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Constraints on Reciprocal Flux Sensitivities in Biochemical Reaction
Networks

Guy Shinar,™ Avi Mayo,t Haixia Ji,* and Martin Feinberg*
TDepartment of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; and *William G. Lowrie Department of Chemical &
Biomolecular Engineering and Department of Mathematics, Ohio State University, Columbus, Ohio

ABSTRACT We identify a connection between the structural features of mass-action networks and the robustness of their
steady-state fluxes against rate constant variations. We find that in all positive steady states of so-called injective networks—
networks that arise, for example, in metabolic and gene regulation contexts—there are certain firm bounds on the flux control
coefficients. In particular, the control coefficient of the flux of a reaction, with respect to variation in its own rate constant, is de-
limited in a precise way. Moreover, for each pair of reactions, the flux of at least one of them must have a precisely delimited
control coefficient with respect to variation in the rate constant of the other. The derived bounds can, however, be violated in
noninjective networks, so for them a more pronounced lack of robustness could be exhibited. These results, which indicate
a mechanism by which some degree of robustness is induced in the injective setting, also shed light on how robustness might

evolve.

INTRODUCTION

Phenotypes of biochemical reaction networks are often
characterized by the steady-state concentrations of their
constituent biochemical species and the steady-state rates
of (or fluxes through) their constituent reactions. The iden-
tification of phenotypes with steady-state fluxes has proven
to be particularly useful in the study of metabolic reaction
networks, where metabolite fluxes through enzyme cata-
lyzed reactions are often of primary interest.

Yet the characterization of phenotypes solely by means of
steady-state fluxes (and concentrations) leaves something to
be desired, because in vivo biochemical networks are
subject to ever-present fluctuations in parameters such as
pH, temperature, and total building-block concentrations.

Parameter fluctuations can arise from both environmental
and genetic sources. For example, the rate constants employed
in mass-action models might depend on physical quantities
such as temperature, and might also have incorporated in
them the concentrations of chemical species such as ATP or
H™. Thus, changes in the physical properties or the chemical
make-up of the ambient cellular environment will generally
cause the rate constants employed in models to shift. Muta-
tions might also cause rate constants to vary as a result of
modifications to the mutual affinity of reactants. Therefore,
an understanding of phenotypes entails not only that we
know the fluxes (concentrations) themselves, but also that
we characterize the sensitivity of each flux (concentration)
with respect to changes in each of the parameters. Such
knowledge of the flux sensitivities also provides valuable
information about which parameters should be known with
higher accuracy in the formulation of mathematical models.
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One approach for studying the robustness of fluxes
(concentrations) is by means of sensitivity analysis. This
approach, which is common in systems engineering, was
introduced to biology by Higgins (1) in the 1960s. Subse-
quently, it became an important tool in biochemical systems
theory, pioneered by Savageau (2), and metabolic control
analysis, pioneered by Kacser and Burns (3) and Heinrich
and Rapoport (4,5). Nowadays the use of sensitivity analysis
is commonplace in biology.

The main mathematical object employed in sensitivity
analysis is the sensitivity matrix. Loosely speaking, the
sensitivity matrix is the array whose elements are the frac-
tional derivatives of the fluxes (concentrations) with respect
to the parameters, evaluated at a particular steady state. Each
entry in, for example, the flux sensitivity matrix, indicates
the fractional change in one of the steady-state fluxes with
respect to the fractional change in one of the parameters.

Consider, for example, the simple mass-action network

2ACB, M

which describes, say, a protein dimerization process.
Suppose that, for the rate constant values k*,4_,p and
k*p_04, c*4 and c*p are steady-state concentrations and
that the corresponding steady-state fluxes are J*,4_, 5 and
J*p_24. Suppose also that we fix the total protein concentra-
tion T = c*, 4+ 2c*p, and we let the rate constants fluctuate
about their nominal values. It can then be shown that
there are smooth functions J>4 . 5(+,-) and Jg_,»4(-,-) that
map each choice of rate constants in a neighborhood of
(k*24 B, k*p_24) to a unique steady-state flux, with
J*up=Joap (k¥4 g, k¥ p_04) and J¥p_24 = Jp 24
(k*24 B, k*g_24). With this in mind, the flux sensitivity
matrix corresponding to the network of Eq. 1, evaluated at
k* = (k*zAA,B, k*BA,2A), is the array
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the elements of which are called the flux control coefficients.
The flux control coefficient C3* 38 (k*), for example, indi-
cates the fractional change in the flux through the reaction
2A — B with respect to variations in the rate constant of
the reaction B — 2A, evaluated at k*.

