since |ac|1 = |bd|1 = |u|1 we have |d|1 = 2 + |c|1, and since a and b are the shortest
words with this property we must have |b| = |a| � |c|. Now, since ac � u, it is not difficult to see
that every word which is a subword of some cyclic permutation of u and has length at most |c|
must occur as a subword of the word cac. In particular b ≺ cac, and since |b| = |a| we have
either b ≺ ca or b ≺ ac. In either case we have shown that there exists a cyclic permutation
of u which has both a and b as subwords, and no word with that property may be balanced. We
conclude that (i) cannot not hold when (ii) does not hold, and so (i) �⇒ (ii) as required.

It is now straightforward to show that (ii) �⇒ (iii). Let u be a finite nonempty word such
that u2 is balanced; then every cyclic permutation of u is balanced, since the cyclic permutations
of u are precisely the subwords of u2 with length |u|. Now, the cyclic permutations of u2 are
precisely the words of the form v2 where v � u; but since (i) �⇒ (ii), all of these cyclic permu-
tations must be balanced also. Applying the implication (i) �⇒ (ii) again we deduce that u4 is
balanced. Repeating this procedure inductively shows that u2k

is balanced for every k � 1, and
this yields (iii). �
5. Relationships between balanced words and extremal orbits

The principal goal of this section is to show that for each α ∈ (0,1], every recurrent x ∈ Σ

which is strongly extremal for Aα is balanced. We also prove some related ancillary results which
will be applied in the following section.

The following valuable lemma shows that under quite mild conditions the trace, spectral ra-
dius, Euclidean norm and smallest diagonal element of a matrix of the form A(u) approximate
each other quite closely. For every B ∈ M2(R) we define d(B) to be the minimum modulus of
the diagonal entries of B .

Lemma 5.1. Let α ∈ [0,1] and N � 2, and let u be a nonempty finite word such that 0N,1N ⊀ u.
Then,

1

2N2

∣∣∣∣∣∣A(α)(u)
∣∣∣∣∣∣ � d

(
A(α)(u)

)
� 1

2
tr A(α)(u) � ρ

(
A(α)(u)

)
�

∣∣∣∣∣∣A(α)(u)
∣∣∣∣∣∣.



4680 K.G. Hare et al. / Advances in Mathematics 226 (2011) 4667–4701
Proof. Let m(B) denote the maximum of the entries of a non-negative matrix B ∈ M2(R). The
inequalities

|||B||| =
√

ρ
(
B∗B

)
�

√
tr
(
B∗B

)
� 2m(B)

and

d(B) � 1

2
trB � ρ(B) � |||B|||

are elementary. To prove the lemma, it therefore suffices to show that m(A(α)(u)) �
N2d(A(α)(u)) whenever 0N,1N ⊀ u. Since A(α)(u) ≡ α|u|1 A(u) it is clearly sufficient to con-
sider only the case α = 1.

Let us prove this inequality. We shall suppose that the final symbol occurring in u is 0, since
the opposite case is easily dealt with by symmetry. Let n � 1 and a1, . . . , an � 1 be integers such
that either u = 0an1an−10an−2 · · ·1a20a1 with n odd, or u = 1an0an−11an−2 · · ·1a20a1 with n even.
By hypothesis we have ak � N − 1 for every k.

For 1 � k � n let us define

pk

qk

:= 1

a1 + 1

a2 + · · · + 1

ak−1 + 1

ak

in least terms, and define also p0, q−1 := 0 and p−1, q0 := 1. The integers pk , qk then satisfy
the recurrence relations pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2 for all k in the range
1 � k � n. A well-known formula for pk/qk implies

A(u) = A
an

0 A
an−1
1 · · ·Aa1

0 =
(

1 an

0 1

)(
1 0

an−1 1

)
· · ·

(
1 a1
0 1

)
=

(
pn qn

pn−1 qn−1

)

if n is odd, and

A(u) = A
an

1 A
an−1
0 · · ·Aa1

0 =
(

1 0
an 1

)(
1 an−1
0 1

)
· · ·

(
1 a1
0 1

)
=

(
pn−1 qn−1
pn qn

)

if n is even (see, e.g., [16]). If n is odd then clearly d(A(u)) = min{pn, qn−1}, and since qn =
anqn−1 + qn−2 � (an + 1)qn−1 � Nqn−1 and pn/qn � 1/(a1 + 1) � 1/N we obtain m(A(u)) =
qn � min{Npn,Nqn−1} < N2d(A(u)) as required. If n is even then similarly m(A(u)) = qn �
Nqn−1 � N2pn−1 = N2d(A(u)). The proof is complete. �

Let a, w, b be nonempty finite words with |a| = |b|. We shall say that (a,w,b) is a suboptimal
triple if either ã > b and w > w̃, or b̃ > a and w̃ > w. We require the following lemma due to
V.D. Blondel, J. Theys and A.A. Vladimirov [6, Lemma 4.2]:
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Lemma 5.2. Let w be a nonempty finite word. Then A(w̃) − A(w) = k(w)J , where k(w) ∈ Z

and

J := A0A1 − A1A0 =
(

1 0
0 −1

)
.

Moreover, k(w) is positive if and only if w > w̃, and negative if and only if w < w̃.

The following is a slightly strengthened version of [6, Lemma 4.3]:

Lemma 5.3. Let (a,w,b) be a suboptimal triple, let B1, B2 be non-negative matrices, and let
α ∈ [0,1]. Then

tr
(
B1 A(α)(aw̃b)B2

)
� tr

(
B1 A(α)(awb)B2

) + α|awb|1d(B1)d(B2).

Proof. Since tr A(α)(u) = α|u|1 tr A(u) for every finite word u it is clearly sufficient to treat only
the case α = 1. We shall deal first with the case where ã > b and w > w̃, the alternative case
being similar. Since ã > b we may write a = u1c, b = c̃0ṽ for some finite words c, u and v

(which may be empty). Note that J satisfies the relations

A1JA1 = A0JA0 = J, A0JA1 =
(

0 −1
−1 −1

)
, A1JA0 =

(
1 1
1 0

)
,

and hence by Lemma 5.2,

tr
(

A(a)
(

A(w̃) − A(w)
)

A(b)
) = k(w) tr

(
A(u)

(
1 1
1 0

)
A(ṽ)

)
� 1.

Now, a direct calculation shows that for any non-negative matrix C ∈ M2(R) we have
tr(B1CB2) � d(B1)d(B2) tr(C). Since the matrix A(a)(A(w̃) − A(w))A(b) is non-negative,
we deduce that

tr
(
B1 A(aw̃b)B2

) − tr
(
B1 A(awb)B2

) = tr
(
B1 A(a)

(
A(w̃) − A(w)

)
A(b)B2

)
� d(B1)d(B2) tr

(
A(a)

(
A(w̃) − A(w)

)
A(b)

)
� d(B1)d(B2)

as required. In the case where b̃ > a and w̃ > w, the integer k(w) and the matrix A0JA1 each
contribute a negative sign to the product A(a)(A(w̃)− A(w))A(b) and the same conclusion may
be reached. �

We may now prove the following two results which will allow us to characterise extremal
orbits in terms of balanced words:
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Lemma 5.4. Let 0 � p
q

� 1, with the integers p and q not necessarily coprime. Suppose that
|u| = q , |u|1 = p and

ρ
(

A(u)
) = max

{
ρ
(

A(v)
)
: |v| = q and |v|1 = p

}
. (5.1)

Then the infinite word u∞ is balanced.

