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Abstract

Using a technique associated with measures of noncompactness, we prove the existence of nonde-
creasing solutions of an integral equation of Volterra typ€i@, 1].
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Integral equations arise naturally in applications of real world problems [1,2,6,7,9,11].
The theory of integral equations has been well-developed with the help of various tools
from functional analysis, topology and fixed-point theory.

The aim of this paper is to investigate the existence of nondecreasing solutions of an in-
tegral equation of Volterra type with supremum. Equations of such kind have been studied
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in other papers ([8,10], among others) and in the monograph [3]. These equations can be
considered with connection to the following Cauchy problem:

x'(t) = f(t) - max|x(z)], x(0)=0.
[0,¢]

2. Notation and auxiliary facts

AssumekE is a real Banach space with nofiwn| and zero element 0. Denote Byx, r)
the closed ball centeredatand with radiug and byB, the ballB(0, r). If X is a nonempty
subset ofE we denote byX, ConvX the closure and the closed convex closurexof
respectively. The symbolsX and X + Y denote the usual algebraic operations on sets.
Finally, let us denote btz the family of nonempty bounded subsetsfbind byMtg its
subfamily consisting of all relatively compact sets.

Definition 1 (see [4]) A function u: 9t — [0, 00) is said to be aneasure of noncom-
pactnessn the spacer if it satisfies the following conditions:

(1) The family kew = {X € Mg: w(X) =0} is nonempty and ker C Ng.

@) X CY = puX) < p®).

(3) u(X) = pn(ConvX) = u(X).

4) pAX + A —=1Y) <Aun(X)+ Q- 1) forr [0,1].

(5) If {X,}, is a sequence of closed set9f: such thatX,,1 C X, forn=1,2,...and
if lim 00 £ (X,,) =0, then the seK o =(,=1 X, iS nonempty.

The family keru described above is calldtie kernel of the measure of noncompact-
nessu. Further facts concerning measures of noncompactness and their properties may be
found in [4].

Now, let us suppose thatf is a nonempty subset of a Banach sp#@cand the ope-
rator T : M — E is continuous and transforms bounded sets onto bounded ones. We say
that T satisfies the Darbo condition (with constang 0) with respect to a measure of
noncompactness if for any bounded subset of M we have

(T X) < kp(X).

If T satisfies the Darbo condition with< 1, then it is called a contraction with respect
to .
For our purpose we will only need the following fixed point theorem [4].

Theorem 2. Let Q be a nonempty, bounded, closed and convex subset of the Banach
spaceE and . a measure of noncompactnesskinLet F: Q — Q be a contraction with
respect tou. ThenF has a fixed point in the s&.

Remark 3. Under the assumptions of the above theorem it can be shown that the get Fix
of fixed points of F belonging toQ is a member of kem.
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Proof. u(FixF) = w(F(FIXF)) < ku(FixF) and as k < 1, we deduce that
wFixF)=0. O

Let C[O0, 1] denote the space of all real functions defined and continuous on the inter-
val [0, 1]. For convenience, we writé = [0, 1] and C(I) = CIO0, 1]. The spaceC (/) is
furnished with standard norm

lxl =max{|x@®)|: t e I}.

Next, we recall the definition of a measure of noncompactne€sin which will be used
in Section 3. This measure was introduced and studied in [5].

Fix a nonempty and bounded sub&ebf C(I). Fore > 0 andx € X denote byw(x, ¢)
the modulus of continuity af defined by

w(x,e) :Sup{|x(t) —x(s)‘: t,sel, |t —s| < 8}.
Furthermore, put
w(X, &) =supfw(x,e): x€ X} and wo(X)= lim w(X, &).
Next, let us define the following quantities:
i(x)= Sup{‘x(s) —x(t)| - [x(s) - x(t)]: t,sel, t< s} and
i(X)=supli(x): x € X}.

