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1. INTRODUCTION 

In this paper we are concerned with establishing the existence, both locally 
and globally in time, of solutions for a model equation describing the 
longitudinal vibration of the material in a straight, thin cylindrical rod. We 
refer to Green [3], Love [6] and Showalter [lo] for a discussion of the linear 
problem and to Jaunzemis [4] for the more general nonlinear setting. 

The equation of motion is obtained most simply by setting 6L = 0 where 
L is the Lagrangian 

In particular, we choose here 52 E [0, l] and refer to [7] for the case when 
R=R. 

The term W(uX, p) denotes a generally nonlinear strain-energy function 
which depends both on uX(x, t), the longitudinal displacement gradient at 
time t of a material point at x measured from some chosen point along the 
rod, and on p(u,(x, t)), a measure of the lateral deformation undergone 
during the motion. Throughout, we make only very mild assumptions 
concerning the constitutive terms /I(.), W(., .) and their first derivatives, 
although some extra restrictions must be imposed if smoothness of solutions 
is to be obtained. 

We adopt the following notation: 

g (4) =P’W, g! (0 = P’“‘Vh n = 2, 3,..., (l-2) 
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and D W(q$ P) + P’Pc2’x2 = c#, x). 

(1.3) 

This implies that the Euler equation of (1.1) may be written 

As an example, the special case when /?‘(.) = 1, which is also discussed in 
[8], reduces Eq. (1.4) to the form 

4, - uxxff - a(u,), = 0. (1.5) 

Here we consider the Cauchy problem for the rather general situation in 
which (1.4) occurs, with the following list of hypotheses on the constitutive 
terms. 

(Hl) (a) Let /.I(.) E C’(R), W(., .) E C’(R x R) and assume each of 
/3(.), /3’(.), /I’*‘(.), (aW/a()(#, .) and @W/@)(.,& to be locally Lipschitz 
continuous. Therefore, in particular for all #i, x, E R, i = 1, 2, such that for 
some R > 0, ]#1] < R, lxi] < R, there exists a constant T(R) > 0, such that 

I4~4~~1)-4~29~2I < ~(RNIO, -921 f Ix, -x211. 

(b) Let /I’(.) satisfy, for all 4 E R, 

P”(fwa 

where a is a positive constant. 

(c) o(0, 0) = 0. 

The above set (HI) will be used later to demonstrate local existence, 
however, only hypothesis (Hi)(a) is important for the method of proof used. 
(HI)(c) is inserted for physical reasons, whereas (Hi)(b) may be relaxed to 
let /I’*@) > 0, V ( E R [8]. (This latter condition is of physical interest when 
one considers the constraint U, > -1 required to avoid material inversion.) 

To extend these solutions globally in time, the following additional set will 
be required. 

(H2) There exists J,, J2 > 0 such that for all 4 E I?, 

(4 Wh P(Q)) > -J, 9 
@I ID Wb PW>)I Q W4, PO>) + J, + J, 7 
(cl B’%9 G WhP(#)) •t J, + J,, 
W B’*“W 4 P’*(9) + J,. 
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Again the first of these conditions is fundamental while those remaining 
do not impose severe restriction and may be modified quite easily. 

It is well known that the Cauchy problem for Eqs. (1.4) with /3’(.) = 0 in 
general does not permit C’ solutions existing globally in time (see, for 
example, Lax [5]) since it is possible for the deformation gradient u,(x, t) to 
become infinite at some x E 0, t < co, however, in the situation we consider, 
globally unique solutions are found whose regularity depends only on the 
smoothness of the initial data and on a(., .). Sections 2 and 3 of this paper 
deal, respectively, with the local and global existence problems. 

We now provide an appropriate Banach space setting together with some 
notation. 

The space LP(O, 1) denotes the class of measurable real-valued functions 
on (0, 1) for which 

or 

Ilfll, = ess sup If@I < coo, when p=co. (1.7) 

The Sobolev space Wm9p(0, l), m E N, consists of those functions in LP(O, 1) 
all of whose generalised derivatives up to and including order m belong to 
LP(O, 1). We define a norm on Wm9p(0, 1) by 

or 

when p=co. 

W 

(1.9) 

WtYp(O, 1) denotes th e subspace of WmVP(O, 1) consisting of those functions 
in IPYp(O, 1) which together with their generalised derivatives of order less 
than or equal to m - 1 vanish at x = 0 and x = 1. 

