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Abstract 

The total chromatic number gr(G) of a graph G is the least number of colors needed to color 
the vertices and the edges of G such that no adjacent or incident pair of elements receive the same 
color. 
A simple graph G is called type 1 if zr(G)= A(G) + 1, where A(G) is the maximum de- 
gree of G. In this paper we prove the following conjecture of Chen et al.: An (n - 2)-regular 
equibipartite graph Kn, n - E ( J )  is type 1 if and only if J contains a 4-cycle. @ 1999 Elsevier 
Science B.V. All rights reserved 
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1. Introduction 

In this paper, all graphs are finite, simple and undirected. We denote the vertex set, 

edge set, maximum degree, and order o f  a graph G by V(G),E(G),  A(G), and Ial, 
respectively. The degree o f  v E V(G) is denoted by dG(V). A vertex o f  degree A(G) is 

called a major vertex, otherwise a minor vertex. The deficiency def(G)  o f  a graph G is 

defined as ~v~v(G) (A(G) - dG(v)). The complete equibipartite graph of  order 2n, the 

cycle o f  order n and the star o f  order n are denoted by K.,.,  C. and S., respectively. 

A total coloring of  a graph G is a mapping n: V(G)UE(G)---+C such that no 

incident or adjacent pair o f  elements of  V ( G ) U E ( G )  receive the same color, where 
C is a color set. The total chromatic number zT(G) is the least cardinality o f  C for 

which G has a total coloring. From the definition o f  total chromatic number, it is clear 
that z r (G)>~A(G)+  1. In 1965, Behzad [1] and Vizing [8] independently made the 
following conjecture. 
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Total coloring conjecture (TCC). For any graph G, zr(G)<<.A(G)+ 2. 
This conjecture has been proved for complete graphs, for graphs G having A(G)<<.5, 

for complete r-partite graphs, for graphs G having A(G)>_.3IGI and for graphs G 
having A(G)>~IG[- 5. For details, see [9]. 

A graph G is called type i, i f z r ( G ) = A ( G ) + i ,  i>~l. Hence, if the TCC holds for 
certain classes of graphs G, then either G is type 1 or type 2. Many people, includ- 
ing J.C. Bermond, B.L. Chen, A.G. Chetwynd, J.K. Dugdale, H.L. Fu, A.J.W. Hilton, 
C.A. Rodger and H.P. Yap, have studied the problem of classifying the graphs accord- 
ing to their total chromatic number. For details, also see [9]. 

The notion of biconformability was introduced by Chetwynd and Hilton [4] for 
determining the exact total chromatic number of equibipartite graphs. A bipartite graph 
G with bipartition (A, B) is called biconformable if lAP = IBI and G has a (A(G)+ 1)- 
vertex-coloring ~b: V ( G ) ~  {Cl,C2 . . . .  , Ca(6)+l } such that the following conditions hold: 

(1) def(G) i> E/A__(1 a)+l ]ai - bi[; 
(2) [V<A(G)(A\Aj)[ >~bj - aj and [V<A(G)(B\Bj)[ >>.aj - bj, 

where [V<~(c)(S)[ is the number of minor vertices in SC_ V(G), Aj=49-1(c j )NA,  

B.,-=~-'(cj)ns, aj=14/I and bj=lBjl. 
The following lemma is proved in [4]. 

Lemma 1.1 (Chetwynd and Hilton [4]). Let G be an equibipartite graph. I f  G is 
type 1, then G is biconformable. 

The following conjecture is also made in [4]. 

Conjecture 1. Let G be a bipartite graph with A ( G ) ~ 3 ( ] G [  + 1). Then G is type 2 if 
and only if G contains an induced equibipartite subgraph H with A(H)  = A(G) which 
is not biconformable. 

However, counterexamples to this conjecture have been found for equibipartite graphs 
of order 2n with A ( G ) =  n - 1 by Chen et al. [2]. In [2], the authors also studied the 
problem of classifying equibipartite graphs with A ( G ) =  n -  2. In this paper, we prove 
the following theorem which is a conjecture made in [3]. 

Main Theorem. Suppose J is a suboraph o f  Kn, n such that G = K , , n - E ( J )  is ( n - 2 ) -  
regular, where n>>.5. Then G is type 1 if  and only i f  J contains a 4-cycle. 