Observe that(X) = 0 if and only if all functions belonging t& are nondecreasing ah
Finally, let

w(X) = wo(X) +i(X). 1)

It can be shown [5] that the functiqmis a measure of noncompactness in the sgade.
Moreover, the kernel ket consists of all setX belonging tdtc(;) such that all functions
from X are equicontinuous and nondecreasing on the intdrval

3. Main result

In this section we consider the following nonlinear integral equation of Volterra type:
t
x(t) :a(t)+(Tx)(t)/q)(t,s)[cr)nz(i))(]|x(r)|ds, tel. (2)
L1 (s
0

The functionsa(t), r(s), ¢(t,s) and (Tx)(¢t) are given whilex = x(¢) is an unknown
function.
We will study this equation under the following assumptions:

(i) a € C(I) and it is nondecreasing and nonnegative on the intdrval
(i) ¢:1 xI— R, iscontinuous o x I and the function — ¢(z, s) is nondecreasing
for eachs € I.
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(i) »:1 — I is a continuous and nondecreasing function.

(iv) The operatoiT : C(I) — C(I) is continuous and satisfies the Darbo condition for the
measure of noncompactnegsgdefined in (1)) with a constar®. Moreover,T is a
positive operator, i.eTx > 0if x > 0.

(v) There exist nonnegative constantandd such that

ITx|| <c+d|x]|
foreachx e C(/) andr € I.
(vi) There existsg > 0 such that|a| + (¢ + dro) - ||¢]| - ro < ro and Q| ¢|iro < 1.

Before we formulate our main result we will prove the following lemmas which be needed
further on.

Lemma 1. Suppose that € C(I) and we define

(Gx)(t) = max |x(¢)| forrel.
[0, ()]
ThenGx € C(1).

Proof. Without loss of generality we can assume that 0. We will prove that fore > O,
w(Gx,e) <w(xor,e).

Suppose contrary. This means that there exist € 1, t1 < t2, t2 — 11 < € such that

w(xor,e) < [(Gx)(t2) — (Gx)(11)]. (3)
As Gx is a nondecreasing function, we have
0 < (Gx)(12) — (Gx)(11). 4)

Further, let us find & 12 < r(¢2) with the property(Gx)(t2) = x(12).
Taking into account the inequality (4)(r1) < t2. In virtue of the continuity of the
functionr, 2 = r(p2), and we can deduce that

(Gx)(t2) — (Gx)(11) = x(12) — (Gx)(t1) < x(r(p2)) — x(r(t1))
= (xor)(p2) — (x or)(t1)
andaspy —11 <2 —11<¢,
(Gx)(12) — (Gx)(11) < (x or)(p2) — (x or)(t1) Sw(xor,e).

Thus we arrive at a contradiction.
Thus, fore > 0,

w(Gx,e) <w(xor,e)
and asv or € C(I), the proof is complete. O

Lemma 2. Let (x,), x € C(I). Suppose that, — x in C(I). ThenGx,, — Gx uniformly
onl.
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Proof. Note that forr € I andy € C (1),

(GY)(@®) = llylo.r@nll,

wherey|o, 1)) denotes the restriction of the functignon the intervallQ, r(z)] and the
norm is considered in the spa€&[0, r(¢)]). In view of this fact, we can deduce

Gxn — G|l = sup(Gx,) (1) — (Gx) ()| = sugllxnlio,rwnll — xli0,rmll]
tel tel
< sup||xn — O ljor 1| < llxn — x|
tel
As x,, — x in C(I), we obtain the desired resulto
Now we present our main result.

Theorem 3. Under assumption§)—(vi), Eq.(2) has at least one solutian = x(¢) which
belongs to the spadg (/) and is nondecreasing on the interval

Proof. Let us consider two operators, B defined on the spaaé(/) by

t
(Ax)(t):a(t)+(Tx)(t)/¢(t,s)[5n?))(] |x(v)|ds and
4 Lr (s

t
(Bx)(t) = O[¢(r,s)[c@%>)<] |x(1)| ds.