Finally, let A c R and X be a Banach space with norm ]I ]IX. Then for 
k E N U {0}, C“(A, X) is the class of k-times continuously differentiable 
mappings u(t), (au/&)(t): A -+ X, 0 <j < k. 

Ck(A; X) has the norm 

(1.10) 
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When A = [0, T] and X = L “(0, I), we simplify this notation to read 

IuI*= IUI O,IO,Tl,L~(O.l)' (1.11) 

and 

lII4II*= Iul l,IO.Tl,L~(O,l)’ (1.12) 

For information concerning the above spaces, which are all Banach, we refer 
to Adams [ 1 ] and Yosida [ 121. There the following simple facts and 
definitions may also be obtained. 

DEFINITION. A sequence {u,} of functions in L “(0, 1) converges weak-* 
in L”O(0, 1) to u if and only if 

j; u,(x) 4x1 ffx -+ i,’ u(x) u(x) dx, v u(x) E L’(0, l), 

which we write as u,(x) 4 u(x) in L”(0, 1). 
Similarly, the sequence (u,} in W’@(O, 1) converges weak-* in 

W’@(O, 1) to u if and only if 

u,AuinLm(O, 1) and 
du, *, du . 
dx 

xin L”(O, 11, 

written u, 35 u in W’@(O, 1). 

It may be shown that every bounded sequence {un} in W’9m(0, 1) contains 
a subsequence {u,} which converges weak-* in lV’,m(O, 1) to a member x of 
~‘YO~ 11, where IIxII~,~ l-ll+m IIu,II1,,. < lim 

Furthermore it is easy to demonstrate that, in particular, if u E W~~“(O, l), 
then identifying classes of measure zero u E CmP1( [0, 1 I), and for 
O<j<m- 1, 

It is immediate that when u E Wr*p(O, l), Ild”‘u/dx” lip forms an equivalent 
norm for II u Ilm,p. 

2. LOCAL EXISTENCE 

We now consider the initial boundary-value problem, Eq. (1.4), together 
with Cauchy data given by 

u(x, 0) = u,(x), ut(x, 0) g u,(x), (2-l) 
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and boundary conditions 

u(0, t) = 0, u( 1, t) = 0, t > 0. (2.2) 

The following Theorem concerns solutions of a nonlinear integro-differential 
equation related to (1.4) through variation of constants. The Green’s 
function possesses standard properties described in an appropriate setting, 
for instance, in Stone [ 111. We demonstrate that there exist unique solutions 
locally to this related equation and subsequently we verify in Lemma 1 that 
these solutions are weak solutions of (1.4). 

To set up the problem, we note that for an arbitrary function V(X, .) E 
W’9m(0, l), by hypothesis (Hi)(b) the operator I - (~/~x)~‘(v,)(~/~x) 
defined on Wt,m(O, 1) is uniquely invertible. Thus integrating equation (1.4) 
twice with respect to time, substituting /?‘*(v,) for p’*(u,) and using (2.1), 
(2.2) we obtain the equation 

u(x, t) = uo(x) + tul(x) -fjO’ (t - r) G,(x, r; v) u(+ I+~) ah (2.3) 

where we have integrated by parts with respect to r in the last term. Here 
G(x, <; v) is the Green’s function found on inverting the above operator 
together with (2.2). G(x, <; V) may be explicitly represented in the usual way. 
In order to solve the partial differential equation (1.4) we first show that 
(2.3) has a solution U(X, t) such that u(x, t) = u(x, t); more succinctly, 
defining the right side of (2.3) to be A,u we prove there exists a solution 
u(x, t) to the equation 

u = A,u. (2.4) 

THEOREM 1. Let hypotheses (Hi)(a), (b) and (c) be given and let z+(x), 
uI(x) belong to W~g”o(O, 1). Then there exists a unique solution u(x, t) E 
C’([O, z[; W1*03(0, 1)) which satisfies Eqs. (2.4) and (2.2)for some maximal 
interval [0, z[, t > 0. Ifz < 00, Ilu(., t)lll,, + IIu,(., t)JI,,, -+ co us t-t z -. 

Proof. We use the contraction mapping principle (see [2]). Let T > 0. 
We start by demonstrating (2.3) has a fixed point in the space C’([O, T]; 
WF(O, 1)) for some T sufficiently small. To do this it is sufficient to verify 
that (see (1.12)) 

is mapped into itself under the action of A, for R large enough; then, on 
checking that A, is indeed contractive under conditions on R and T which 
nontrivially intersect those found earlier, the hypotheses of the contraction 

409/105/l-5 
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mapping principle will be met implying the existence locally in time of a 
unique solution for (2.3). 