Generally, examination of the flux sensitivity matrix will
indicate which fluxes are robust to which parameters (small
flux control coefficients) and which fluxes are sensitive to
which parameters (large flux control coefficients). In fact,
experimental study and theoretical analysis of specific meta-
bolic networks has revealed that flux control coefficients
tend to be small (6), indicating overall robustness in the
network. This observation motivates the following question:
Are the magnitudes of flux control coefficients inherently
constrained, and, if so, what are the mechanistic sources
of these constraints?

Here, we focus on mass-action networks, and we study
the sensitivity of their steady-state fluxes with respect to
variations in rate constant values. (Related investigations
of the concentration sensitivities with respect to the total
building block concentrations are presented in Shinar
et al. (7) and Shinar and Feinberg (8).) In particular, we
deal with the class of mass-action networks that possess
the property of injectivity. This class, which we call the
injective class, contains a variety of biologically relevant
models, including the set of linear and branched chains of
Michaelis-Menten reactions (see later in Fig. 2 and Section
S3 in the Supporting Material), some classic enzyme-catal-
ysis mechanisms (9), and gene regulation models (10).

Later in this article, we will define injectivity and discuss
in detail how to determine whether a network is injective.
For now, it suffices to note that injectivity is a subtle network
property, which often manifests itself in an unintuitive way.
As an example for this, consider the networks in Table 1:
Note that of the otherwise-similar Entries 5 and 6, both of
which realize catalytic mechanisms for the two-substrate
reaction S1 + S2 — P, only one possesses injectivity.
Another example: the competitive inhibition and uncompet-
itive inhibition Michaelis-Menten networks in Entries 2 and
3, respectively, both of which are injective, combine to give
the mixed-inhibition Michaelis-Menten network in Entry 4,
which fails to be injective. The point that we wish to empha-
size, and to which the examples in Table 1 attest, is this: At
present, injectivity is not easily discerned from more
familiar or intuitive biological or biochemical notions, and
ascertaining injectivity requires specially developed mathe-
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TABLE 1 Examples of injective and noninjective networks
(adapted from Craciun et al. (9))

Entry Network Remark Injectivity

1 E+SZCES—E+P Simple Michaelis-Menten Yes
kinetics: § — P
Michaelis-Menten kinetics Yes
with competitive
inhibition: § — P
Michaelis-Menten kinetics Yes

2 E+SZES—E+P
E+IZEI

3 E+SCES—E+P

ES+1ZESI with uncompetitive
inhibition: § — P
4 E+SZES—E+P Michaelis-Menten kinetics No
E+IZEI with mixed inhibition:
ES+IZESIZEI+S S—>P
5 E+ S1_ESI Two-substrate enzyme Yes
S2 +ES1ZES1S2—E+P catalysis with sequential

(ordered) substrate
binding: S§1 + 82 — P

6 E+SI_ES1 E+ 82 ES2 Two-substrate enzyme No

S2 + ES1ES1S2_2S1 + ES2  catalysis with random
l (unordered) substrate
P binding: S1 + 2 — P

All species in each network are assumed to undergo degradation reactions of
the type s — 0, which are not explicitly shown. The examples demonstrate
that injectivity is a subtle network property: Otherwise-similar networks can
differ with respect to injectivity (compare, for example, Entries 5 and 6).
Moreover, mechanisms that possess injectivity in isolation can lack it
when combined (compare, for example, Entries 2 and 3 with Entry 4).

matics. This mathematics, however, is readily available, as
is a freely accessible computer program (11) for deter-
mining the injectivity of a mass-action network.

Our main result is a theorem that, for each positive steady
state of any injective mass-action network, gives bounds on
the diagonal elements of the corresponding flux sensitivity
matrix, and also gives constraints on the values that any pair
of reciprocal off-diagonal elements may take. More precisely,
we find thatin each positive steady state of any injective mass-
action network the diagonal flux control coefficients are con-
strained to lie between 0 and 1, and in each pair of reciprocal
off-diagonal flux control coefficients at least one coefficient is
constrained to lie between —1 and 1. These sensitivity bounds
can, however, be violated in noninjective networks, so for
them a more pronounced lack of robustness could be ex-
hibited. Thus, we identify a constraint on the flux control
coefficients in injective mass-action networks, a constraint
that has its roots in network structure alone.

The remainder of this article is organized as follows:
First, we will introduce some concepts from chemical reac-
tion network theory, with emphasis on the concept of injec-
tivity. These concepts are required for stating our main
result. Second, to place our results in perspective, we will
briefly discuss the summation theorem of metabolic control
analysis in the context of mass-action networks. Third, we
will state our main result, a reciprocity theorem that
provides constraints on flux control coefficients in the injec-
tive setting. We will illustrate the theorem’s usage with
(simplified) mass-action models of metabolic and gene
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regulation networks, and with a classic enzyme catalysis
mechanism. We will also point out how the conclusion of
our theorem might relate to classical results in metabolic
control analysis. Finally, we will offer concluding remarks,
with focus on a possible connection between our results and
the evolution of robustness.