Firstly, we prove that ift € C(I), thenAx € C(I). To do this it is sufficient to show
that if x e C(1), thenBx € C(I). Fix e > 0, letx € C(I) andtq, t2 € I such that; <,
andr — 1 <e. Then

t2 11
|(Bx)(12) — (Bx)(1)| = / ¢ (12, 5) max |x(v)|ds — / $(11,5) max |x(v)|ds
0 0

N

t2 2
t2,5) max |x(t ds—/ t1,s) max |x(t)|ds
0/(15(2 ) max |+ o ) max |x(o)

+

12 "
/¢(t1,S) max |X(r)|ds—/¢(t1,s) max |x(t)|ds
(0.7 ()] [0,r(s)]

0 0
7]

</|¢(l2,s)—¢(t1,s)|- max |x(t)|ds
9 [0,r(s)]

2
+/|¢(t1,s)|- max |x(t)|ds.
2 [0,7(s)]
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Therefore, if we denote
wg (e, ) =sup||p(t,s) — ', 9)|: 1./, s € T and|t —1'| < &},

we obtain that

|(Bx)(t2) — (Bx)(t1)| < wg (e, ) - x|l - t2+ @1l - x| - (12 — 12)

we (e, ) - x4+ lpll - llx] - &.

Now, in virtue of the uniform continuity of the functiop on I x I we have that
we (e, -) = 0 ase — 0. ThusBx € C(I), and consequentlyx € C(I).
Moreover, for each € I we have

NN

t
|(Ax) ()| = |a(®) + (Tx)(1) / ¢(r,s)[m>)<]|x(f)|ds
0 L7 (s
t
< lall + (c+d||x||)/ FIGRIE max |x(0)| ds
0 LT (s
<llall + (e +dlixl) - llgll - l1x]I.
Hence,

[Ax] < llall + (¢ +dlixl) - @l - llx]I.
Thus, if || x|| < ro we obtain from assumption (vi) that
lAx|| < llall + (¢ +dro) - [|@ll - ro < ro.

Consequently, the operatdrtransforms the balB,, = B(0, ro) into itself.
In the sequel we consider the operatoon the subsij0 of the ball B,, defined by

ng: {x € By x(t) >0forz e I}.

Obviously, the seBrJg is nonempty, bounded, closed and convex. On the other hand, in
view of our assumptions (i), (iii) and (v) i € B,f, thenAx € B} .

Next, we prove thatd is continuous orB;g. To do this, let{x,} be a sequence ing
such thatr,, — x and we will prove thatAx,, — Ax.

In fact, for eachr € I we have

| (Axa) (1) = (Ax) (1)

t t
= (Txn)(t)0/¢(t,s)[cr)g%>)<]|xn(r)|ds—(Tx)(t)ofd)(t,s) nax fx()| ds

N

t t
(Txn)(t)/qb(t,s) max |x,,(1')|ds—(Tx)(t)/qb(t,s) max |x,(t)|ds
) [0.r (5)] ) [0,r(5)]



310 J. Caballero et al. / J. Math. Anal. Appl. 305 (2005) 304-315

+

t t
(Tx)(t)fd)(t,s) max |xn(r)|ds—(Tx)(t)/¢(t,s) max |x(t)|ds
) (0.r(5)] ) [0.r(5)]

t
< |(Txn) (1) = (TX)(I)|/|¢>(LS)| -[m%]|x’z(f)|ds
0

t
+ |[(Tx) (1) / IGRIE ‘ max |x,(r)| — max !x(t)”ds.
; [0,r(s)] [0,r(s)]

In virtue of Lemma 2:

Ax, — Ax|| < |Txp — Tx|l - @1l - ro+ (¢ +dro) - 1]l - llxn — x| 5)
As T is a continuous operator, there exisfse N such that fomn > n1 we have
&
1Txp —Tx|| < 57—
" 2|1l - ro

Moreover, we can find» € N such that for alk > no we have thafjx,, —x|| <
Finally, if we taken > max{n1, n»}, from (5) we get

[Ax, — Ax|[ <e.

&
2| ¢l (c+dro) *

This fact proves that is continuous inB;t .

In the sequel we prove that the operatosatisfies the Darbo condition with respect to
the measure of noncompactness introduced in Section 2.