Proof. We shall begin by showing that if u has the properties described then it is balanced. Let us
assume for a contradiction that u has these properties but is not balanced. By Lemma 4.6, there
exists a suboptimal triple (a,w,b) such that awb ≺ u. Let us write u = s1awbs2 and define
û := s1aw̃bs2. By Lemma 5.3 we have tr(A(û)) > tr(A(u)). Since A(û) and A(u) are both
non-negative matrices with unit determinant, it follows that

ρ
(

A(û)
) = 1

2

(
tr
(

A(û)
) +

√
tr
(

A(û)
)2 − 4

)
>

1

2

(
tr
(

A(u)
) +

√
tr
(

A(u)
)2 − 4

)
= ρ

(
A(u)

)
.

Since clearly |û| = |u| and |û|1 = |u|1 this is a contradiction, so u must be balanced as required.
Now, suppose that u satisfies (5.1) with |u|1 = p and |u| = q , and that v is a cyclic permu-

tation of u. It is a well-known property of the spectral radius that ρ(B1B2) = ρ(B2B1) for any
B1,B2 ∈ M2(R), and it follows from this that ρ(A(v)) = ρ(A(u)). By applying the preceding
argument to v it follows that v is also balanced. We conclude that all of the cyclic permutations
of u are balanced, and by Lemma 4.7 this implies that u∞ is balanced as required. �
Proposition 5.5. Let α ∈ (0,1] and suppose that x ∈ Zα . Then x is balanced.

Proof. To prove the proposition, let us suppose that there exists a recurrent infinite word x ∈ Zα

which is not balanced. We shall then be able to deduce a contradiction, and the result follows.
The general principle of the proof is that if x is recurrent and not balanced, then we can construct
a word based on x along which the trace of the product A(α)(x, n) grows “too rapidly”.

Fix a real number Cα > 1 such that C−1
α ‖B‖α � ‖B‖ � Cα‖B‖α for all B ∈ M2(R). By

Lemma 3.4 we have �(α) > 1, and by Gelfand’s formula we have ‖A(α)(0n)‖1/n
α → 1 as n → ∞.

It follows in particular that there is an integer N0 � 2 such that ‖A(α)(0N0)‖α < �(α)N0 and
therefore 0N0 ⊀ z for every z ∈ Zα . Similarly we may choose N1 � 2 such that 1N1 ⊀ z for every
z ∈ Zα . Let N := max{N0,N1}, and choose a further integer M � 2 such that

max
{∥∥A(α)

(
0M

)∥∥
α
,
∥∥A(α)

(
1M

)∥∥
α

}
<

�(α)M

2CαN2
.

If v is any subword of x, then there exists n � 0 such that A(α)(v) = A(α)(T nx, |v|), and since
T nx ∈ Zα this implies

d
(

A(α)(v)
)
� 1

2N2

∣∣∣∣∣∣A(α)(v)
∣∣∣∣∣∣ � 1

2CαN2

∥∥A(α)
(
T nx, |v|)∥∥

α
= �(α)|v|

2CαN2
, (5.2)
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where we have used Lemma 5.1. On the other hand, for any nonempty finite word u,

tr A(α)(u) � 2ρ
(

A(α)(u)
)
� 2

∥∥A(α)(u)
∥∥

α
� 2�(α)|u|. (5.3)

Now, since x is not balanced, it by definition has a subword which is not balanced. Applying
Lemma 5.3 to this subword we deduce that there exists a suboptimal triple (a,w,b) such that
awb ≺ x. Define � := |awb|, and fix an integer K � 1 such that

(
1 + α�

16C2
αN4M2�(α)�

)K

> 2CαN2.

Since x is recurrent there are infinitely many occurrences of the word awb as a subword of x,
and so we may choose words s1, . . . , sK+1 such that the word

u(0) := s1(awb)s2(awb)s3 · · · · · · sK(awb)sK+1

is a subword of x. Let L := |u(0)|, and for i = 1, . . . ,K define a new word u(i) by reversing the
first i explicit instances of the word w in u(0); that is,

u(1) := s1(aw̃b)s2(awb)s3 · · · · · · sK(awb)sK+1,

u(2) := s1(aw̃b)s2(aw̃b)s3 · · · · · · sK(awb)sK+1,

and so forth, up to

u(K) := s1(aw̃b)s2(aw̃b)s3 · · · · · · sK(aw̃b)sK+1.

Note that for each i we have, by applying Lemma 5.3 i times and using (5.2),

tr A(α)
(
u(i)

)
� tr A(α)

(
u(0)

)
� 2d

(
A(α)

(
u(0)

))
� �(α)L

CαN2
, (5.4)

since u(0) is a subword of x. As a consequence we observe that 0M ⊀ u(i) for every i, since if we
were to have 0M ≺ u(i) for some i then we could obtain

�(α)L

2CαN2
� 1

2
tr A(α)

(
u(i)

)
� ρ

(
A(α)

(
u(i)

))
�

∥∥A(α)
(
u(i)

)∥∥
α

�
∥∥A(α)

(
0M

)∥∥
α

· �(α)L−M <
�(α)L

2CαN2
,

a contradiction. Clearly an analogous contradiction would arise if we were to have 1M ≺ u(i) and
we conclude that 1M ⊀ u(i) also.

Now, for i = 1, . . . ,K let c(i), d(i) be those words such that u(i−1) = c(i)awbd(i) and ui =
c(i)aw̃bd(i). Note that |c(i)|+ |d(i)|+ � = L for each i. Making i applications of Lemma 5.3 and
using (5.2) yields
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tr A(α)
(
c(i)

) = tr A(α)
(
s1(aw̃b)s2 · · · si−1(aw̃b)si

)
� tr A(α)

(
s1(awb)s2 · · · si−1(awb)si

)
� �(α)|c(i)|

2CαN2
,

since the last of these words is a subword of u(0), and u(0) is a subword of x. Since c(i) ≺ u(i)

and 0M,1M ⊀ u(i) we have 0M,1M ⊀ c(i), and by Lemma 5.1 in combination with the preceding
inequality this implies

d
(

A(α)
(
c(i)

))
� 1

4M2
tr A(α)

(
c(i)

)
� �(α)|c(i)|

4CαN2M2
. (5.5)

Equally, since d(i) ≺ u(0) and u(0) is a subword of x, we may apply (5.2) to obtain

d
(

A(α)
(
d(i)

))
� �(α)|d(i)|

2CαN2
. (5.6)

We may now complete the proof. Combining (5.5), (5.6), and (5.3) we obtain for each i

α|awb|1d
(

A(α)
(
c(i)

))
d
(

A(α)
(
d(i)

))
� α��(α)L−�

8C2
αN4M2

� α�

16C2
αN4M2�(α)�

tr A(α)
(
u(i−1)

)
,

and hence by Lemma 5.3,

tr A(α)
(
u(i)

)
�

(
1 + α�

16C2
αN4M2�(α)�

)
tr A(α)

(
u(i−1)

)
.

In combination with (5.3) and (5.4) this yields

2�(α)L � tr A(α)
(
u(K)

)
�

(
1 + α�

16C2
αN4M2�(α)�

)K

tr A(α)
(
u(0)

)

�
(

1 + α�

16C2
αN4M2�(α)�

)K

· �(α)L

CαN2
,

contradicting our choice of K . The proof is complete. �
6. Study of the growth of matrix products along balanced words

In this section we analyse in detail the exponential growth rate of A(x,n) in the limit as
n → ∞ for x ∈ Xγ , investigating in particular the manner in which this value depends on γ .
A construction with similar properties is discussed briefly in [8, §4.3]. The results of this section
are summarised in the following proposition:
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Proposition 6.1.

