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Abstract

Using a technique associated with measures of noncompactness, we prove the existence o
creasing solutions of an integral equation of Volterra type inC[0,1].
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Integral equations arise naturally in applications of real world problems [1,2,6,7,9
The theory of integral equations has been well-developed with the help of various
from functional analysis, topology and fixed-point theory.

The aim of this paper is to investigate the existence of nondecreasing solutions of
tegral equation of Volterra type with supremum. Equations of such kind have been s
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in other papers ([8,10], among others) and in the monograph [3]. These equations
considered with connection to the following Cauchy problem:

x′(t) = f (t) · max
[0,t]

∣∣x(τ)
∣∣, x(0) = 0.

2. Notation and auxiliary facts

AssumeE is a real Banach space with norm‖ · ‖ and zero element 0. Denote byB(x, r)

the closed ball centered atx and with radiusr and byBr the ballB(0, r). If X is a nonempty
subset ofE we denote byX̄, ConvX the closure and the closed convex closure ofX,
respectively. The symbolsλX andX + Y denote the usual algebraic operations on s
Finally, let us denote byME the family of nonempty bounded subsets ofE and byNE its
subfamily consisting of all relatively compact sets.

Definition 1 (see [4]). A function µ :ME → [0,∞) is said to be ameasure of noncom
pactnessin the spaceE if it satisfies the following conditions:

(1) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .
(2) X ⊂ Y ⇒ µ(X) � µ(Y ).
(3) µ(X̄) = µ(ConvX) = µ(X).
(4) µ(λX + (1− λ)Y ) � λµ(X) + (1− λ)µ(Y ) for λ ∈ [0,1].
(5) If {Xn}n is a sequence of closed sets ofME such thatXn+1 ⊂ Xn for n = 1,2, . . . and

if lim n→∞ µ(Xn) = 0, then the setX∞ = ⋂∞
n=1 Xn is nonempty.

The family kerµ described above is calledthe kernel of the measure of noncompa
nessµ. Further facts concerning measures of noncompactness and their properties
found in [4].

Now, let us suppose thatM is a nonempty subset of a Banach spaceE and the ope-
rator T :M → E is continuous and transforms bounded sets onto bounded ones. W
that T satisfies the Darbo condition (with constantk � 0) with respect to a measure
noncompactnessµ if for any bounded subsetX of M we have

µ(T X) � kµ(X).

If T satisfies the Darbo condition withk < 1, then it is called a contraction with respe
to µ.

For our purpose we will only need the following fixed point theorem [4].

Theorem 2. Let Q be a nonempty, bounded, closed and convex subset of the B
spaceE andµ a measure of noncompactness inE. LetF :Q → Q be a contraction with
respect toµ. ThenF has a fixed point in the setQ.

Remark 3. Under the assumptions of the above theorem it can be shown that the seF
of fixed points ofF belonging toQ is a member of kerµ.
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Proof. µ(FixF) = µ(F(FixF)) < kµ(FixF) and as k < 1, we deduce tha
µ(FixF) = 0. �

Let C[0,1] denote the space of all real functions defined and continuous on the
val [0,1]. For convenience, we writeI = [0,1] andC(I) = C[0,1]. The spaceC(I) is
furnished with standard norm

‖x‖ = max
{∣∣x(t)

∣∣: t ∈ I
}
.

Next, we recall the definition of a measure of noncompactness inC(I) which will be used
in Section 3. This measure was introduced and studied in [5].

Fix a nonempty and bounded subsetX of C(I). Forε > 0 andx ∈ X denote byw(x, ε)

the modulus of continuity ofx defined by

w(x, ε) = sup
{∣∣x(t) − x(s)

∣∣: t, s ∈ I, |t − s| � ε
}
.

Furthermore, put

w(X,ε) = sup
{
w(x, ε): x ∈ X

}
and w0(X) = lim

ε→0
w(X,ε).

Next, let us define the following quantities:

i(x) = sup
{∣∣x(s) − x(t)

∣∣ − [
x(s) − x(t)

]
: t, s ∈ I, t � s

}
and

i(X) = sup
{
i(x): x ∈ X

}
.

Observe thati(X) = 0 if and only if all functions belonging toX are nondecreasing onI .
Finally, let

µ(X) = w0(X) + i(X). (1)

It can be shown [5] that the functionµ is a measure of noncompactness in the spaceC(I).
Moreover, the kernel kerµ consists of all setsX belonging toMC(I) such that all functions
from X are equicontinuous and nondecreasing on the intervalI .