Let X be a nonempty subset B[;g Fix ¢ > 0 andr, t, € I with |z, — 11| < e. Without
loss of generality we may assume tha& 7, then

|(Ax)(t2) — (Ax)(11)|

173
a(tz) + (T)(12) / B(t2.5) max [x(0)|ds
J ,

1
—a(t) — (Tx) (1) / B(11,5) max |x(0)|ds
, (s

< la(tz) —a(ty)| +

2
(Tx)(tz)/¢>(t2,s) max |x(t)|ds
2 (0.7 (s)]

2
—(Tx)(tl)/qb(tz,s) max |x(t)|ds
J [0,7(s)]

+

7] 2
(Tx)(tl)/¢(t2,s) max |x(r)|ds—(Tx)(tl)/qb(tl,s) max |x(t)|ds
) [0.r(s5)] ) [0.r(s)]
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+

7] 1
(Tx)(tl)/¢(t1,s) max \x(r)|ds—(Tx)(tl)/qs(tl,s) max |x(t)|ds
[0,r(s)] [0,r(s)]
0 0
7]
Sw(a,8)+|(Tx)(t2)—(Tx)(t1)|/|¢(t2,S)|-[(gnr?g)(] |x(0)|ds
) ,
7]
+ (T x) (1) | / |p(12,9) — p(11,5)] - nax |x(z)|ds
0

7]
)| [ o] max [x(o]ds
o [0,7(s)]

<wa,e) +w(Tx,e)- o]l -ro-t2+ (c+dro) - wy(e,-) -ro- 12
+ (c+dro) - l¢|l - ro- (12 —11)
<w(a, &) +w(Tx, &) ||l - ro+ (c+dro) - ro- (we(e, ) + - 4l
Hence,
w(Ax, &) <w(a, &) + w(Tx, &) - [Pl - ro+ (c +dro) -ro- (wg(e, ) + - l|9]l).
Consequently,
w(AX, &) <w(a, &) +w(TX,e) - |$] - ro+ (c +dro)ro(we(e, ) +&- D]

From the uniform continuity of the functio# on the setl x I and the continuity of the
functiona on I we have thawg (¢, -) — 0 andw(a, £) — 0 ase — 0. So, applying limit
whene — 0, we obtain

wo(AX) < [|@l - ro - wo(T X). (6)

Now, we study the term related to the monotonicity.
Fix x € X andr, 12 € I with 11 < r2. Then, taking into account our assumptions, we
have

[(Ax)(12) — (Ax) (1) | — ((Ax)(r2) — (Ax)(12))

7]
a(t2) + (Tx)(12) / B(t2.5) max [x(v)| ds — alry)
J !

1
= (Tx)(r1) f P11, 5) Mmax [x(0)| ds
0

2
— ((a(m) + (Tx)(12) / §(12.5) max |x(v)| ds — a(t1)
0 L1 (s
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&%
—(Tx)(tl)/qb(tl,s) max |x(r)}ds>)
J [0,7(s)]

<[lar2) —a(ty)| — (a(r2) — a(1))]

+

o 1
(Tx)(tz)/d)(tz,s) max \x(r)yds—(Tx)(tl)/qs(zl,s) max |x(t)|ds
J [0,r(s)] 2 [0,r(s)]

7] 1
- ((Tx)(tz)/¢(t2,s) max |x(t)|ds — (Tx)(tl)/¢(t1,s) max |x(r)|ds>
) [0.r(s5)] ) [0.r(5)]

<

t2 2
(Tx)(tz)0/¢(tz,s)[cr;1%>)<] Ix(r)ids—(Tx)(t1)0/¢(tz,s)[c%>)<] |x(0)]ds

+

12 1
(Tx)(12) / B(12,5) max |x(x)|ds = (Tx) (1) / #(11,5) max |x(o)|ds
0 ’ 0 v

2] 2
- ((Tx)(tg)/¢(t2,s) max |x(t)|ds — (Tx)(tl)/¢(t2,s) max |x(r)|ds)
[0,r(s)] [0, (s)]
0 0
2] 41
- ((Tx)(tl)/¢(t2,s) max |x(t)|ds — (Tx)(tl)/d)(tl,s) max \x(r)yds)
[0,r(s)] [0, (s)]
0 0
2
<[[(T0)(r2) = (T)()| = (T2 (12) — (Tx)(10)) ] / ¢ (2. 5) max |x(v)| ds
0 L7 (s

+ (TX)(tl)[

[7) 1
t2,5) max |x(t ds—/ t1,s) max |x(z)|ds
0/ $lt2.5) max |x(c) [ots ) max |x()