The equivalence of the norms II.(ll,co and IJa,.[I, on Wi9”(0, 1) (see 1.13) 
permits the use of 

B(R)= {uEC’([OJ]; wy(O~ 1)):lll~,lll,<~I 

in place of B,(R). Taking the derivative of (2.3) gives 

(~“~),(X, 4 = $I@) + W(x) 

’ ’ - 
II (t - r) G&, <; u> 4u6, ulJ & dtt 
0 0 

(2.6) 

- 1 : (t - r)[P(u,)l-* 4%9 %I) dv (2.7) 

from which it is readily found by hypothesis (Hi)(b) that 

(see (1.11)) where c is a finite constant. Thus by hypotheses (Hi)(a), (c), 
(2.8) implies that 

III@“4XlllT~ Ilac + (1 + r> llao 

t (c t a-‘) T(I t T)RT(R). P-9) 

Hence choosing R, T > 0 to satisfy 

~~u~~j,t(1tT)~~u;~~,t(cta-‘)T(1tT)R~(R)<R (2.10) 

and noting A,u(O, t) =A,u(l, t) = 0, t > 0, we have that A,B(R) cl?(R). 
This result holds on replacing U(X, t) by u(x, t) E B(R) in (2.7) and it 
remains to be seen that A,u is a contraction, i.e., for 0 E [0, 1 [ we show that 
there exist R, T > 0 such that for all u, VE B(R), 

By (2.7) and hypotheses (HI)(a), (b), (c), 

III(~“~), - (~Vv)XlIIT 

< T( 1 t T) 1’ (G,,(x, t; 0) - G& t; v)) a@,, %t) & 
0 
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+ T(l + T) I~'(",)~'(v,>l-2~'2(v,) u("x, Oxt) -P'*@,) a(vx, vxt>)iT 

+T(l+T)T(R)lIIv,-VxlllT ~j’lG&WWt~ 
0 T  

+ TO + r) a-* IP'*w(eL~ u,,) - wx, Vxt)> 

+ 'tvx9 vX,>~"(vx) -P'*@,))lT 

< T(l + r>T(R)(Rc'a-' lp'2(u,) -p'*(v)IT t c' I(Iu, - v,(,lT 

+a-* III~x - vxlllr P2(~JI~ + a-*R IP’2(~,)-P’2(~x)lT)~ 

Here the last inequality obtains on applying Cauchy-Schwarz to the terms 
under the integrals. c’ > 0 is a finite constant. Letting y(R) be the Lipschitz 
constant for /I’*, by hypotheses (Hi)(a), (b) we obtain finally 

+ ~-2PWR) + P’2P)1) llbx - vxlilT (2.12) 

= V1 + TV(R) Illu, - vxlllr. (2.13) 

Thus A,u is contractive whenever 

T(l t T)f(R)<B< 1. (2.14) 

It is easy to see that taking R sufficiently large to dominate the terms Ilu~lj~ 
and lluilloo in (2.10) makes it possible, by choosing T to be small, for (2.10) 
and (2.14) both to be satisfied-which means that the conditions for a 
unique solution U(X, t) of (2.4) to exist have been met. 

We finish by showing u(x, t) E C*([O, r[; Wi*“(O, 1)) over a maximal 
interval of existence [0, 7[, 7 > 0. On differentiating (2.3) twice with respect 
to time (we now consider u E u) the right side of the equation obtained 
belongs to the class C([O, T]; W~vm(O, 1)) for every interval [0, T] in which 
u(x, t) E C’([O, T]; Wi+‘(O, 1)) and so u,, E C([O, T]; Wi*m(O, 1)) also. Let 
7 be the supremum of the T defined above and let 0 < E < 7. We apply a 
standard continuation argument to prove 11 u(., t)JI,,, + )I u,(., t)ll I,ao cannot 
remain bounded as I -+ 7 in the case 7 < co. For suppose the converse to be 
true. Then, since the length of the interval of existence was shown to depend 
only on II~Olll,m~ ll~A,m and on u, we may take new initial data u(x, 7 - E), 

u,(x, 7 - E) and E sufficiently small for the method of local existence to 
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extend the solution to the interval [r - E, r + E], thus violating the 
maximality of r. This completes the proof of Theorem 1. 