• There exists a continuous concave function S : [0,1] → R such that for each γ ∈ [0,1],

lim
n→∞

1

n
log

∣∣∣∣∣∣A(x,n)
∣∣∣∣∣∣ = lim

n→∞
1

n
logρ

(
A(x,n)

) = S(γ )

uniformly for x ∈ Xγ .
• If γ = p/q ∈ [0,1] ∩ Q then S(γ ) = q−1 logρ(A(x, q)) for every x ∈ Xγ .
• The function S also satisfies infγ∈[0,1] S = S(0) = S(1) = 0, supS = S(1/2) = log�(1), and

S(γ ) = S(1 − γ ) for all γ ∈ [0,1].
• The function S is non-decreasing on [0, 1

2 ].

The proof of Proposition 6.1 is given in the form of a sequence of lemmas. Specifically, the
result follows by combining Lemmas 6.2–6.4 and Lemma 6.6 below.

Lemma 6.2. Let γ ∈ [0,1]. Then there exists a real number S(γ ) such that

lim
n→∞

1

n
log

∣∣∣∣∣∣A(x,n)
∣∣∣∣∣∣ = lim

n→∞
1

n
logρ

(
A(x,n)

) = S(γ )

uniformly over x ∈ Xγ .

Proof. In the cases γ = 0, γ = 1 the lemma is trivial, since by Theorem 2.1 the set Xγ consists
of a single point which is fixed under T , and the result follows by Gelfand’s formula. To prove
the lemma in the nontrivial cases we use a result due to A. Furman [17] on uniform convergence
for linear cocycles over homeomorphisms. Since in general the transformations T :Xγ → Xγ

are not homeomorphisms, this is achieved via an auxiliary construction.
Let us fix γ ∈ (0,1). Define a space of two-sided sequences X̂γ ⊂ {0,1}Z as follows: the se-

quence x = (xn)n∈Z ∈ {0,1}Z belongs to X̂γ if and only if there exists δ ∈ [0,1] such that either
xn ≡ �(n + 1)γ + δ� − �nγ + δ� for all n ∈ Z, or xn ≡ 
(n + 1)γ + δ� − 
nγ + δ� for all n ∈ Z.
It follows from the discussion subsequent to the statement of Theorem 2.1 that the two-sided
sequence (xi)i∈Z belongs to X̂γ if and only if the one-sided sequence (xi+k)

∞
i=1 belongs to Xγ

for every k ∈ Z. We equip X̂γ with the topology it inherits from the infinite product topology on
{0,1}Z, and define T̂ : X̂γ → X̂γ by T̂ [(xi)i∈Z] := (xi+1)i∈Z analogously to the definition of T .
In the same manner as for the transformation T :Xγ → Xγ , one may show that T̂ : X̂γ → X̂γ

is a continuous, uniquely ergodic transformation of a compact metrisable space. Finally, we
define Â : X̂γ × Z → M2(R) in the following manner: given x = (xi)i∈Z ∈ X̂γ and n � 1,
we define Â(x,n) := Axn · · ·Ax1 , Â(x,−n) := A−1

x−(n−1)
A−1

x−(n−2)
· · ·A−1

x0
= Â(T̂ −nx,n)−1, and

Â(x,0) = I . It may be directly verified that Â is continuous and satisfies the following cocycle
relation: for all x ∈ X̂γ and n,m ∈ Z, we have Â(x,n + m) = Â(T̂ nx,m)Â(x,n).

Now let N � 1 be as given by Lemma 4.1. For each x ∈ Xγ we have 0N,1N ⊀ x. Since for
each x = (xi)i∈Z ∈ X̂γ we have (xi)

∞
i=1 ∈ Xγ , it follows from this that the matrix product which

defines Â(x,N) is a product of mixed powers of A0 and A1, and does not simply equal AN
0

or AN
1 . A simple calculation shows that this implies that for each x ∈ X̂γ , all of the entries of the

matrix Â(x,N) are strictly positive. We may therefore apply [17, Thm. 3] to deduce that there
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exists a real number S(γ ) such that 1
n

log‖Â(x,n)‖ converges uniformly to S(γ ) for x ∈ X̂γ .
Since clearly for each n � 1,

{
Â(x,n): x ∈ X̂γ

} = {
A(x,n): x ∈ Xγ

}
,

this implies that 1
n

log‖A(x,n)‖ converges uniformly to S(γ ) for x ∈ Xγ . Since as previously
noted we have 0N,1N ⊀ x for all x ∈ Xγ , it follows immediately from Lemma 5.1 that also
1
n

logρ(A(x,n)) → S(γ ) uniformly over x ∈ Xγ . The proof is complete. �
Lemma 6.3. The function S has the following properties:

(i) Let γ = p/q ∈ [0,1], not necessarily in least terms: then S(γ ) = q−1 logρ(A(x, q)) for
every x ∈ Xp/q .

(ii) Let u be a finite word such that |u| = q , |u|1 = p. Then S(p/q) � q−1 logρ(A(u)).
(iii) Let γ ∈ [0,1] be irrational. Then there exist x ∈ Xγ and a sequence of rational numbers

(pn/qn)
∞
n=1 converging to γ such that S(pn/qn) = q−1

n logρ(A(x, qn)) for every n � 1.
(iv) For every γ ∈ [0,1] we have S(γ ) = S(1 − γ ).

Proof. (i) By Theorem 2.1 we have T qx = x for every x ∈ Xp/q , and so for every x ∈ Xp/q ,

S(p/q) = lim
n→∞

1

kq
log

∣∣∣∣∣∣A(x, kq)
∣∣∣∣∣∣ = lim

k→∞
1

kq
log

∣∣∣∣∣∣A(x, q)k
∣∣∣∣∣∣ = 1

q
logρ

(
A(x, q)

)
.

(ii) Clearly the set of all words v such that |v| = q and |v|1 = p is finite, so there exists
a word v which attains the maximum value of ρ(A(v)) within this set. In particular we have
ρ(A(v)) � ρ(A(u)). By Lemma 5.4 the infinite word v∞ ∈ Σ is balanced, and since it is
clearly recurrent we have v∞ ∈ Xp/q by Theorem 2.1. By part (i) this implies q−1 logρ(A(v)) =
S(p/q) as required.

(iii) Let x ∈ Xγ be as given by Lemma 4.3(ii), and let (qn)
∞
n=1 be a strictly increasing sequence

of natural numbers such that πqn(x) is a standard word for every n. Define pn := |πqn(x)|1
for each n � 1. By the definition of Xγ we have pn/qn → γ . Since each πqn(x) is standard,
[πqn(x)]∞ ∈ Xpn/qn for each n by Lemma 4.3(i), and by part (i) of the present lemma this implies
S(pn/qn) = q−1

n logρ(A(x, qn)).
(iv) For each finite or infinite word ω, define ω to be the mirror image of ω, i.e., the unique

word such that ωi = 1 if and only if ωi = 0. It is clear that x ∈ Xγ if and only if x ∈ X1−γ .
Define R = ( 0 1

1 0

)
and note that R−1A0R = A1 and R−1A1R = A0. If x ∈ Xγ and n � 1, then

R−1 A(x,n)R = (
R−1AxnR

) · · · (R−1Ax2R
)(

R−1Ax1R
) = A(x,n)

and in particular ρ(A(x,n)) = ρ(A(x,n)). It follows easily that S(γ ) = S(1 − γ ). �
Lemma 6.4. The function S satisfies S(0) = infS = 0 and S( 1

2 ) = supS = log�(1).