2. Some preliminary results 

In this section, we shall introduce some results in completing partial latin squares 
and extending partial edge colorings, which will be used in our proof of the main 
theorem. The part of embedding partial latin squares is abstracted from [4]. 
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A partial latin square of  side n defined on n distinct symbols is an n × n array 
in which some cells may be empty and each o f  the non-empty cells contains exactly 

one symbol such that no symbol occurs more than once in any row or in any column. 
It is a (complete) latin square if  there is no empty cell. A partial latin square is called 
symmetric i f  whenever a cell ( i , j )  contains a symbol tr, the cell ( j ,  i) also contains a. 
A partial latin square L is called unipotent if  all the cells of  the main diagonal o f  L 

are filled with the same symbol. 
A set Q of  n - 1 cells of  a (partial) latin square P of  side n on symbols 1,2 . . . . .  n 

is called a near transversal excludin9 (row i, column j, symbol k) if  it satisfies: 
(1) each row, except row i, has exactly one cell o f  Q, and each column, except column 

j ,  has exactly one cell o f  Q; 
(2) no two cells o f  Q contain the same symbol; 

(3) symbol k is not filled in any cell o f  Q. 
Note that i f  P is unipotent and Q contains no main diagonal cell, then Q does not 

contain the symbol in the main diagonal. Hence, for convenience, in this case, we say 
that Q excludes ( i , j )  instead o f  saying that Q excludes (row i, column j ,  symbol k). 
Two sets Q and Qt of  cells are said to avoid one another if  they have no common cell. 

Let P be a unipotent partial latin square of  side n consisting of  n - 1 occupied off- 
diagonal cells which form a near transversal Q. Suppose P has a sequence of  occupied 

off-diagonal cells (cq, ~2), (~2, ~3) . . . . .  (~k, ~l). Since each row R i (resp. column Cj )  

of  P has at most one occupied cell other than cell (i, i) (resp. ( j , j ) ) ,  we know that 

~l,Ct2 . . . . .  ~k are all distinct. We call such a sequence (~l,~tZ),((Z2,~3) . . . . .  (~k,O~l) of  
cells a cycle (~1,~2 . . . . .  ~k). 

Suppose that P has two cycles C 1 =(cq ,~2  . . . . .  ctr) and C2=(fl1,132 . . . . .  13s). Let a 
and b be the symbols in (cq, ~2) and (ill, f12) respectively. Let P '  be a new partial latin 
square obtained from P by: 

(1) transfering symbol a from (~1,~2) to (~t,fl2), and transfering symbol b from 

(ill,fl2) to (ii1,0¢2); 
(2) keeping the symbols in all the other cells o f  P unchanged. 

Clearly, in p/ ,  the two cycles (~1, ~2 . . . . .  CCr) and (ill, ii2,---, i/s) have been combined 

into one cycle C 3 = (0¢1,112, ii3 . . . . .  i/s, ill, :t2, as . . . . .  as). We say that U is obtained from 
P by swoppin9 the two preassigned off-diagonal symbols of  columns a2 and 132, and 
we call columns O~ 2 and 132 used columns and all the other columns of  C 1 and C 2 
unused columns. Since r,s ~> 2, the number of  unused columns in C 3 is at least 2. 

In the proof  of  the main theorem, we will encounter the case that P '  has been 
completed to a latin square L ' =  (l~j) of  side n such that l~,,&' = 1[~2,~2./ Since cq , ~2,131 
and f12 are distinct, the cells (~2,//2) and (/32, ~2) are not in C l, C 2 or C 3. We can obtain 

a new latin square L of  side n from L'  by interchanging the symbols between cells 

(~2,~z) and (~2,ii2), and between cells (132,ii2) and (ii2,~2), and then interchanging 
column ~2 with column 132. It is easy to see that L contains P. We call this a resuming 
process. The resuming process has the following properties: 

P1. L is still an unipotent latin square; 
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P2. For any near transversal Qt of  L' that contains no main diagonal cells, if 

(~2,f12),(f12,~2)q~S ~, then the cells of  L corresponding to those of  S ~ also form a 
near transversal. 

We will use the following lemma to prove the main theorem. It is a special case of  
Theorem 3.1 in [6]. 