12 1
- (!¢(t2,5)[&%§]|x(f)|ds—O/¢(t1,s)lcm%]|x(r)|ds>:|. 7

Now, we will prove that

2] I
/¢(t2,s) max |x(t)|ds —/(b(tl,s) max |x(t)|ds > 0.
5 (0.7 ()] 2 [0.r(s)]
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In fact, notice

17} 1
/¢)(t2,s) max |x(r)|ds—/¢(t1,s) max |x(t)|ds
[0.r(s)] [0.r(s)]
0 0
[7) 2
=/¢(t2,s) max |x(r)|ds—/¢(r1,s) max |x(t)|ds
, [0.r(s)] , [0.r(s)]

[7) L4
+/¢(zl,s) max }x(r)|ds—/¢(r1,s) max |x(t)|ds
) [0.r(s5)] ) [0.r(s5)]

[7) 7]
= t2,5) — P(t1, max d+/ t1,5) max ds.
/(¢(2 ) — ¢ (11, 5)) [O,r(s)]|X(t)| s ¢ (11 S)[O,r(s)]|X(T)| s
0 n
Sincet — ¢ (¢, s) is nondecreasing, we have that, s) > ¢ (11, s), then
12
l/@@zﬂ_¢0Lﬂ)quMﬂhh>0. (8)
[0,7(s)]
0
On the other hand, as> 0 and may, () |x(t)| > 0, then

2
/qb(tl,s) max |x(t)|ds > 0. 9)
[0,r(s)]
a1
Finally, (8) and (9) imply
[7) 1
t2,s) max ds — t1,s) max ds > 0.
0/ ¢ (12, 5) max x(7)| ds 0/ ¢ (11, 5) max x(v)| ds

This together with (7) yields
| (Ax)(12) — (Ax)(11)| = ((Ax)(t2) — (Ax)(12))

2]
<[|[(Tx) () — (Tx)(11)| = (Tx)(12) — (TX)(tl))]faﬁ(tz, s) [31?3)(] |x(z)|ds
0

<ol -ro-i(Tx).
Therefore,
i(Ax) < |l -ro-i(Tx),
consequently,
i(AX) < ¢l -ro-i(TX). (10)
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Finally, combining (6) and (10), we get

p(AX) = wo(AX) +i(AX) < |[¢ll -ro- (T X) <@l -ro- Q- (X).

Since||¢|| - ro- Q < 1 (assumption (vi)), Theorem 1 guarantees the existence of a solution
of (2). O

4. Examples

In this section we present examples where existence can be established using Theo-
rem 2.

Example 1. Consider
t

1
x(t) =12+ — 5 - max |x(t)|ds. (11)
2e , 1+ 5% [0,r(s)]

et

Let a(r) = 2. This function satisfies assumption (i) afi@| = 1. In this casep(z, s) =

ftﬂ which satisfies assumption (ii) afjep|| = e. Letr : I — I be given byr(s) = /s and

it satisfies assumption (iii). LatT'x)(¢) = 2—1e and this operator satisfies (iv) and (v) with
c=2,d=0andQ =0.
In this case the first inequality of assumption (vi) has the form

1+ ! <
_.e.r\r
2e

and it admitsg = 2 as a positive solution. Moreover, &= 0, Q||¢|lro < 1.
Theorem 2 guarantees that (11) has a hondecreasing solution.

Example 2. Consider the integral equation
1 t
x(t) =13+ —x(t)/ln(1+«/t+s) max |x(t)] ds,
o 0 [0,4/5]

wherea > 0.

In this examplez(r) = 13 and this function verifies assumption (i) afie| = 1. More-
over,¢(t,s) = In(1+ /7 + s) satisfies (i) and ¢ || = In(1++/2). The functiorr is defined
by r(s) = /s and satisfies hypothesis (iii). The operaldts defined by(7x)(¢) = %x(t)
and satisfies (iv) withQ = 0_1[ andc =0 andd = 1. In this case the first inequality of

assumption (vi) has the form ¢
1
14+ =r°In(1+v2) < .
o

This inequality admits to

a—\/a2—4a|n(1+ﬁ)
0= 2In(1+v2)
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as a positive solution if > 4 In(1+ +/2). Moreover, as

o —+/a? —daln(1+2)
\/ <}<1,

2In(1++/2) 2
Theorem 2 guarantees that our equation has a hondecreasing solution.

E|n(1+ V2).
o
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