Proof. The reader may easily verify that

|||A1||| = |||A0||| = |||A0A1||| 1
2 = |||A1A0||| 1

2 = ρ(A0A1)
1/2 = 1 + √

5
. (6.1)
2
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By Theorem 2.1, we have X1/2 = {(01)∞, (10)∞}, so by Gelfand’s formula we have

lim
n→∞

∣∣∣∣∣∣A(x,n)
∣∣∣∣∣∣1/n = ρ(A0A1)

1
2 = ρ(A1A0)

1
2 = 1 + √

5

2

when x ∈ X1/2. Let us show that �(1) = 1+√
5

2 . In other words, we will prove that

sup
{∣∣∣∣∣∣A(x,n)

∣∣∣∣∣∣1/n: x ∈ Σ
} = lim

n→∞
∣∣∣∣∣∣A

(
(01)∞, n

)∣∣∣∣∣∣1/n = 1 + √
5

2
.

Suppose x has a tail different from (01)∞. Then it must contain one of the following subwords:
w1 = 11(01)n1, w2 = 11(01)n00, w3 = 00(10)n0, w4 = 00(10)n11 with n � 0. In view of mirror
symmetry, it suffices to deal with w1 and w2. We will show that it is possible to replace them
with subwords of (01)∞, w′

1 and w′
2 respectively, in such a way that the corresponding growth

exponent does not decrease.
Namely, put w′

1 = (10)n+11 and w′
2 = (10)n+2. It is easy to see that for n � 1,

(A0A1)
n =

(
F2n F2n−1

F2n−1 F2n−2

)
,

(A1A0)
n =

(
F2n−2 F2n−1
F2n−1 F2n

)
,

where, as above, (Fn)
∞
n=0 is the Fibonacci sequence (with F0 = F1 = 1). Hence

A2
1(A0A1)

nA1 =
(

F2n+1 F2n−1
F2n+3 F2n+1

)
,

whereas

(A1A0)
n+1A1 =

(
F2n+2 F2n+1
F2n+3 F2n+2

)
,

i.e., A(w′
1) dominates A(w1) entry-by-entry. Similarly,

A2
1(A0A1)

nA2
0 =

(
F2n F2n+2

F2n+2 F2n+4

)

and

(A1A0)
n+2 =

(
F2n+2 F2n+3
F2n+3 F2n+4

)
.

Thus, �(1) = 1+√
5

2 = eS( 1
2 ), and since clearly S(γ ) � log�(1) for every γ ∈ [0,1] this implies

that supS = S(1/2). On the other hand, it is clear that X0 contains a single point x corresponding
to an infinite sequence of zeroes, and for this x we have S(0) = logρ(A0) = 0. Finally, since
every matrix A(x,n) is an integer matrix which has determinant one and is hence nonzero, every
x ∈ Σ has 1

n
log|||A(x,n)||| � 0 for all n and therefore S(γ ) � 0 for every γ . �



4688 K.G. Hare et al. / Advances in Mathematics 226 (2011) 4667–4701
Lemma 6.5. The restriction of S to (0,1) ∩ Q is concave in the following sense: if γ1, γ2, λ ∈
(0,1) ∩ Q then S(λγ1 + (1 − λ)γ2) � λS(γ1) + (1 − λ)S(γ2).

Proof. For i = 1,2 let γi = pi/qi in least terms, and let λ = k/m. Let M = max{q1, q2}. As
a consequence of Lemma 6.3(i) there exist finite words u(1), u(2) ∈ Ω such that |u(i)|1 = pi ,
|u(i)| = qi and S(γi) = q−1

i log A(u(i)) for each i.
Since 0 < γ1, γ2 < 1 we have 0 < |pi | < |qi | and therefore 0M,1M ⊀ (u(i))� for i = 1,2 and

every � � 1. In particular, for each �1, �2 � 1 the word (u(1))�1(u(2))�2 does not have 02M or 12M

as a subword, and hence by Lemma 5.1,

ρ
(

A
(
u(1)

)�1
(
u(2)

)�2
)
� d

(
A

(
u(1)

)�1
(
u(2)

)�2
)
� d

(
A

(
u(1)

)�1
)
d
(

A
(
u(2)

)�2
)

� 1

64M4
ρ
(

A
(
u(1)

)�1
)
ρ
(

A
(
u(2)

)�2
)
.

Applying this inequality together with Lemma 6.3(ii), for each n � 1 we obtain

S
(
λγ1 + (1 − λ)γ2

) = S

(
kp1q2 + (m − k)q1p2

mq1q2

)

� 1

nmq1q2
logρ

(
A

((
u(1)

)nkq2
(
u(2)

)n(m−k)q1
))

� 1

nmq1q2

(
logρ

(
A

((
u(1)

)nkq2
)) + logρ

(
A

((
u(2)

)n(m−k)q1
)) − log 64M4)

= k

mq1
logρ

(
A

(
u(1)

)) + m − k

mq2
logρ

(
A

(
u(2)

)) − log 64M4

nmq1q2

= λS(γ1) + (1 − λ)S(γ2) − log 64M4

nmq1q2
.

Taking the limit as n → ∞ we obtain the desired result. �
Lemma 6.6. The function S : [0,1] → R is continuous and concave.

Proof. By Lemma 6.5, the restriction of S to (0,1) ∩ Q is concave. Define a function
S̃ : [0,1] → R by

S̃(γ ) := lim
ε→0

sup
{
S(γ∗): γ∗ ∈ (0,1) ∩ Q and |γ∗ − γ | < ε

}
.

Note that S̃ is well defined since S is bounded by Lemma 6.4. We shall show in several stages
that S̃ is continuous, concave, and equal to S throughout [0,1].

We first shall show that S̃ is concave. Let γ1, γ2, λ ∈ [0,1], and choose sequences of rationals
(γ

(n)
1 ), (γ

(n)
2 ) and (λn) belonging to (0,1), converging respectively to γ1, γ2 and λ, such that

limn→∞ S(γ
(n)

) = S̃(γi) for i = 1,2. We then have
i
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S̃
(
λγ1 + (1 − λ)γ2

)
� lim sup

n→∞
S
(
λnγ

(n)
1 + (1 − λn)γ

(n)
2

)
� lim sup

n→∞
λnS

(
γ

(n)
1

) + (1 − λn)S
(
γ

(n)
2

)
= lim

n→∞λnS
(
γ

(n)
1

) + (1 − λn)S
(
γ

(n)
2

)
= λS̃(γ1) + (1 − λ)S̃(γ2)

using Lemma 6.5, and S̃ is concave as claimed. In particular the restriction of S̃ to the inter-
val (0,1) is continuous (see for example [43, Thm. 10.3]).

We next claim that S̃(γ ) = S(γ ) for rational values 0 < γ < 1. Given γ ∈ (0,1) ∩ Q, choose
a sequence of rationals (γn) such that γn → γ and S(γn) → S̃(γ ). If 0 < γ � γn for some n then

S(γ ) �
(

1 − γ

γn

)
S(0) + γ

γn

S(γn) = γ

γn

S(γn),

and similarly if γn < γ < 1 then

S(γ ) �
(

1 − γ

1 − γn

)
S(γn) +

(
γ − γn

1 − γn

)
S(1) �

(
1 − γ

1 − γn

)
S(γn).

It follows that by taking the limit as n → ∞ we may obtain S(γ ) � S̃(γ ), and the converse
inequality S̃(γ ) � S(γ ) is obvious from the definition of S̃. This proves the claim.