Lemma 2.1. Let P be a unipotent partial latin square o f  side n such that all the 

main diagonal cells are filled with symbol n, where n is even and n ~ 4. Suppose that 
all the off-diagonal occupied cells form a near transversal Q excluding (1, 1). Then 
P can be completed to form a unipotent latin square L o f  side n such that L has a 
near transversal Q' excluding (1, 1) and avoiding Q. 

We also need the following lemma in the proof of  the main theorem. This lemma 
derives from a special 1-factorization of /£2,  which is called cyclic of  type 2 by 

Korovina [5] or factor-l-rotational by Mendelsohn and Rosa [7]. 

Lemma 2.2. Let G = $2 tA C2,-2 be a spanning subgraph o f  K2,, where n >~ 3. Then 
there exists a ( 2 n -  1)-edge-coloring o f  K2, such that all the edges of  G receive 
distinct colors. 

3. Proof of Main Theorem 

Let G=(X ,  Y). Suppose G is a type 1 graph. Then by Lemma 1.1, G is bicon- 
formable. Thus there exists a biconformable ( A ( G ) +  1)-vertex-coloring ~b of G. Let 

Xj E X and Y] E Y be the vertex sets colored with color j .  Then IXjl = I t  j I, j = 1,2 . . . . .  
A + 1. Since G is ( n -  2)-regular, then [Xj[ = IYjl <2 .  Since Ixl = IYI = n ,  there is at 
least one Xk (Yk) having 2 vertices. Then the vertices in Xk and Yk form a 4-cycle in J .  

Now suppose that J contains a 4-cycle C. Clearly J consists of  two 1-factors F1 and 
F2. Then we can color F1 with color n, and color F2 with colors 1,2, . . . ,  n - 1 such 
that the two edges of  F2 in the 4-cycle C are colored with color 1 and all the other 
edges of  F2 receive distinct colors 2, 3 . . . . .  n -  1. An example is shown in Fig. 1. 

Now we shall show that there is a 1-1 correspondence between n-edge-colorings of  
Kn., using colors 1,2 . . . .  ,n and latin squares of  side n on symbols 1,2 . . . . .  n: each n- 

Xl X2 

Yl Y2 

X3 X4 X5 Xn-2 Xn-1 Xn 

Y3 Y4 Y5 Yn-2 Yn-1 Yn 

Fig. 1. An n-edge coloring ¢ of J. 
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X l  X2 X3 

Yl n 1 

y2 1 n 

Y3 n 

y4 2 

Y5 

X4 X5 . . . . . . .  Xn--1 Xn  

4 

n 

3 n 

Yn-1 n 

yn ~ - - 2  n 

Fig. 2. The n × n partial latin square P corresponding to ¢ in Fig. I. 

edge-coloring ¢ of  Kn, n gives rise to a latin square L = ( (~(yix j ) )  of  side n; conversely, 
for any latin square L = ( l i j)  of  side n, we can construct an n-edge-coloring q~ of  Kn.,, 

by putting ( a ( y i x j ) =  lij. Thus completing a partial latin square o f  side n is equivalent 

to extending a partial n-edge-coloring o f  Kn,n to an n-edge-coloring o f  Kn, n. Similiarly, 

there also exists a 1-1 correspondence between (2n - 1)-edge-colorings o f  K2, using 

colors 1,2 . . . .  ,2n - 1 and unipotent symmetric latin squares o f  side 2n on symbols 

1,2 . . . .  ,2n, whose diagonal cells are all occupied by 2n. 

The n-edge-coloring 4) o f  J is also a partial n-edge-coloring o f  Kn,,. By the 1-1 

correspondence between n-edge-colorings of  K,, ,  and latin squares o f  side n, ~b is 
identified with a unipotent partial latin square P o f  side n. A unipotent partial latin 

square corresponding to the above example is shown in Fig. 2. Next we consider two 

cases: 
Case 1: n is odd. We can obtain a unipotent partial latin square P~ of  side n - 

1 with symbols 2,3 . . . . .  n by deleting the first row and the first column of  P (see 

Fig. 3). 