3. Main result

In this section we consider the following nonlinear integral equation of Volterra typ

x(t) = a(t) + (T x)(t)

t∫
0

φ(t, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds, t ∈ I. (2)

The functionsa(t), r(s), φ(t, s) and (T x)(t) are given whilex = x(t) is an unknown
function.

We will study this equation under the following assumptions:

(i) a ∈ C(I) and it is nondecreasing and nonnegative on the intervalI .
(ii) φ : I × I → R+ is continuous onI × I and the functiont → φ(t, s) is nondecreasing
for eachs ∈ I .
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(iii) r : I → I is a continuous and nondecreasing function.
(iv) The operatorT :C(I) → C(I) is continuous and satisfies the Darbo condition for

measure of noncompactnessµ (defined in (1)) with a constantQ. Moreover,T is a
positive operator, i.e.,T x � 0 if x � 0.

(v) There exist nonnegative constantsc andd such that

‖T x‖ � c + d‖x‖
for eachx ∈ C(I) andt ∈ I .

(vi) There existsr0 > 0 such that‖a‖ + (c + dr0) · ‖φ‖ · r0 � r0 andQ‖φ‖r0 < 1.

Before we formulate our main result we will prove the following lemmas which be ne
further on.

Lemma 1. Suppose thatx ∈ C(I) and we define

(Gx)(t) = max
[0,r(t)]

∣∣x(τ)
∣∣ for t ∈ I.

ThenGx ∈ C(I).

Proof. Without loss of generality we can assume thatx � 0. We will prove that forε > 0,

w(Gx, ε) � w(x ◦ r , ε).

Suppose contrary. This means that there existt1, t2 ∈ I , t1 � t2, t2 − t1 � ε such that

w(x ◦ r, ε) <
∣∣(Gx)(t2) − (Gx)(t1)

∣∣. (3)

As Gx is a nondecreasing function, we have

0< (Gx)(t2) − (Gx)(t1). (4)

Further, let us find 0� τ2 � r(t2) with the property(Gx)(t2) = x(τ2).
Taking into account the inequality (4),r(t1) � τ2. In virtue of the continuity of the

functionr , τ2 = r(p2), and we can deduce that

(Gx)(t2) − (Gx)(t1) = x(τ2) − (Gx)(t1) � x
(
r(p2)

) − x
(
r(t1)

)
= (x ◦ r)(p2) − (x ◦ r)(t1)

and asp2 − t1 � t2 − t1 � ε,

(Gx)(t2) − (Gx)(t1) � (x ◦ r)(p2) − (x ◦ r)(t1) � w(x ◦ r, ε).

Thus we arrive at a contradiction.
Thus, forε > 0,

w(Gx, ε) � w(x ◦ r, ε)

and asx ◦ r ∈ C(I), the proof is complete. �
Lemma 2. Let (xn), x ∈ C(I). Suppose thatxn → x in C(I). ThenGxn → Gx uniformly

on I.
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Proof. Note that fort ∈ I andy ∈ C(I),

(Gy)(t) = ‖y|[0,r(t)]‖,
wherey|[0,r(t)] denotes the restriction of the functiony on the interval[0, r(t)] and the
norm is considered in the spaceC([0, r(t)]). In view of this fact, we can deduce

‖Gxn − Gx‖ = sup
t∈I

∣∣(Gxn)(t) − (Gx)(t)
∣∣ = sup

t∈I

∣∣‖xn|[0,r(t)]‖ − ‖x|[0,r(t)]‖
∣∣

� sup
t∈I

∥∥(xn − x)|[0,r(t)]
∥∥ � ‖xn − x‖.

As xn → x in C(I), we obtain the desired result.�
Now we present our main result.

Theorem 3. Under assumptions(i)–(vi), Eq. (2) has at least one solutionx = x(t) which
belongs to the spaceC(I) and is nondecreasing on the intervalI .

Proof. Let us consider two operatorsA,B defined on the spaceC(I) by

(Ax)(t) = a(t) + (T x)(t)

t∫
0

φ(t, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds and

(Bx)(t) =
t∫

0

φ(t, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds.