We now claim that limγ→0 S̃(γ ) = S̃(0) = 0 = S(0) and limγ→1 S̃(γ ) = S̃(1) = 0 = S(1).
Since S(γ ) = S(1 − γ ) for every γ ∈ [0,1] by Lemma 6.3(iv) it is sufficient to prove only the
first assertion. By Lemma 6.4 we have S(0) = infS = 0 and therefore inf S̃ � 0. Since S̃ is
concave there must exist δ > 0 such that the restriction of S̃ to [0, δ) is monotone, and so if we
can show that limn→∞ S̃(1/n) = 0 then the desired result will follow. By the preceding claim it is
sufficient to show that limn→∞ S(1/n) = 0. For each n � 1 it is easily verified using Lemma 4.7
that (0n1)∞ ∈ X1/n, so using Lemma 6.3(i) we may estimate

0 � S

(
1

n

)
= 1

n + 1
logρ

(
An

0A1
)
� 1

n + 1
log tr

(
An

0A1
) = log(n + 2)

n + 1

and therefore S(1/n) → 0. This completes the proof of the claim.
To complete the proof of the lemma it suffices to show that in fact S̃(γ ) = S(γ ) when γ is

irrational. Given γ ∈ [0,1] \ Q, let x ∈ Xγ and (pn/qn)
∞
n=1 be as given by Lemma 6.3(iii). Since

S̃ is continuous and agrees with S on the rationals, we may apply parts (iii) and (i) of Lemma 6.3
to obtain

S(γ ) = lim
n→∞

1

qn

logρ
(

A(x, qn)
) = lim

n→∞S

(
pn

qn

)
= lim

n→∞ S̃

(
pn

qn

)
= S̃(γ ),

and we conclude that S̃ ≡ S as desired. �
To conclude the proof of Proposition 6.1, we note that the function S being non-decreasing

on [0, 1
2 ] follows from its concavity and the fact that max S(γ ) = S(1/2).
γ∈[0,1/2]
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7. Proof of Theorem 2.3

Before commencing the proof of Theorem 2.3, we require the following simple lemma:

Lemma 7.1. For each α ∈ [0,1] we have �(α) � eS(γ )αγ for all γ ∈ [0,1]. If α ∈ (0,1] and
Xγ ∩ Zα �= ∅, then Xγ ⊆ Zα and �(α) = eS(γ )αγ .

Proof. In the case α = 0, an easy calculation using Proposition 6.1 and the definition of � shows
that �(α) = ρ(A0) = 1 = eS(0). It is therefore clear in this case that �(α) = eS(γ )αγ if and only
if γ = 0. For the rest of the proof let us fix α ∈ (0,1] and γ ∈ [0,1]. For each x ∈ Xγ , we have

log�(α) = lim sup
n→∞

sup

{
1

n
log

∣∣∣∣∣∣A(α)(z, n)
∣∣∣∣∣∣: z ∈ Σ

}
� lim

n→∞
1

n
log

∣∣∣∣∣∣A(α)(x, n)
∣∣∣∣∣∣

= lim
n→∞

(
1

n
log

∣∣∣∣∣∣A(x,n)
∣∣∣∣∣∣ + ς

(
πn(x)

)
logα

)
= S(γ ) + γ logα

so that �(α) � eS(γ )αγ . If x ∈ Xγ ∩ Zα then by the definition of Zα we have

S(γ ) + γ logα = lim
n→∞

1

n
log

∣∣∣∣∣∣A(α)(x, n)
∣∣∣∣∣∣ = lim

n→∞
1

n
log

∥∥A(α)(x, n)
∥∥

α
= log�(α)

so that �(α) = eS(γ )αγ , and since by Theorem 2.1 the restriction of T to Xγ is minimal it is clear
that Xγ ⊆ Zα . �

We also require the following lemma, which is an easy consequence of a result in [6]:

Lemma 7.2. Let α ∈ [0,1] and let u, v be nonempty finite words such that ρ(A(α)(u))1/|u| =
ρ(A(α)(v))1/|v| = �(α). Then ς(u) = ς(v).

Proof. In [6], Blondel, Theys and Vladimirov define two nonempty finite words u, v to be es-
sentially equal if there exist finite words a, b such that au∞ = bv∞. In particular it is clear that
if u and v are essentially equal then necessarily ς(u) = ς(v). Blondel et al. then associate to
each nonempty finite word ω the set Jω = {α ∈ [0,1]: A(α)(ω) = �(α)|ω|}. In [6, Lemma 4.4]
it is shown that if Ju ∩ Jv �= ∅ then u and v are essentially equal. We deduce from this that
if u and v are nonempty finite words which satisfy ρ(A(α)(u))1/|u| = ρ(A(α)(v))1/|v| = �(α) for
some fixed α ∈ [0,1], then α ∈ Ju ∩ Jv by definition; this implies that u and v are essentially
equal, and therefore ς(u) = ς(v). �

Now we are ready to prove Theorem 2.3.

1. Existence of r. We shall begin by showing that for each α ∈ (0,1] there exists a unique
γ ∈ [0,1] such that Xγ ∩ Zα �= ∅. Let α ∈ (0,1]. By Lemma 3.5 the set Zα is compact and
invariant under T , and this implies that it contains a recurrent point (see e.g. [27, p. 130]). It
follows by Proposition 5.5 that Zα contains a recurrent balanced infinite word, and hence there
exists γα ∈ [0,1] such that Xγα ∩ Zα �= ∅. By Lemma 7.1 it follows that eS(γα)αγα = �(α). We
claim that γα is the unique element of [0,1] with this property. By Lemma 7.1 this further implies
that Xγ ∩ Zα = ∅ when γ �= γα .
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To prove this claim, let us suppose that 0 � γ1 < γ2 � 1 with eS(γ1)αγ1 = eS(γ2)αγ2 = �(α),
and derive a contradiction. Choose λ1, λ2 ∈ [0,1] such that γ̃1 := λ1γ1 + (1 − λ1)γ2 and γ̃2 :=
λ2γ1 + (1−λ2)γ2 are both rational with γ1 � γ̃1 < γ̃2 � γ2. Applying Proposition 6.1 we deduce

S(γ̃i) + γ̃i logα = S
(
λiγ1 + (1 − λi)γ2

) + (
λiγ1 + (1 − λi)γ2

)
logα

� λi

(
S(γ1) + γ1 logα

) + (1 − λi)
(
S(γ2) + γ2 logα

) = log�(α),

and hence eS(γ̃i )αγ̃i � �(α), for i = 1,2. Applying Lemma 7.1 it follows that eS(γ̃1)αγ̃1 =
eS(γ̃2)αγ̃2 = �(α). Let x ∈ Xγ̃1 and y ∈ Xγ̃2 , and let u := πq1(x) and v := πq2(y). By Propo-
sition 6.1 we have �(α) = ρ(Aα(u))1/|u| = ρ(Aα(v))1/|v|, and since ς(u) = γ̃1 < γ̃2 = ς(v) this
contradicts Lemma 7.2. The claim is proved.

Let us define r(α) := γα for all α ∈ (0,1], and r(0) := 0. Note that �(0) = ρ(A0) = 1 = eS(0)

as a consequence of Lemma 3.1 and Proposition 6.1. It follows from this and the previous argu-
ments that for all α,γ ∈ [0,1] we have �(α) � eS(γ )αγ with equality if and only if γ = r(α), and
for all α ∈ (0,1] we have Xγ ∩ Zα �= ∅ precisely when γ = r(α), in which case Xr(α) ⊆ Zα .