We observe that the set of  all the occupied off-diagonal cells in P '  form a near 

transversal Q excluding (1, 1). By Lemma 2.1, P '  can be completed to a unipotent 

latin square L' o f  side n - 1 such that L'  contains a near transversal Q'  excluding 

(1, 1) and avoiding Q. Now we extend L ~ to a unipotent latin square L of  side n, 
which contains P, as follows: add one row and one column to L'  as the first row and 

first column, then fill in cell (1, 1) with symbol n, and fill in cells (1,2)  and (2, 1) 
with symbol 1. Furthermore, if cell ( i , j )  in L is a cell of  Q' in U,  then replace the 

symbol, say ~, in ( i , j )  with symbol 1 and fill in cells (i, 1) and (1 , j )  with symbol ~. 
In other words, P can be completed to a unipotent latin square o f  side n. It follows 
that ¢ can be extended to an n-edge coloring qS' of  K,, , ,  Now we can obtain an 
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X2 

y2 n 

yr~ -- 1 

y,~ 

X3 X4 X5 . . . . . . . . .  Xn - - I  X n 

y3 n 

y4 2 n 

y~ 3 n 

n 

n - ~ n  

Fig. 3. The  (n - 1 ) × (n - 1 ) par t ia l  la t in  square  P~. 

(n - 1)-total-coloring ~k of  G from ¢1 using colors 1, 2 . . . .  , n - 1: 

~(xiYj)--gf(xiYj) if  xiYjEE(G),  i= 1,2 . . . . .  n, 

~O(xi)-----~(yj)=¢'(xiyj) i f x i y )  EE(J)  and ¢'(x iYj)¢n.  

Hence G is type 1. 
Case 2: n is even. Suppose P has only two cycles (1,2) and (3,4 . . . . .  n). Then for 

any occupied off-diagonal cell (i,j), except (1,2) and (2, 1 ), cell ( j ,  i) is not occupied. 
(Otherwise cells ( j , i )  and (i,j) form a cycle of  length 2 which contradicts the fact 

that P has only two cycles.) We fill in cell ( j , i )  the same symbol as in cell (i,j). 
(We can do this because all the occupied off-diagonal cells except (1,2) and (2, 1) 
have distinct symbols.) We thus obtain a unipotent symmetric partial latin square pt  
of  side n. By the 1-1 correspondence between unipotent symmetric latin squares of  
side n and (n - 1 )-edge-colorings of  K, as mentioned before, Pt can be identified with 
a partial (n - 1)-edge-coloring n of  K,. The preassigned n - 1 distinct symbols in P~ 
correspond to n - 1 distinct colors on the edges of  $2 U C~-2 in K,. By Lemma 2.2, n 
can be extended to an (n - 1 )-edge-coloring of  K,. In other words, PI (so is P )  can 
be completed to a symmetric latin square of  side n. 

Suppose P has m > 2 cycles C 1, C 2 . . . . .  C m, where C 1 =  (1, 2). We first combine C 2 

and C 3 to a new cycle C* by swopping a column of  C z with a column of  C 3. There 
are at least two unused columns in C*. Then we combine C* and C 4 by swopping an 
unused column of  C* with a column of C 4. We continue this process until we finally 
obtain a unipotent partial latin square P~ which has only two cycles (Since at each step 
there are at least two unused columns in the new cycle, we know that each column 
is used at most once throughout this process.) As shown above, pr can be completed 
to a symmetric unipotent latin square L of  side n. Now for any pair of  used columns 

and r ,  since L is symmetric, we can restore back these two columns to the original 
two columns in P by the resuming process. (We can do this because in the combining 
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process each co lumn  was used at most  once, and thus the pairs o f  used co lumns  are 

mutua l ly  independent . )  Thus  we obta in  a lat in square L'  o f  side n from L. It is easy 

to see that L ~ contains  P.  

Hence,  we conclude that P can be completed to a unipotent  latin square. It fol lows 

that ~b can be extended to an n-edge-color ing  ~b ~ of  Kn,,. Now we can obtain an 

(n - 1 )- total-coloring qJ o f  G from q~' us ing  colors 1,2 . . . . .  n - 1 as follows: 

~ ( x i y j ) = c Y ( x i y j )  i f  xiYj E E ( G )  i =  1,2 . . . . .  n, j =  1,2 . . . . .  n, 

~(xi)----t~(yj)=~pt(xiYj) i f  x i Y j E E ( J )  and ( J ( x i Y j ) ~ n .  

It fol lows that G is type 1. E5 
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