Firstly, we prove that ifx ∈ C(I), thenAx ∈ C(I). To do this it is sufficient to show
that if x ∈ C(I), thenBx ∈ C(I). Fix ε > 0, let x ∈ C(I) and t1, t2 ∈ I such thatt1 � t2
andt2 − t1 � ε. Then

∣∣(Bx)(t2) − (Bx)(t1)
∣∣ =

∣∣∣∣∣
t2∫

0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
�

∣∣∣∣∣
t2∫

0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t2∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
+

∣∣∣∣∣
t2∫

0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
�

t2∫
0

∣∣φ(t2, s) − φ(t1, s)
∣∣ · max

[0,r(s)]
∣∣x(τ)

∣∣ds

+
t2∫ ∣∣φ(t1, s)

∣∣ · max
∣∣x(τ)

∣∣ds.
t1

[0,r(s)]
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d, in
Therefore, if we denote

wφ(ε, ·) = sup
{∣∣φ(t, s) − φ(t ′, s)

∣∣: t, t ′, s ∈ I and|t − t ′| � ε
}
,

we obtain that∣∣(Bx)(t2) − (Bx)(t1)
∣∣ � wφ(ε, ·) · ‖x‖ · t2 + ‖φ‖ · ‖x‖ · (t2 − t1)

� wφ(ε, ·) · ‖x‖ + ‖φ‖ · ‖x‖ · ε.
Now, in virtue of the uniform continuity of the functionφ on I × I we have that
wφ(ε, ·) → 0 asε → 0. ThusBx ∈ C(I), and consequently,Ax ∈ C(I).

Moreover, for eacht ∈ I we have

∣∣(Ax)(t)
∣∣ =

∣∣∣∣∣a(t) + (T x)(t)

t∫
0

φ(t, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
� ‖a‖ + (

c + d‖x‖)
t∫

0

∣∣φ(t, s)
∣∣ · max

[0,r(s)]
∣∣x(τ)

∣∣ds

� ‖a‖ + (
c + d‖x‖) · ‖φ‖ · ‖x‖.

Hence,

‖Ax‖ � ‖a‖ + (
c + d‖x‖) · ‖φ‖ · ‖x‖.

Thus, if‖x‖ � r0 we obtain from assumption (vi) that

‖Ax‖ � ‖a‖ + (c + dr0) · ‖φ‖ · r0 � r0.

Consequently, the operatorA transforms the ballBr0 = B(0, r0) into itself.
In the sequel we consider the operatorA on the subsetB+

r0
of the ballBr0 defined by

B+
r0

= {
x ∈ Br0: x(t) � 0 for t ∈ I

}
.

Obviously, the setB+
r0

is nonempty, bounded, closed and convex. On the other han
view of our assumptions (i), (iii) and (v) ifx ∈ B+

r0
, thenAx ∈ B+

r0
.

Next, we prove thatA is continuous onB+
r0

. To do this, let{xn} be a sequence inB+
r0

such thatxn → x and we will prove thatAxn → Ax.
In fact, for eacht ∈ I we have∣∣(Axn)(t) − (Ax)(t)

∣∣
=

∣∣∣∣∣(T xn)(t)

t∫
0

φ(t, s) max
[0,r(s)]

∣∣xn(τ )
∣∣ds − (T x)(t)

t∫
0

φ(t, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
�

∣∣∣∣(T xn)(t)

t∫
φ(t, s) max

∣∣xn(τ )
∣∣ds − (T x)(t)

t∫
φ(t, s) max

∣∣xn(τ )
∣∣ds

∣∣∣∣
∣
0

[0,r(s)]
0

[0,r(s)] ∣
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to
+
∣∣∣∣∣(T x)(t)

t∫
0

φ(t, s) max
[0,r(s)]

∣∣xn(τ )
∣∣ds − (T x)(t)

t∫
0

φ(t, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
�

∣∣(T xn)(t) − (T x)(t)
∣∣ t∫

0

∣∣φ(t, s)
∣∣ · max

[0,r(s)]
∣∣xn(τ )

∣∣ds

+ ∣∣(T x)(t)
∣∣ t∫

0

∣∣φ(t, s)
∣∣ ·

∣∣∣ max
[0,r(s)]

∣∣xn(τ )
∣∣ − max

[0,r(s)]
∣∣x(τ)

∣∣∣∣∣ds.

In virtue of Lemma 2:

‖Axn − Ax‖ � ‖T xn − T x‖ · ‖φ‖ · r0 + (c + dr0) · ‖φ‖ · ‖xn − x‖. (5)

As T is a continuous operator, there existsn1 ∈ N such that forn � n1 we have

‖T xn − T x‖ � ε

2‖φ‖ · r0
.