Some concepts from chemical reaction
network theory

Here we provide concepts and definitions from chemical
reaction network theory, which are required for stating our
main result. (For a general introduction to chemical reaction
network theory, see Feinberg (12,13); an introduction for
mathematicians can be found in Feinberg (14).) Our presen-
tation will be somewhat informal. For a proper formal
presentation of the concepts, see Section S2 in the Support-
ing Material.

A chemical reaction network is a collection of three sets:
The first is the set of species, denoted S, which in Eq. 1 is
simply {A, B}. The second is the set of complexes, denoted
C, whose members are the objects that appear before and after
the reaction arrows. In Eq. 1, C = {2A, B}. The third set is the set
of reactions, denoted R. InEq. 1, R = {2A — B, B — 2A}.

When discussing an arbitrary reaction in a network we
shall use the symbol y — ' to indicate the reaction. The
symbol y indicates the reactant complex of the reaction,
and the symbol y' indicates the product complex of the reac-
tion. Thus, in the reaction 2A— B, y = 2A is the reactant
complex, and ¥y’ = B is the product complex.

When we have a particular reaction network in mind, an
instantaneous composition is a specification of a nonnegative
molar concentration for each species. Thus, for the network
in Eq. 1, a composition amounts to a specification of values
for the molar concentrations ¢4 and cp. In this case, it will be
convenient to represent the composition in the form ¢ =
caA + cgB—that is, as a linear combination of the species,
with each species multiplied by its corresponding molar
concentration. When there are more species, representation
of compositions in this form would proceed in the same way.
(Formally, the compositions reside in the vector space of all
linear combinations of species with real number coeffi-
cients. This vector space is analogous to the more familiar
Euclidean space R”, but it has the technical advantage that
no order is preimposed on the species. In our example,
each composition ¢ = c4A + cpB will be analogous to the
vector ¢ = (ca, cg) = ca(1,0) + c5(0,1) in R%)

A mass-action system is a reaction network taken together
with an assignment of a positive rate constant to each reac-
tion in the network. We designate the assignment of rate
constants to reactions by the symbol k, and we indicate the
rate constant of a particular reaction by giving k the appro-
priate reaction subscript. Thus, in Eq. 1, the rate constant as-
signed to the reaction 2A — B is denoted k4 —, 3, and the rate
constant assigned to B — 2A is denoted kg_, 4.
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Consider areaction network {S, C, R }. Of particular impor-
tance in the study presented here is the mass-action rate func-
tion of the network, denoted v(-,-), which assigns to each
choice of composition ¢ and to each assignment of rate
constants k the instantaneous rate of formation of each species,

Ve k) = Y k@ ), 3)

y—oyeRr

where the symbol ¢” indicates the product of the molar concen-
trations appearing in composition ¢, each raised to the corre-
sponding (stoichiometric) coefficient in the reactant complex y:

o H(cs)y“. “)

se8

Thus, in the case of Eq. 1, the mass-action rate function
takes the form

v(e,k) = kauglca)’(cp)’(B — 24)
+kp 24 (CA)O(CB)I (2A —B)
= [2kp—2acs — 2k2AHB<CA)2]A
+ [kZAHB(CA)Z_kBHZACB]B~

®)

The coefficient of A (B) on the right-hand side of Eq. 5 is the
instantaneous rate of increase in the molar concentration of
species A (B).

Next, consider the mass-action system {S, C, R, k} ob-
tained by taking together the network {S, C, R} with a fixed
assignment k of rate constants. The differential equation
governing the time rate of change of the composition is
given by

¢ = v(c,k). 6)

Thus, from Egs. 5 and 6, we see that the differential equation
corresponding to Eq. 1 takes the component form

Ca = 2kp_oacp — 2k2A—>B(CA)2a

g = kZAHB(CA)z_kBHZACB-

)

A composition ¢, for which the right-hand side of Eq. 6 is
zero, is called a steady state of the mass-action system.

Once again, let {S, C, R} be a reaction network. A
composition ¢, together with an assignment of (positive)
rate constants k, is called a network steady-state if v(c,
k) = 0. A network steady state is positive whenever all the
components of ¢ are strictly positive. Thus, the positive
steady-state set of the network is exactly the set of all pairs
(c, k) for which c is a positive steady state of the mass-action
system {S, C, R, k}. In biological applications, such as
metabolism, signaling, and gene expression, the steady
states encountered will often be strictly positive.

Two compositions are called stoichiometrically compat-
ible relative to a given reaction network if a change from
one composition to another would not violate any conserva-
tion conditions intrinsic to the network. Thus, in the network

Biophysical Journal 100(6) 1383-1391
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of Eq. 1, two compositions ¢ and ¢’ are stoichiometrically
compatible only if the total protein concentration in both
is the same: ¢4 + 2cp = c’4 + 2¢'. The notion of stoichio-
metric compatibility is made more precise in Section S2 in
the Supporting Material.