2. Monotonicity of r. We now show that the function r thus defined is non-decreasing. Let us
suppose that α1, α2 ∈ [0,1] with r(α1) < r(α2); this implies in particular that α2 is nonzero.
By the preceding result we have �(α1) = eS(r(α1))α

r(α1)
1 > eS(r(α2))α

r(α2)
1 and similarly �(α2) =

eS(r(α2))α
r(α2)
2 > eS(r(α1))α

r(α1)
2 . Consequently α

r(α2)−r(α1)
1 < eS(r(α1))−S(r(α2)) < α

r(α2)−r(α1)
2 ,

and since r(α2) − r(α1) > 0 we deduce that α1 < α2. We conclude that if 0 � α1 < α2 � 1
then necessarily r(α1) � r(α2) and therefore r is non-decreasing as required.

3. Continuity of r. We may now show that r is continuous. Given α0 ∈ (0,1] let r− be the limit
of r(α) as α → α0 from the left, which exists since r is monotone. For every α ∈ (0,1] we have
�(α) = eS(r(α))αr(α). By Lemma 3.2 and Proposition 6.1, � and S are continuous, so taking
the left limit at α0 yields eS(r(α0))α

r(α0)
0 = �(α0) = eS(r−)α

r−
0 . Since r(α) is the unique value

for which this equality may hold we deduce that r(α0) = r− as required. Similarly for every
α0 ∈ [0,1) the limit of r(α) as α → α0 from the right is equal to r(α0), and we conclude that r

is continuous. Since r(0) = 0 and r(1) = 1/2 as a consequence of Proposition 6.1, and we have
shown that r is continuous and monotone, we deduce that r maps [0,1] surjectively onto [0, 1

2 ]
as claimed.

4. 1-ratio and characterisation of extremal orbits. It remains to show that for each α the
extremal orbits of Aα may be characterised in terms of Xr(α) in the manner described by the
theorem, and that r(α) is the unique optimal 1-ratio of Aα . In the case α = 0 it is obvious that
x ∈ Σ is weakly extremal if and only if it is strongly extremal, if and only if x = 0∞ ∈ X0, and in
this case the proof is then complete. For each α ∈ (0,1], Lemma 3.6 shows that every recurrent
strongly extremal infinite word belongs to Zα , and therefore belongs to Xr(α) by Proposition 5.5
and the uniqueness property of r(α).

To show that weakly extremal infinite words accumulate on Xr(α) in the desired manner we
require an additional claim. Given α ∈ (0,1], we assert that there is a unique T -invariant Borel
probability measure whose support is contained in Zα , and that this support is equal to Xr(α).
Indeed, let μr(α) be the unique T -invariant measure with support equal to Xr(α), the exis-
tence of which is given by Theorem 2.1. If ν is a T -invariant Borel probability measure with
suppν ⊆ Zα , define X̃ := {x ∈ suppν: x is recurrent}. It follows from the Poincaré recurrence
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theorem that X̃ is dense in suppν (see e.g. [27, Prop. 4.1.18]). By Proposition 5.5 every element
of X̃ is balanced, and since r(α) is the unique γ ∈ [0,1] for which Xγ ∩ Zα �= ∅, it follows
that X̃ ⊆ Xr(α). We conclude that suppν ⊆ Xr(α) and therefore ν = μr(α) since the restriction
of T to Xr(α) is known to be uniquely ergodic, which proves the claim. By Theorem 2.1 we have
μr(α)({x ∈ Σ : x1 = 1}) = r(α), and we may now apply Lemma 3.8 to see that if x ∈ Σ is weakly
extremal for Aα , then (1/n)

∑n−1
k=0 dist(x,Xr(α)) → 0 and ς(πn(x)) → r(α) as required.

It remains only to show that for each α ∈ (0,1], every x ∈ Xr(α) is strongly extremal in the
strict fashion described by (2.1). Given any compact set K ⊆ (0,1], choose an integer NK large
enough that NK > max{�r(α)−1�, �(1 − r(α))−1�} for every α ∈ K , and let MK > 1 be the
constant given by Lemma 3.3. Let α ∈ K and x ∈ Xr(α). By Lemma 4.1 we have 0NK ,1NK ⊀ x,
and since X ⊆ Zα we have ‖A(α)(x, n)‖α = �(α)n for all n � 1. Applying Lemma 5.1 and
Lemma 3.3,

�(α)n

2MKN2
K

= 1

2MKN2
K

∥∥A(α)(x, n)
∥∥

α
� 1

2N2
K

∣∣∣∣∣∣A(α)(x, n)
∣∣∣∣∣∣ � ρ

(
A(α)(x, n)

)
�

∣∣∣∣∣∣A(α)(x, n)
∣∣∣∣∣∣ � MK

∥∥A(α)(x, n)
∥∥

α
� MK�(α)n < 2MKN2

K�(α)n

so that (2.1) holds with CK := 2MKN2
K . In particular this shows that for each α ∈ (0,1], every

x ∈ Xr(α) is strongly extremal. The proof of the theorem is complete.

8. Proof of Theorem 1.1

Recall from Proposition 6.1 that there exists a continuous concave function S : [0,1] → R

such that for each γ ∈ [0,1],

S(γ ) = lim
n→∞

1

n
log

∣∣∣∣∣∣A(x,n)
∣∣∣∣∣∣ = lim

n→∞
1

n
logρ

(
A(x,n)

)
uniformly for x ∈ Xγ . We saw in the course of the proof of Theorem 2.3 that the function
r : [0,1] → [0, 1

2 ] is characterised by the fact that �(α) � eS(γ )αγ for all α,γ ∈ [0,1] with equal-
ity if and only if γ = r(α). Readers who have skipped the proof of Theorem 2.3 may note that this
characterisation can be deduced easily from the definition of S and the statement of Theorem 2.3.

The proof of Theorem 1.1 operates by exploiting the concavity of S and the above relationship
between S and r to compute a value α∗ ∈ [0,1] such that r(α∗) /∈ Q as the limit of a series of
approximations. We begin with a result from convex analysis.

Lemma 8.1. For each γ ∈ (0, 1
2 ), we have r−1(γ ) = {α0} with α0 ∈ (0,1] if and only if S is

differentiable at γ and S′(γ ) = − logα0.

See Fig. 1 for a graph of S(γ ) along with the tangent line of slope α∗.

Proof. Recall that if f : [a, b] → R is a concave function then η ∈ R is called a subgradient
of f at z ∈ [a, b] if f (y) � f (z) + η(y − z) for all y ∈ [a, b]. Furthermore, f is differentiable at
z ∈ (a, b) with f ′(z) = η if and only if η is the unique subgradient of f at z (see for example [43,
Thm. 25.1]). To prove the lemma it therefore suffices to show that for each γ ∈ (0, 1

2 ), η ∈ R is a
subgradient of S at γ if and only if e−η ∈ (0,1] and r(e−η) = γ .
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Fig. 1. Graph of S(γ ), and tangent line at γ ≈ 0.3819660 . . . of slope − log(0.74932 . . .).

Let us prove that this is the case. For every α,γ ∈ [0,1] we have eS(r(α))αr(α) � eS(γ )αγ

with equality if and only if γ = r(α). For each fixed α ∈ (0,1) it now follows by a simple
rearrangement that − logα is a subgradient of S at r(α). Conversely, suppose that η ∈ R is a
subgradient of S at some γ0 ∈ (0, 1

2 ). By Proposition 6.1, S is monotone increasing on the interval
[0, 1

2 ] and therefore we must have η � 0. Since η is a subgradient we have eS(γ0)−ηγ0 � eS(γ )−ηγ

for all γ ∈ [0,1], and since e−η ∈ (0,1] it follows that γ0 = r(e−η) as required. �
The following corollary is not needed in this paper but since it is straightforward, we believe

it’s worth mentioning.