Remark. Regularity of the above solutions may be demonstrated very 
simply on making further assumptions. Specifically, if we allow o to be m 
times continuously differentiable it follows immediately on differentiating the 
right side of (2.3) m + 2 times with respect to t that u E Cm’ 2([0, t[; 
WA*“O(O, 1)) with r as before. In addition, if we let crtm) be locally Lipschitz 
continuous and consider z+, and U, to belong to the subspace Wmt lv2(0, 1) f? 
WA9’(0, I), m > 1, of W$m(O, 1) then the preceding proof may be extended 
by replacing B,(R) in (2.5) with 

B,(R)= {u E C’([O, T]; Wm+132(0, 1)n W;**(O, 1)): la;+lul,,,o,Tl,&R} 

and, repeating the essential steps earlier, this shows u E Cm+ 2([0, r[; 
W”+ ‘(0, 1) n W;*‘(O, 1)). Th e interval [0, r[ is again unchanged. 

The foregoing remark makes it evident that under suitable conditions there 
occurs no “loss of derivatives” with time for solutions to the integral 
equation. Let us now define, for a piecewise continuous function 4(x, .), 

@(ET -17 x = 0, 

ML *)1(x> = )$ 4(x + e, .> - 4(x - 6 .>, XE IO, I[, (2.15) 

-fql - E, .I, x= 1. 

The lemma which follows illustrates to some extent the way in which initial 
discontinuities in the data evolve. More exactly, we can elaborate on the 
above assertion to show that no new discontinuities can travel into a region 
of initially smooth data from a region where there exists a “jump” in the 
value of a derivative. 

LEMMA 1. Let u(x, t) be the solution to (2.4), and suppose u,,(x), u,(x) E 
C’( [0, l]\Y,J where Y,, c IO, 1 [, n = 0, 1,2,..., is a set of n arbitrary points 
at which u;(x) or u;(x) has a jump discontinuity. Then u(x, t) E C*([O, z[; 
C’([O, l]\Y,)), i.e., for t > 0, u,(x, t), uxt(x, t) and u&x, t) possess jump 
discontinuities at most for x E Y,. 

Proof By Theorem 1 we have that u(x, t) satisfies the following: 

W, 0 = u;(x) + W(x) - I,‘( (t - tt) G& t; u) 4up ut,,) dt dv 

- I : (f - tt>GB’Wl-* Ox, u,,) dv, (2.16) 
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and 

It is easily verified that the map 

takes LP(O, 1) into C( [0, 11) for 1 <p < co, implying that the third, second 
and first terms, respectively, on the right sides of (2.16), (2.17) and (2. IS) 
are continuous. Therefore, by (Hi)(a), (2.16), (2.17), and for [0, T] c [0, r[, 

where c < co. The last line comes from Gronwall’s lemma. 
Hence, for x& Y,, tE [O,r[ 

I4 W) = M*, t)ltx) = 0. 

Finally, from (2.18) 

(2.20) 

implies that when (2.20) holds 

I~XffL 01 (XI = 0. (2.21) 

Remark. As in the Remark after Theorem 1, the result of the Lemma can 
inductively be extended to higher derivatives in both x and t given suitable 
conditions of smoothness on u,,, U, and on u. 

The solution to (2.4) will next be used to demonstrate there exist solutions 
to the partial differential equation (1.4) when interpreted in a weak sense. 
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The existence of more regular solutions for which (2.4) holds directly is then 
an immediate consequence of our earlier remark. 

Let (., .) and (., .) denote inner products over L’(O, 1) and L*(]t,, t,[ x 
10, l[), respectively, where 0 < r1 < t, < r. We have the following result. 

LEMMA 2. Let hypotheses (Hi)(a), (b) and (c) be given. Then for every 
4(x, t) E C’([O, r[; Wi*‘(O, l)), the solution u(x, t) to (2.4) satisJies 

where 

(2.23) 

(CP (1.3)). 