Moreover, we can findn2 ∈ N such that for alln � n2 we have that‖xn −x‖ � ε
2‖φ‖·(c+dr0)

.
Finally, if we taken � max{n1, n2}, from (5) we get

‖Axn − Ax‖ � ε.

This fact proves thatA is continuous inB+
r0

.
In the sequel we prove that the operatorA satisfies the Darbo condition with respect

the measure of noncompactness introduced in Section 2.
Let X be a nonempty subset ofB+

r0
. Fix ε > 0 andt1, t2 ∈ I with |t2 − t1| � ε. Without

loss of generality we may assume thatt1 � t2, then∣∣(Ax)(t2) − (Ax)(t1)
∣∣

=
∣∣∣∣∣a(t2) + (T x)(t2)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

− a(t1) − (T x)(t1)

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
�

∣∣a(t2) − a(t1)
∣∣ +

∣∣∣∣∣(T x)(t2)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

− (T x)(t1)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
+

∣∣∣∣(T x)(t1)

t2∫
φ(t2, s) max

∣∣x(τ)
∣∣ds − (T x)(t1)

t2∫
φ(t1, s) max

∣∣x(τ)
∣∣ds

∣∣∣∣
∣
0

[0,r(s)]
0

[0,r(s)] ∣
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we
+
∣∣∣∣∣(T x)(t1)

t2∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds − (T x)(t1)

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
� w(a, ε) + ∣∣(T x)(t2) − (T x)(t1)

∣∣ t2∫
0

∣∣φ(t2, s)
∣∣ · max

[0,r(s)]
∣∣x(τ)

∣∣ds

+ ∣∣(T x)(t1)
∣∣ t2∫

0

∣∣φ(t2, s) − φ(t1, s)
∣∣ · max

[0,r(s)]
∣∣x(τ)

∣∣ds

+ ∣∣(T x)(t1)
∣∣ t2∫
t1

∣∣φ(t1, s)
∣∣ · max

[0,r(s)]
∣∣x(τ)

∣∣ds

� w(a, ε) + w(T x, ε) · ‖φ‖ · r0 · t2 + (c + dr0) · wφ(ε, ·) · r0 · t2
+ (c + dr0) · ‖φ‖ · r0 · (t2 − t1)

� w(a, ε) + w(T x, ε) · ‖φ‖ · r0 + (c + dr0) · r0 · (wφ(ε, ·) + ε · ‖φ‖).
Hence,

w(Ax, ε) � w(a, ε) + w(T x, ε) · ‖φ‖ · r0 + (c + dr0) · r0 · (wφ(ε, ·) + ε · ‖φ‖).
Consequently,

w(AX,ε) � w(a, ε) + w(T X,ε) · ‖φ‖ · r0 + (c + dr0)r0
(
wφ(ε, ·) + ε · ‖φ‖).

From the uniform continuity of the functionφ on the setI × I and the continuity of the
functiona on I we have thatwφ(ε, ·) → 0 andw(a, ε) → 0 asε → 0. So, applying limit
whenε → 0, we obtain

w0(AX) � ‖φ‖ · r0 · w0(T X). (6)

Now, we study the term related to the monotonicity.
Fix x ∈ X and t1, t2 ∈ I with t1 < t2. Then, taking into account our assumptions,

have ∣∣(Ax)(t2) − (Ax)(t1)
∣∣ − (

(Ax)(t2) − (Ax)(t1)
)

=
∣∣∣∣∣a(t2) + (T x)(t2)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds − a(t1)

− (T x)(t1)

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣
−

((
a(t2) + (T x)(t2)

t2∫
φ(t2, s) max

∣∣x(τ)
∣∣ds − a(t1)
0
[0,r(s)]
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)

− (T x)(t1)

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

))

�
[∣∣a(t2) − a(t1)

∣∣ − (
a(t2) − a(t1)

)]

+
∣∣∣∣∣(T x)(t2)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds − (T x)(t1)

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣

−
(

(T x)(t2)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds − (T x)(t1)

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

)

�
∣∣∣∣∣(T x)(t2)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds − (T x)(t1)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣

+
∣∣∣∣∣(T x)(t1)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds − (T x)(t1)

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣

−
(

(T x)(t2)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds − (T x)(t1)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

)

−
(

(T x)(t1)

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds − (T x)(t1)

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

)