Corollary 8.2. The function S is strictly concave on [0,1] and strictly increasing on [0,1/2].

Proof. If S were not strictly concave, there would be an interval (γ1, γ2) such that S would be
linear on this interval. Hence S′ would be constant on (γ1, γ2) which would mean, in view of the
previous lemma, that r−1(γ ) would be constant for all γ ∈ (γ1, γ2). This contradicts r being well
defined (Theorem 2.3), whence S is strictly concave.

Since S is non-decreasing, continuous and strictly concave on [0,1/2], it is strictly increas-
ing. �

Throughout this section we let φ := 1+√
5

2 denote the golden ratio. Recall that a real number γ

is said to be Liouville if for every k > 0 there exist integers p, q such that 0 < |γ −p/q| < 1/qk .
A classical theorem of Liouville asserts that no algebraic number can be Liouville (see, e.g., [21,
Thm. 191]). In particular φ−2 is not Liouville.

Lemma 8.3. Let γ ∈ [0, 1
2 ] and suppose that γ is an irrational number which is not Liouville.

Then there exists a unique α ∈ [0,1] such that r(α) = γ .

Proof. By Theorem 2.3 the function r is surjective and monotone, so the set r−1(γ ) is either a
point or an interval. To show that this set cannot be an interval, we shall suppose that there exist
α0 ∈ (0,1) and ε > 0 such that r(α) = γ for all α ∈ [e−εα0, e

εα0], and derive a contradiction.
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Since γ is irrational but not Liouville, we may choose an integer k > 0 such that for all
integers p, q with q nonzero we have |γ − p/q| > 1/qk . A theorem due to the second named
author [38, Thm. 1.2] implies that for every r > 0,

max
{
ρ
(

A(α0)(x,m)
) 1

m : x ∈ Σ and 1 � m � n
} = �(α0) + O

(
1

nr

)

in the limit as n → ∞. In particular it follows that if n is some sufficiently large integer, then
there exist an integer m and an infinite word x ∈ Σ such that 1 � m � n and

ρ
(

A(α0)(x,m)
)1/m

>

(
1 − 1

nk+1

)
�(α) > e−εn−k

�(α). (8.1)

Let ς(πm(x)) = p/q in least terms; we shall suppose firstly that p
q

− γ > 0, the opposite case

being similar. By hypothesis we have �(λα0) = eS(r(λα0))(λα0)
r(α0) = eS(γ )(λα0)

γ = λγ �(α0)

for every λ ∈ [e−ε, eε], and also p
q

− γ = |p
q

− γ | > q−k � n−k . Combining this with (8.1) and
Lemma 3.1 we obtain

�
(
eεα0

)
� ρ

(
A(eεα0)(x,m)

)1/m = eεp/qρ
(

A(α0)(x,m)
)1/m

> eεp/q−εn−k

�(α0) = eε(p/q−γ−n−k)�
(
eεα0

)
> �

(
eεα0

)
,

a contradiction. In the case p
q

− γ < 0 we may similarly arrive at the expression

�
(
e−εα0

)
> e−εp/q−εn−k

�(α0) = eε(γ−p/q−n−k)�
(
e−εα0

)
> �

(
e−εα0

)
which is also a contradiction. The proof is complete. �

Let (Fn)
∞
n=0 denote the Fibonacci sequence, which is defined by F0 := 0, F1 := 1 together

with the recurrence relation Fn+2 := Fn+1 + Fn, and recall that Fn = (φn − (−1/φ)n)/
√

5
for every n � 0. Define a sequence of integers (τn)

∞
n=0 by τ0 := 1, τ1 = τ2 := 2, and τn+1 :=

τnτn−1 − τn−2 for every n � 2. Finally, define a sequence of matrices (Bn)
∞
n=1 by B1 := A1,

B2 := A0 and Bn+1 := BnBn−1 for every n � 2. The key properties of Fn, Bn and τn are sum-
marised in the following three lemmas.

Lemma 8.4. For each n � 2 the identities S(Fn−2/Fn) = F−1
n logρ(Bn) and FnFn−1 −

Fn+1Fn−2 = (−1)n hold, and the value φ−2 lies strictly between Fn−2/Fn and Fn−1/Fn+1.

Proof. Define a sequence of finite words by u(1) := 1, u(2) := 0, and u(n+1) := u(n)u(n−1)

for every n � 2. Clearly we have A(u(n)) = Bn for all n � 1. A simple induction argu-
ment shows that each u(n) is a standard word in the sense defined in Lemma 4.3, and that
|u(n)| = Fn, |u(n)|1 = Fn−2 for every n � 2. By Lemma 4.3 and Lemma 6.3(i) we therefore
have [u(n)]∞ ∈ XFn−2/Fn and consequently S(Fn−2/Fn) = F−1

n logρ(A(u(n))) = F−1
n logρ(Bn)

for every n � 2 as required. The remaining parts of the lemma follow from the fact that the
fractions Fn−2/Fn are precisely the continued fraction convergents of φ−2. Alternatively these
results can be derived from the explicit formula for (Fn). �
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Lemma 8.5. For each n � 1 we have trBn = τn.

Proof. By direct evaluation the reader may obtain trB1 = trB2 = 2 = τ1 = τ2 and trB3 = 3 = τ3,
so it suffices to show that the sequence (trBn) satisfies the same recurrence relation as (τn) for
all n � 3. Let us write

Bn =
(

an bn

cn dn

)

for each n � 1. Notice that we have andn − bncn = detBn = 1 for every n, and for each n � 2
the definition Bn+1 := BnBn−1 implies the identity

(
an+1 bn+1
cn+1 dn+1

)
=

(
anan−1 + bncn−1 anbn−1 + bndn−1
cnan−1 + dncn−1 cnbn−1 + dndn−1

)
.

Fix any n � 3. By definition we have

trBn+1 = an+1 + dn+1 = anan−1 + bncn−1 + cnbn−1 + dndn−1

and

(trBn)(trBn−1) = anan−1 + andn−1 + dnan−1 + dndn−1,

so we may compute

(trBn)(trBn−1) − trBn+1 = andn−1 + dnan−1 − bncn−1 − cnbn−1

= dn−1(an−1an−2 + bn−1cn−2) + an−1(cn−1bn−2 + dn−1dn−2)

− cn−1(an−1bn−2 + bn−1dn−2) − bn−1(cn−1an−2 + dn−1cn−2)

= an−2(an−1dn−1 − bn−1cn−1) + dn−2(an−1dn−1 − bn−1cn−1)

= an−2 + dn−2 = trBn−2,

which establishes the required recurrence relation. �
Lemma 8.6. There exist constants δ1, δ2 > 0 such that

∣∣log τn − logρ(Bn)
∣∣ = O

(
e−δ1Fn

)
and ∣∣∣∣log

(
1 − τn−1

τn+1τn

)∣∣∣∣ = O
(
e−δ2Fn

)
in the limit as n → ∞.
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Proof. It is clear that Fn−2/Fn → φ−2 using the formula for Fn, and since S is continuous it
follows via Lemma 8.4 that F−1

n logρ(Bn) → S(φ−2) > 0. Since detBn = 1 and Bn is non-
negative, the eigenvalues of Bn are ρ(Bn) and ρ(Bn)

−1 respectively, so for each n � 1 we have
τn = trBn = ρ(Bn) + ρ(Bn)

−1, where we have used Lemma 8.5. Hence,

0 � log τn − logρ(Bn) = log

(
ρ(Bn) + ρ(Bn)

−1

ρ(Bn)

)
� 1

ρ(Bn)2
= O

(
e−FnS(φ−2)

)
,

where we have used the elementary inequality log(1 + x) � x which holds for all real x, and this
proves the first part of the lemma.