Injective networks

We will now briefly review the concept of injectivity, which
plays a crucial role in this work. (The theory of injective
mass-action networks is described in Craciun and Feinberg
(15-18). Related theory about networks that are not neces-
sarily mass-action can be found in Banaji et al. (19) and
Banaji and Craciun (20,21).)

A mass-action network is called injective if, for each
assignment of rate constants, the following is true for any
pair of distinct but stoichiometrically compatible positive
compositions: There is at least one species whose net
production rate (as determined by the species formation
rate function v) evaluated at the first composition is different
from its net production rate evaluated at the second compo-
sition. In other words, no matter what the rate constants are,
two different stoichiometrically compatible compositions
cannot give rise to production rates that, species-by-species,
are completely identical. (This is made more precise in
Section S3 in the Supporting Material.) An injective network
is thus precluded, for any assignment of rate constants, from
displaying multiple stoichiometrically compatible positive
steady states.

We draw the reader’s attention to Table 1 to emphasize
the following point: Injectivity is a subtle network property
that is not easily ascertained from coarse-grained biochem-
ical or biological considerations. Table 1 shows networks
that are otherwise similar in their structure, but some of
their operative catalytic mechanisms may nevertheless
differ as to whether or not they possess injectivity.

Although ascertaining injectivity in a network is not
straightforward, there exist both computational (11,15) and
graph-theoretic (16-18) criteria for determining injectivity
in large classes of networks. Here, we shall present a brief
account of the graph theoretic criterion. To keep the presen-

E1+80 <222 E150 2% E1 + P4 E1E E1 + 50 = E150 =2 E150 2 E150 —> E1 + P1 [F12P'P1
= i

P

0

E2+S0 ¢p E1+S0
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tation concise, we will focus on fully open networks, in which
each species s is subject to degradation (or dilution) reactions
of the form s — 0. An extension of the graph theoretic
method to the more general case is provided in Craciun and
Feinberg (18) and is described in Section S3 in the
Supporting Material. Software for ascertaining injectivity
is readily available for download from Ji et al. (11).

To facilitate our discussion of injectivity, consider the
mass-action network displayed in Fig. 1 A. This network
describes a metabolic bifurcation point, symbolized by

Pl <= 50 —2> P2,

where two Michaelis enzymes, E1 and E2, compete for the
same substrate SO, and convert it, respectively, to products
P1 and P2. We assume that all species in the network are
subject to degradation and that SO, E1, and E2 are synthe-
sized at constant rates, as indicated by the reactions 0 —
S0, 0 — E1, and 0 — E2. The network of Fig. 1 A, as we
will show in what follows, belongs to the injective class.
Other examples of biologically relevant injective reaction
networks include the class of branched Michaelis-Menten
chains (exemplified in Fig. 2 and analyzed in Section S3
in the Supporting Material), which are often used in
modeling metabolic pathways, and gene expression models,
such as the autoinhibitory module (10) of Fig. 3 (analyzed in
Section S7 in the Supporting Material).

One way to check for injectivity in a fully open network is
by examining its species-reaction (SR) graph. The SR
graph for a fully open network is constructed from the
network’s true reactions, that is, the reactions for which
neither the reactant complex nor the product complex is 0.
In Fig. 1 A, the true reactions correspond to solid arrows.

The nodes of the SR graph are either species or reactions:
there is one node for each true reaction (a pair of true revers-
ible reactions corresponds to a single node), and one node
for each species appearing in the true reactions.

The edges of the SR graph connect its nodes in the
following way: A species and a reaction will be joined by
an edge if the species appears in one of the complexes of
the reaction. In addition, the edge will be labeled by the
complex in which the species occurs. (If the species occurs

FIGURE 1 Mass—actiorEl1 model of the metabolic
bifurcation point PI <—— SO —— P2. (A)
The underlying reaction network with an indicated
choice of rate constants. (Solid arrows) True reac-
tions. (Dashed arrows) Reactions containing the
0 complex. (B) The SR graph of the network.
(Dashed edges) The c-pairs. The complex label
of each edge appears above the edge. The stoichio-
metric coefficient of each edge appears below the
edge.
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A B
s1E5s2<2 53 E1+S1 == E1S1—>E1+S2
E%L E2 + S2 == E252 ==>E2S3Z=> E2 + S3
s4 <B4 s5