Proof. In the following, integration by parts is justified by Theorem 1. 
We define 

and 

A = - (P’P4,9 4,) - co’ *u,,, 7 k), (2.24) 

B = @%t, #xl) t Glj’P(*)u:,, ~4). (2.25) 

Equation (2.22) is written in the form 

(u,, #t) t x.4 - @WY 4,) = Cut, 4) I:; t dB'*um 4x1 I:: + A -Be P-26) 

Noting that 

A -B = -Ga”%.,, $,) I:;, (2.27) 

it remains to be seen that the integral equation solution u(x, t) satisfies 

(% h> +A - (DW, T&J = @,T 4) 1::. (2.28) 

By (2.18) 

8’*ux~t+,,‘*+& t DWtl3”~; G,,ad{=O. (2.29) 
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Thus by (2.29) and the t-derivative of (2.3) (U = u), the left side of (2.28) 
becomes 

But 

(4 9 h) = (49 $1 I:: 

= 049 0 I:: - 04 - u19 4) I:: 

= Cut, 4) I:: + j;’ (j’ Gp d<, $L &I) drl 

and so from (2.28) it remains to show 

(2.3 1) 

(2.32) 

which follows immediately on integrating by parts the first term on the right 
side with respect to t and the second with respect to x. This concludes the 
proof. 

Finally, in this section we prove a result on the dependence of the solution 
of (1.4) on the data uo,uI. This will imply, of course, that the solution 
solving (2.4) is also the unique solution for (1.4). 

LEMMA 3. Let hypotheses (Hi)(a)-(c) be given and suppose u(x, t), 
u,,(x, t) are solutions of (2.4) corresponding to initial data u,(x), uI(x) and 
u,,(x), u,,(x), respectively, where {u,,(x)}, {u,,(x)} are bounded sequences 
in W1*m(O, 1) such that 

~o,C)-+ uoC)9 in Wi*‘(O, l), (2.33) 

%I(-)+ UlCh in W~~2(0, l), (2.34) 

us m,n-+ a3, 



70 R. SAXTON 

Then for all t E [0, T], T < z, as m, n --t 00, 

and 

Umn(., *> -+ 4, .>, in C’([O, T]; W~**(O, I)), (2.35) 

umn(., t) 4 u(., t) weak-*, in W’~m(O, I), (2.36) 

%mf,L 0 A u,(., t) weak-*, in W1*Oo(O, 1). (2.37) 

ProoJ: (We preface this proof with the usual remark that in particular 
higher-order t-derivatives converge in the above sense also, on assuming 
extra smoothness of the constitutive term a.) From the boundedness of the 
sequences {u,,}, {u,,} in W’*“(O, l), (2.33) and (2.34), we have (see 
Chapter 1) 

and 

uom(.) A u,,(.) weak-*, 

u,,(.) A u,(.) weak-*, 

in W1*co(O, l), (2.38) 

in W’~m(O, 1). (2.39) 

Also (2.36) and (2.37) follow from (2.35) provided {umn(., t)}, {~,,r(., t)} 
stay bounded for t E [0, T] in W’@(O, 1). This can be ensured as a result of 
Theorem 1 by suitably bounding the W’@(O, 1) norms of {u,,(.)} and 
{u,,(.)} and means that the choice of r before (2.35), strictly the infimum of 
the existence intervals over all the data given, converges towards r of 
Theorem 1 as m, n -+ 00. 

To verify (2.35), let 

and 

4lm = II%m - %ll:.*~ (2.40) 

61, = lI%n - ~lll:,*~ (2.4 1) 

Wmn(X, t> = &&, t) - q-5 t). (2.42) 

Then by Lemma 2, (., .) representing the inner product over L*(]O, t[ X 
107 1 [I9 W,” satisfies the relation 

where 
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Since, in particular, (2.43) holds for 4 = w,,~, integration by parts and 
rearrangement implies 

So, by (Hi)(a), (b) and the proof of Theorem 1, 

where c < co and the term u,..~ has been majorised using (2.18). Letting 
a=inf{l,a),b=Ry(R)+~‘2(0)andd=~[(a~’tc)Ry(R)~(R)+3c~(R)], 
(2.46) and the inequality 2AB < A2 + B* yield 

(2.47) 

Also, from the identity 

there follows trivially 

II wmn~ ~2 G 60, + J’ o~wmn(v v>II:,, + IIY+L a>~> dv (2.48) 

Equations (2.47) and (2.48) and Griinwall’s lemma now combine to form the 
inequality 

llwmnL NL + IIw,& MJ < Go, + a-‘@ + 1) 4,) exP[(l + a-‘4 Tl 
(2.49) 

from which we obtain (2.35) on letting dam, a,,, + 0. 
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3. GLOBAL EXISTENCE 