�
[∣∣(T x)(t2) − (T x)(t1)

∣∣ − (
(T x)(t2) − (T x)(t1)

)] t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

+ (T x)(t1)

[∣∣∣∣∣
t2∫

0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

∣∣∣∣∣

−
( t2∫

0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

)]
. (7

Now, we will prove that

t2∫
φ(t2, s) max

[0,r(s)]
∣∣x(τ)

∣∣ds −
t1∫

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds � 0.
0 0
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In fact, notice

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

=
t2∫

0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t2∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

+
t2∫

0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

=
t2∫

0

(
φ(t2, s) − φ(t1, s)

)
max

[0,r(s)]
∣∣x(τ)

∣∣ds +
t2∫

t1

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds.

Sincet → φ(t, s) is nondecreasing, we have thatφ(t2, s) � φ(t1, s), then

t2∫
0

(
φ(t2, s) − φ(t1, s)

)
max

[0,r(s)]
∣∣x(τ)

∣∣ds � 0. (8)

On the other hand, asφ � 0 and max[0,r(s)] |x(τ)| � 0, then

t2∫
t1

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds � 0. (9)

Finally, (8) and (9) imply

t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds −

t1∫
0

φ(t1, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds � 0.

This together with (7) yields∣∣(Ax)(t2) − (Ax)(t1)
∣∣ − (

(Ax)(t2) − (Ax)(t1)
)

�
[∣∣(T x)(t2) − (T x)(t1)

∣∣ − (
(T x)(t2) − (T x)(t1)

)] t2∫
0

φ(t2, s) max
[0,r(s)]

∣∣x(τ)
∣∣ds

� ‖φ‖ · r0 · i(T x).

Therefore,

i(Ax) � ‖φ‖ · r0 · i(T x),

consequently,
i(AX) � ‖φ‖ · r0 · i(T X). (10)
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Finally, combining (6) and (10), we get

µ(AX) = w0(AX) + i(AX) � ‖φ‖ · r0 · µ(T X) � ‖φ‖ · r0 · Q · µ(X).

Since‖φ‖ · r0 · Q < 1 (assumption (vi)), Theorem 1 guarantees the existence of a so
of (2). �

4. Examples

In this section we present examples where existence can be established using
rem 2.

Example 1. Consider

x(t) = t2 + 1

2e

t∫
0

et

1+ s2
· max
[0,r(s)]

∣∣x(τ)
∣∣ds. (11)

Let a(t) = t2. This function satisfies assumption (i) and‖a‖ = 1. In this caseφ(t, s) =
et

1+s2 which satisfies assumption (ii) and‖φ‖ = e. Let r : I → I be given byr(s) = √
s and

it satisfies assumption (iii). Let(T x)(t) = 1
2e

and this operator satisfies (iv) and (v) wi
c = 1

2e
, d = 0 andQ = 0.

In this case the first inequality of assumption (vi) has the form

1+ 1

2e
· e · r � r

and it admitsr0 = 2 as a positive solution. Moreover, asQ = 0, Q‖φ‖r0 < 1.
Theorem 2 guarantees that (11) has a nondecreasing solution.

Example 2. Consider the integral equation

x(t) = t3 + 1

α
x(t)

t∫
0

ln(1+ √
t + s) max

[0,
√

s]
∣∣x(τ)

∣∣ds,

whereα > 0.
In this examplea(t) = t3 and this function verifies assumption (i) and‖a‖ = 1. More-

over,φ(t, s) = ln(1+√
t + s) satisfies (ii) and‖φ‖ = ln(1+√

2). The functionr is defined
by r(s) = √

s and satisfies hypothesis (iii). The operatorT is defined by(T x)(t) = 1
α
x(t)

and satisfies (iv) withQ = 1
α

and c = 0 andd = 1
α

. In this case the first inequality o
assumption (vi) has the form

1+ 1

α
r2 ln(1+ √

2) � r.

This inequality admits to

α −
√

α2 − 4α ln(1+ √
2)
r0 =
2 ln(1+ √

2)
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qua-

Austral.

tol,

(2001)

ations,

value
993)

al. 34

pekhi

tions,
as a positive solution ifα > 4 · ln(1+ √
2). Moreover, as

1

α
ln(1+ √

2) · α −
√

α2 − 4α ln(1+ √
2)

2 ln(1+ √
2)

<
1

2
< 1,

Theorem 2 guarantees that our equation has a nondecreasing solution.
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