E3 +S2 == E3S2—>E3 +S4

E4 + S4 = E4S4 == E4S52=E4 + S5

FIGURE 2 Branched Michaelis-Menten chains. (A) An example Michae-
lis-Menten network diagram. S1,...,S5 denote substrates, and El,...,E4
denote simple Michaelis-Menten enzymes. Directed edges of the form
§ — ' indicate that the Michaelis-Menten enzyme E catalyzes the
conversion of substrate S to substrate S'. Undirected edges of the form
§ <— ¢ indicate that the Michaelis-Menten enzyme E catalyzes the
conversion of S to S, and also the reverse conversion of S’ to S. Here,
and in the general case (see Section S3 in the Supporting Material), isolated
substrates, pairs of edges carrying the same enzyme label, and edges that
join a substrate to itself, are precluded. A Michaelis-Menten network qual-
ifies as a branched Michaelis-Menten chain whenever it has no cycles, as in
the present example. (B) The mass-action reaction network corresponding
to panel A. All reactions of the form Si — 0 (i = 1,...,5) are assumed
present but not shown. Reactions of the form 0 — § can also be present.
All mass-action networks corresponding to branched Michaelis-Menten
chains are injective (see Section S3 in the Supporting Material).

in both the reactant and the product complex then two edges
will connect the species and the reaction nodes, with one
edge labeled by the reactant complex and the other edge
labeled by the product complex.)

A pair of edges that meet in a reaction node is called
a complex-pair (c-pair) if the two edges carry the same
complex label. Two cycles in the SR graph are said to split
a c-pair if each of the cycles contains at least one edge of
the c-pair and one of the cycles contains just one edge
of the c-pair. A cycle in the SR graph is called an odd-
cycle if it contains an odd number of c-pairs; otherwise,
the cycle is called an even-cycle. The stoichiometric coeffi-
cient of an edge is the coefficient of the species adjacent to
the edge in the complex label of the edge. A cycle in the SR
graph is called a stoichiometric-cycle (s-cycle) if we obtain
the result of one by alternately multiplying and dividing the
stoichiometric coefficients of the edges as we traverse the
cycle.

A B
V\\T\/\\O
/
N

FIGURE 3 A model of a gene autoinhibitory module (10). (A) Schematic
diagram of the model. Unbound promoter P is transcribed to messenger
RNA M, which is subsequently translated to protein A. Protein A inhibits
its own production by binding P, thereby inhibiting the expression of M.
Both M and A are degraded by subsequent biological processes. (B) The
mass-action network corresponding to panel A. This network is injective
(see Section S7 in the Supporting Material).

P—>P+M
P+AZ= PA
A—>0<—M—>M+A

ya )
! U

P
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‘We are now ready to state the graph-theoretic criterion for
injectivity in fully open networks from Craciun and Fein-
berg (15,17):

A fully open network is injective if all cycles in its SR graph
are either odd-cycles or s-cycles, and no two even-cycles
split a c-pair.

Consider the SR graph in Fig. 1 B, which corresponds to
the network of Fig. 1 A. The stoichiometric coefficients of
all of the edges in the SR graph are equal to 1. Therefore,
both cycles in the SR graph are s-cycles. Each of the two
cycles in the SR graph is even, because neither cycle
contains a c-pair. The two cycles do not share any edge,
and as a result the two cycles cannot (and do not) split
a c-pair. From the graph theoretic criterion for injectivity,
we therefore have that the network of Fig. 1 A is injective.

To highlight yet again the subtle nature of injectivity,
consider the networks displayed as Entries 5 and 6 in Table
1. Both networks describe classic enzyme catalysis mecha-
nisms whereby substrates S1 and S2 are joined by enzyme E
to form a product P. This is often symbolized by

S1+852 ——> p.

The networks differ only in the substrate-binding mecha-
nism: Entry 5 describes a sequential binding mechanism,
whereas Entry 6 describes a random binding mechanism.
Yet this subtle difference is sufficient to make the sequential
binding mechanism of Entry 5 injective (9) and the random
binding mechanism of Entry 6 noninjective (9).

A note on the summation theorem of metabolic
control analysis

To put the main result of this article in perspective, we
briefly discuss here the summation theorem (22) of meta-
bolic control analysis, restricted to the case of mass-action
networks.

Consider a reaction network {S, C, R} and suppose that
(c*, k*) is a positive network steady state. Suppose also
that there exists a unique function ¢(-) that maps each
assignment of rate constants in a neighborhood of k* to
a steady-state composition that is stoichiometrically
compatible with c¢*. Moreover, assume that c¢* = ¢(k*).
(We provide a sufficient condition for the existence of
such a function ¢(-) in Section S4 in the Supporting Mate-
rial.) Then the steady-state flux through each reaction
y — y' of the (mass-action) network is given by the function

Jy—*y’( * ) = k)'—>,v’ [6( ° )]y’

with Jy_>y/ (k*) =J" = yﬁy/(C*)y.