It follows from this result that limn→∞ F−1
n log τn = S(φ−2). We may therefore apply this to

obtain

lim
n→∞

1

Fn

log

(
τn−1

τn+1τn

)
= lim

n→∞

(
1

Fn

log τn−1 − 1

Fn

log τn+1 − 1

Fn

log τn

)

= S
(
φ−2)(φ−1 − φ − 1

) = −2S
(
φ−2) < 0,

from which the second part of the lemma follows easily. �
Proof of Theorem 1.1. We will show that S′(φ−2) = − logα∗, where α∗ satisfies the product
and limit formulae given in the statement of the theorem. By Lemma 8.1 this implies that r(α∗) =
φ−2 /∈ Q, and by Theorem 2.3 this implies that Aα∗ does not satisfy the finiteness property.

By Lemma 8.1 together with Lemma 8.3, the derivative S′(φ−2) exists and is finite. Using
Lemmas 8.4 and 8.6, we may now compute

S′(φ−2) = lim
n→∞

S(
Fn−1
Fn+1

) − S(
Fn−2
Fn

)

Fn−1
Fn+1

− Fn−2
Fn

= lim
n→∞

1
Fn+1

logρ(Bn+1) − 1
Fn

logρ(Bn)

Fn−1
Fn+1

− Fn−2
Fn

= lim
n→∞

Fn logρ(Bn+1) − Fn+1 logρ(Bn)

FnFn−1 − Fn+1Fn−2

= lim
n→∞(−1)n

(
Fn logρ(Bn+1) − Fn+1 logρ(Bn)

)
= lim

n→∞(−1)n(Fn log τn+1 − Fn+1 log τn).

Let us define

α∗ := e−S′(φ−2) = lim
n→∞

(
τ

Fn+1
n

τ
Fn

n+1

)(−1)n

which yields the first of the two expressions for α∗. We shall derive the second expression. Let us
write αn := (τ

Fn+1
n /τ

Fn

n+1)
(−1)n for each n � 1 so that α∗ = limn→∞ αn. Applying the recurrence

relations for (Fn) and (τn) once more, we obtain for each n � 1
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αn+1

αn

= (τ
Fn+2
n+1 /τ

Fn+1
n+2 )(−1)n+1

(τ
Fn+1
n /τ

Fn

n+1)
(−1)n

=
(

τ
Fn+1
n+2 τ

Fn

n+1

τ
Fn+2
n+1 τ

Fn+1
n

)(−1)n

=
(

τn+2

τn+1τn

)(−1)nFn+1

=
(

τn+1τn − τn−1

τn+1τn

)(−1)nFn+1

=
(

1 − τn−1

τn+1τn

)(−1)nFn+1

.

Since τ1 = τ2 = 2 and F1 = F2 = 1 we have α1 = 1. Using the formula above we may now
obtain for each N � 2

αN = α1

N−1∏
n=1

αn+1

αn

=
N−1∏
n=1

(
1 − τn−1

τn+1τn

)(−1)nFn+1

.

It follows from Lemma 8.6 that these partial products converge unconditionally in the limit
N → ∞, and taking this limit we obtain the desired infinite product expression for α∗. �
Remark 8.7. The proof of Theorem 1.1 may be extended to give an explicit estimate for the
difference |α∗ − αN | as follows. Note that for each n � 3 we have 1/3 � Fn−2/Fn � 1/2 and
therefore, by Proposition 6.1,

F−1
n log τn � F−1

n logρ(Bn) = S

(
Fn−2

Fn

)

� S

(
1

3

)
= logρ(A2

0A1)

3
= log(2 + √

3 )

3
.

On the other hand, if we define a sequence (τ̃n)
∞
n=1 by τ̃1 = τ̃2 = τ1 = τ2 = 2 and τ̃n+1 := τ̃nτ̃n−1

for n � 3, then it is clear that τn � τ̃n = 2Fn for every n � 1. Combining these estimates yields

|logαN − logα∗| �
∞∑

n=N

Fn+1

∣∣∣∣log

(
1 − τn−1

τn+1τn

)∣∣∣∣ � 2
∞∑

n=N

Fn+1τn−1

τn+1τn

� 2
∞∑

n=N

Fn+1
2Fn−1

(2 + √
3 )Fn+2/3

< C1

∞∑
n=N

(
φn+1 + 1

)
θφn

� 120
∞∑

n=N

(
3

4

)φn

< 780

(
3

4

)φN

for all N � 3, where

C1 := 4(2 + √
3 )1/3

√
5

= 2.77475 . . . , θ :=
(

8

(2 + √
3 )φ

3

) 1
3φ

√
5 = 0.72441 . . . .

It follows in particular that the value α13 := τ
F13
14 /τ

F14
13 satisfies |α∗ − α13| < 10−62, which yields

the approximation given in the introduction.
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9. Further questions

1. Is it true that α∗ is irrational or transcendental? The fast rate of convergence of the sequence

(
τ

Fn+1
n

τ
Fn
n+1

)(−1)n suggests that α∗ is probably irrational; however, perhaps unexpectedly, this rate

itself is not fast enough to claim this. Roughly, to apply known results (see, e.g., [39]), we need τn

to grow like ABn
with A > 1 and B > 2. Then Theorem 1 from the aforementioned paper would

apply. In our setting however we “only” have B = φ < 2.
A good illustration of the tightness of the quoted result is the famous Cantor infinite product

∞∏
n=0

(
1 + 1

22n

)

equal to 2, despite its “superfast” convergence rate. However, a similar product

∞∏
n=0

(
1 + 1

23n

)

is indeed irrational. We conjecture that α∗∗ = r−1(1−1/
√

2 ) (which corresponds to the substitu-
tion 0 → 001, 1 → 0 similarly to α∗ corresponding to the Fibonacci substitution 0 → 01, 1 → 0)
is irrational.

2. Is r−1(γ ) always a point when γ is irrational? We know this to be true if γ is not Liou-
ville (i.e., for all irrational γ except a set of zero Hausdorff dimension) but the method used in
Lemma 8.3 is somewhat limited. We hope to close this gap in a follow-up paper.

3. If the answer to the previous question is yes, then is it true that r−1(γ ) /∈ Q whenever γ /∈ Q?
This question is pertinent to a conjecture of Blondel and Jungers, which says that the finiteness
property holds for all matrices with rational entries [26]. Our model should not, therefore, yield
a counterexample to this conjecture.

4. Is r−1(γ ) always an interval with nonempty interior when γ is rational? It was shown by
the fourth named author in his thesis [47] that r−1( 1

2 ) = [ 4
5 ,1], and all other known examples

indicate that the answer is positive. However proving this for a general γ ∈ Q seems like a
difficult question.

5. Does the set of all α such that r(α) /∈ Q have zero measure? Does it have zero Hausdorff
dimension? Analogues of these properties are claimed for Bousch–Mairesse’s example but proofs
are not given [8].

We conjecture that the graph of r is a devil’s staircase with the plateau regions corresponding
to {γ : r(γ ) ∈ Q} – see Fig. 2.

Remark 9.1. Between the time of submission and present, some progress has been made on
some of the questions above. Interested readers are welcome to contact the authors above to find
out the current progress on these problems.
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Fig. 2. Graph of r(γ ).
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