The conditions we have so far considered (1.4) under are by themselves 
insufficient to guarantee the global existence of solutions. It is necessary to 
strengthen hypotheses (Hi)(a)--(c) by making some additional demands of 
the constitutive terms, which we do by applying (H2)(a)-(d) of Section 1. 
This poses a mild restriction but is important in making the anticipated 
energy estimate relevant for obtaining later IV’@ bounds, which in turn 
permit a continuation of the local existence procedure of Theorem 1. 
(H2)(b)-(d) could also be generalised, however, as they stand only the two 
types of estimate just mentioned will be needed. We do not consider 
existence under uniform Lipschitz hypotheses (r no longer dependent on 
R-see (Hi)(a)) due to the obviously severe restriction this makes on the 
response functions at large values of strain, although it is not difficult to find 
that then u E C’([O, co[; WiV2(0, 1)) (see [9]). 

The first part of the continuation argument rests on the following Lemma. 

LEMMA 4. Let u(x, t) E C2([0, z[; W~+‘(O, 1)) be the solution of (2.22) 
and let T < 5. Then for every t E [0, T], 

I W) 

(3.1) 

ProofI In (2.22) we let 1, + 0 and take t, = t. It is evident from the 
integral representation that u(x, t) takes up initial data, and since 
U, E C’([O, T]; W,$w(O, 1)) c C([O, T]; Wi*‘(O, 1)) the result follows on 
letting d = u,. 

We now state and prove the main Theorem of the section. 

THEOREM 2. Let hypotheses (H2)(a), (b), (c), (d) and the conditions of 
Theorem 1 be given. Then the solution u(x, t) of (2.22) is apriori bounded in 
the space C’([O, T]; Wi*“(O, l)), for every T < z. 

Proof For this proof we take c > 0 to be a generic constant. By (1.3), 
(2.28), for all f E [0, T] and almost every x E (0, l), 

lP’2%tt +B;C”‘U:,+OW~~~~“~~~OW+P’B”‘U:,~~T (3.2) 
0 
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and from Lemma 4, (HI)(b) and (H2)(a), 

13 

1 1 
y1, u;&Q+[E tJ,]. (3.3) 

Consider the integral in (3.2); Lemma 4, (H2)(b) and (d) and (3.3) imply 

~2Eta-'J*[E+J,]tJ,+J*. 

We therefore have, from (3.2), that 

Ice’ *Uxtf + /-V”‘u:, + DW u,t I < c IP’*u,t I 

and so, on integrating with respect to t and applying (H2)(c), 

4, < $?“u:, t W < E, t c j’ Ij3’*uxJ dq 

GE, + f jf {P’u:, + 8’*} dv 
0 

GE, + fl’ {P’*u:, t W} dq t ; (J1 t J,), 
0 

where 

(3.4) 

P-5) 

E, E f/?“(u;(x)) u;‘(x) t W@;(x)). 

Hence by Gronwall’s lemma, 

(3.6) 

-J< +p”u:, t W< E, t 4 (.I1 t J2) ecr’*. 
[ 1 (3.7) 

Since (3.7) is valid for almost every xE (0, I), (1.13) and (Hi)(b) provide 
the following estimate for all t E [0, T]: 

I( I(~(., t)lll,, Q 4a-’ (3.8) 
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From this there follows immediately that 

< JIu,,(.)II~,~ t 4a-‘t E, + q (J1 t JJ ecf” . 1 i (3.9) 

Equations (3.8) and (3.9) therefore prove the Theorem. 

COROLLARY. Under the conditions of Theorem 1 with Theorem 2, the 
solution u(x, t) of (2.22) belongs to C’([O, T]; WA*“(O, l))fir every T > 0. 

Proof The regularity argument given in Section 2 leads to u(x, t) being a 
priori bounded in C’([O, T]; Wi+‘(O, l))-o ne obtains the estimates simply 
using (2.18) and (HI)(a) together with (3.8) and (3.9). Thus the final part of 
the statement of Theorem 1 shows that since ]] u(., t)ll l,a, t ]] at(., t)ll l,m 
remains bounded for every finite t > 0, then the maximal interval of existence 
[0, r[ must be unbounded, which proves the result. 

Remark. The earlier Remark after Theorem 1 can quite easily be seen to 
remain true when [0, r[ is [0, 03 [. We omit the proof. (See [8].) 
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