With the steady-state flux functions J,_ () at our
disposal, the flux sensitivity matrix is well defined, and its
elements, the flux control coefficients evaluated at k*, are
given for each ordered pair of reactions y— 3" and y — y' by

Biophysical Journal 100(6) 1383-1391
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For the case of mass-action networks, the following result
obtains, regardless of network structure, as a corollary of the
summation theorem of metabolic control analysis:

At each positive network steady state (c*, k*) and for each
reaction y— ' of the network,

S oozl = 1. ©)

y—=yeR

(A simple proof based on Euler’s homogeneous function
theorem is given in Section S9 in the Supporting Material.
A proof of the general case of the summation theorem can
be found in Heinrich and Schuster (22) and Gunawardena
(23).)

We observe that if the flux control coefficients are all
known to be nonnegative, as is the case in certain important
models such as linear Michaelis-Menten chains (3-5), then
Eq. 9 guarantees that each flux control coefficient is between
0 and 1. However, for an arbitrary network there is no assur-
ance that all of the flux control coefficients are indeed
nonnegative: if at least one of the flux control coefficients
is negative, then Eq. 9 no longer implies that the absolute
value of each flux control coefficient is bounded by 1.

As an example, consider the metabolic bifurcation point
of Fig. 1 A, taken with rate constants k* as indicated in
Fig. 1 A, and with the positive composition c¢* in which
each species concentration is equal to 1. It is not difficult
to verify that (c*, k*) is a network steady state. Using the
computational means provided in Section S8 in the Support-
ing Material, we find that some of the flux control coeffi-
cients take extraordinarily large values. For example,

CEZSO"E2+P2(k*)~ —171.62. (10)

E1S0—E1+P1

The example of Fig. 1 A proves that there is no mathemat-
ical guarantee that the flux control coefficients in an arbi-
trary mass-action network are small in absolute value.

MATERIALS AND METHODS

All numerical calculations of flux control coefficients were performed ac-
cording to the computational method of Section S8 in the Supporting Mate-
rial using a standard computer algebra software package (Mathematica 6.0;
Wolfram Research, Champaign, IL).

RESULTS

We begin by noting that, for any injective network, the
steady-state flux mappings J,_.,(-) described in the
previous section will be well defined at all positive network
steady states (see Section S7 in the Supporting Material).
Moreover, for each positive-network steady state of an
injective network, the flux control coefficients given by
Eq. 8 are also well defined. With this in mind, we present
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the main result of this article, whose proof is given in
Section S7 in the Supporting Material.

Reciprocity Theorem. Let {S, C, R} be an injective mass-
action reaction network. At each positive network steady-
state (c*, k*), the following relations obtain:

1. For each reaction y — ' in the network,

0<C Y (k) <

y=y

2. For each pair of distinct reactions y— 3y and y — ¥ in
the network,

1025 (k) <1

y—=y
or

—1LC7N (k) <1

y=y

Stated informally, the theorem concludes that for any
positive network steady-state of any injective mass-action
network, all of the diagonal elements of the flux sensitivity
matrix are nonnegative and bounded from above by 1, and
for each pair of mutually reciprocal, nondiagonal elements
of the flux sensitivity matrix, at most one can exceed 1 in
absolute value. Thus, a “large” flux control coefficient in
such a “reciprocal” pair will invariably imply that the other
flux control coefficient in the pair is “small.”

We note that the theorem’s injectivity requirement is
a condition imposed on network structure alone. Therefore,
the conclusion of the theorem will hold for each positive
steady state that an injective network might admit.

We observe that if the injectivity condition is not satisfied,
then neither of the two conclusions of the theorem need
obtain. Consider the noninjective, random-binding mecha-
nism in Entry 6 of Table 1, taken with rate constants k* as
indicated in Fig. 4, and with the positive composition c*
in which each species concentration is equal to 1. It is not
difficult to verify that (c*, k*) is a network steady state.

E+S1 =2 ES1 ES1 + S2
St

0 @
(3
E 0.01k>0 <« 00016 Fg1gp =22 sEg) 451

P —
4.01V
o
© 2o,
)\Q\/ ‘x\)
fL.

2.0000
(=]

3

(=]

= P

0.0412

E+P

FIGURE 4 A fully articulated mass-action system corresponding to the
random binding mechanism in Entry 6 of Table 1. Rate constant values
are indicated next to the reaction arrows to which they correspond.
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Here, the flux control coefficients are well defined (see
Section S5 in the Supporting Material). Using the computa-
tional method presented in Section S8 in the Supporting
Material, we can calculate a diagonal flux control coefficient
that lies outside the range O to 1:

Crsrsopip (k) =524.7. (11)

We can also calculate a “reciprocal” pair of flux control
coefficients for which both coefficients lie outside the range
—1to1:

CERET ()= = 1349, )

CESLTES! (k) = — 256.2.

ES1S2—E+P

This noninjective counter-example and the simple noninjec-
tive counter-example of Eq. 20 below (analyzed fully
in Section S8 in the Supporting Material) indicate the impor-
tance of the injectivity requirement in the theorem statement.

Finally, we note again that even in the case of injective
networks, flux control coefficients can be negative or larger
than 1 in absolute value. This is evident from the injective
network of Fig. 1 A and Eq. 10. Thus, the information
provided by the theorem is not a result of some broader
theorem that, for injective networks, forces all of the flux
control coefficients corresponding to a positive steady state
to be positive or small.

A connection between our results and metabolic
control analysis

Here, we point out an intriguing connection between the first
conclusion of the reciprocity theorem and a classic result of
metabolic control analysis.

Consider our example network in Eq. 1, which happens to
be injective, and focus on species A. For given molar
concentrations ¢4, cp, the net formation rate of A is given
by the coefficient of A on the right-hand side of Eq. 5:

va(e, k) = 2kgancs — 2koap(ca)’ (13)

The right-hand side of Eq. 13 shows that the net rate of
production of A is composed of a positive part and a negative
part. Applying metabolic supply-demand analysis (24), we
note that the positive part of v,, defined by

V3PP (e k) = 2kgoacp, 14)

indicates the effective rate in which the part of the network
producing A supplies it to the rest of the network, whereas
the negative part of v4, defined by

vgemand(c’k) — 2k2A"B(CA)27 (15)

indicates the rate in which the part of the network
consuming A demands it from the rest of the network.

We note that the total protein concentration 7' = c4 +2cp
is conserved over time. This and Eqs. 14 and 15 result in
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supply-and-demand rates for A expressed as functions of
ca, T, and k:

B e T K) = ky-on(T — ),

16
VADemand(CA7T’ k) = 2k2AﬁB(CA)2, ( )

With V/f"p "D and yRemand ¢ our disposal, A’s supply elasticity
e SPP(. . .y and demand elasticity e 2" (-,-,) are
defined as the following fractional partial derivatives (24):

Supply - Ca ad — Supply
SV T k) = A TG, T k),
A len oK) v () T k) dca (e T:8)
eDemand(c T k) — Ca d VDfmand(c T k)
A As Ly vf{)emand((’.A7T’ k) aCA A Ay L
a7
From Eqgs. 16 and 17, we obtain
Supply Ca
', Tok) = —
€A (CAa ) ) T—CA7 (18)

eADemand(cA, T7 k) = 2.

Suppose that (c*, k*) is a positive steady state of the
network. Then from the summation and connectivity theo-
rems of metabolic control analysis (24,25) we have that

CBHZA k* B g/i)z)mand 19
s (K) = | s — s - 49
A A (L-;T,k*)

In this case, we have from Eq. 18 that the supply elasticity of
A is always negative, whereas the demand elasticity of A is
always positive. Together with Eq. 19, this shows that
CB=24(k*) will always reside between 0 and 1.

Equation 19 is a special example of a more general result of
metabolic supply-demand analysis (24). This result indicates
that the sensitivity of the rate of supply of a given species with
respect to an overall upshift in the species’ supply curve will
always equal the right-hand side of Eq. 19. It will typically be
the case that for each positive composition of a network, even
one that is large and complicated, the demand elasticity of
a given species will always be positive and the supply elas-
ticity will always be negative. Therefore, even in large and
complicated networks, the right-hand side of Eq. 19 will typi-
cally give a value between 0 and 1.

Although this provides, in typical cases, an intuitive basis
for the first conclusion of the reciprocity theorem, we have
seen from Eq. 11 that in noninjective networks the first
conclusion need not follow.

It is interesting to note that in some noninjective networks
the first conclusion of the reciprocity theorem gets violated
precisely when the supply elasticity ceases to be negative.
Consider, for example, the toy mass-action network

2A + B—3A,

A—B. 20

(Although unrealistic, it nevertheless illustrates well our math-
ematical point.) From Section S8 in the Supporting Material,
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it follows that in the positive network steady-state c¢*, = 1/2,
c*g =1 (which gives rise to the conserved total concentration
T= C*A + C*B = 3/2), k*ZA",BA)BA = 2, and k*BHA = 1, the
diagonal flux control coefficients are outside the range O to 1.
More generally, it is not difficult to see from Eq. S78 in Section
8 in the Supporting Material that both of the diagonal flux
control coefficients violate the first conclusion of the reci-
procity theorem precisely for network steady states in which

0<c4<2T/3. 1)

By essentially repeating the supply-demand analysis
provided in the case of the network in Eq. 1 for the case
of the network in Eq. 20, we obtain that

Supply Ca
T k) =2 ———
€A (CAy ) ) T*CA, (22)

Sﬁ)emand(CA7T’ k) — 17

and from the top expression in Eq. 22, we have that when-
ever Eq. 21 obtains, the supply elasticity is positive, and
not negative as intuitively expected. Thus, both of the diag-
onal flux control coefficients violate the first conclusion of
the reciprocity theorem precisely when the supply elasticity
of A is positive.

DISCUSSION

We emphasized both in the Introduction and in the Results
that the bounds given by the theorem will obtain for any posi-
tive steady state of any mass-action network that possesses
injectivity. This means that within the class of injective
mass-action networks, some degree of robustness will exist
in the positive-steady-state fluxes, and such robustness will
obtain regardless of the (injective) network’s size and
complexity, and regardless of the particular positive steady
state under consideration. Thus, within the scope of the injec-
tive class, some robustness in the positive-steady-state fluxes
will result as a nonadaptive side effect even when natural
selection is at work on another system property.

Of course, not all biologically relevant properties can be
implemented using injective networks—a case in point
being switching of the kind that requires two distinct stoi-
chiometrically compatible steady states (9). But other func-
tions, such as the catalysis process

S1+852 —> P

of Table 1, can be implemented by either injective (Entry 5)
or noninjective (Entry 6) networks. In such cases, the injec-
tive solution might enable evolution to adapt, say, the
production rate of P, while obtaining some robustness solely
as a salutary side effect of the injective network structure.
It is interesting to consider the potential implications of
this work in light of both the adaptive and the intrinsic
views on the evolution of robustness (26). The adaptive
view, which goes back to Fisher (27,28) (in the context of
the evolution of dominance), and Schmalhausen (29), Wad-
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dington (30), and Rendel (31) (in the context of canaliza-
tion), holds that robustness evolves because it increases
fitness. (The adaptive view of robustness has gained support
from recent work that takes into account the molecular
details of certain robust biochemical networks. See, for
example, von Dassow et al. (32), Barkai and Leibler (33),
Eldar et al. (34), and Alon (35).) The intrinsic view, which
goes back to Wright (36,37) and Kacser and Burns (38)
(also in the context of the evolution of dominance), holds
that robustness is a passive consequence of enzyme
biochemistry and the structure of metabolic networks.

Here we showed that within the injective class of mass-
action networks, some robustness in the positive-steady-
state fluxes will obtain solely as a passive consequence of
injectivity, echoing the intrinsic view. Yet even within the
injective class, some positive network steady states (as in
the network of Fig. 1 A) will correspond to extraordinarily
large flux control coefficients. Thus, in line with the adap-
tive view, robustness (in the sense that all flux control coef-
ficients be small) might require that network structure and
rate constant values evolve, rather than emerge as a passive
consequence of the underlying chemistry.

The “middle-ground” that our analysis strikes between the
intrinsic and adaptive views is somewhat related to the
conclusions drawn by Cornish-Bowden (39) from the analysis
of a simple chain of metabolic reactions. Cornish-Bowden has
demonstrated that, in the context of chains of enzyme-cata-
lyzed reactions, network structure alone will not make all of
the (Michaelis-Menten) flux control coefficients much less
than one. This, in fact, will only occur for certain choices of
parameter values. The study presented here shows that in
the context of injective networks, of which the mass-action
representations of enzyme chains are (simple) members,
network structure does somewhat constrain the majority of
flux control coefficients. Yet these constraints, by themselves,
will not guarantee that all flux control coefficients be small.

We note that, in the context of injective mass-action
networks, the theorem highlights the existence of a surprising
correlation between “reciprocal” pairs of flux control coeffi-
cients at whatever positive steady states might exist. This corre-
lation will persist for all pairs of distinct reactions, regardless of
the size and the complexity of the network. That such a connec-
tion might exist, even between reactions that have no common
species, and that might in some sense be very “distant” from
each other, is far from intuitive. Further research might circum-
scribe other, not necessarily injective, classes of networks in
which similar, and perhaps stronger, correlations obtain.

We observe that this work might be related to classic
results in metabolic supply-demand analysis (24). Although
we provided a simple example of a noninjective network in
which the first conclusion of the theorem breaks down
precisely when the supply elasticity ceases to be negative, it
might be the case that a similar breakdown mechanism might
also operate in more general cases. In fact, it is not impossible
that injectivity acts to constrain the range of values that the
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supply or demand elasticities might assume. We hope that
similar connections between the second, less intuitive conclu-
sion of the reciprocity theorem and concepts originating in
metabolic control analysis could be found in the future.
Finally, we note that the constraints on flux control coeffi-
cients discovered in this article apply only at steady state.
Whether similar constraints apply also outside steady state is
an interesting topic for future research. We also note that the
current investigation on the sensitivity of fluxes with respect
to rate constant values is, at present, separate from an earlier
investigation of the sensitivity of steady-state concentrations
with respect to total building-block concentrations (7). Future
work might help bring together these two lines of research.

SUPPORTING MATERIAL

Additional text is available at http://www.biophysj.org/biophysj/supplemental/
S0006-3495(11)00186-X.
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