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Abstract

It is a well-known problem that design information of object-oriented programs is often lost or is
not kept up-to-date when the program evolves. This design information can be recovered from the
program using such techniques as logic meta programming. In this technique logic queries are used
to check whether the program is implemented along certain well-known patterns. Currently the
technique relies on structural information and patterns are expressed in the queries as conditions
over structural elements of the program. Some patterns are however better expressed in dynamic
terms which requires behavioural information about the program. Such information can be obtained
from execution traces of the program, but these record only one possible input dependent program
execution out of many. Abstract interpretation of the object-oriented program could provide a
well-founded means for extracting the necessary behavioural information.
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1 Introduction

It is a well-known problem that design information of programs is often lost
or is not kept up-to-date when the program evolves [11]. This makes later
maintenance of the program difficult as such maintenance usually requires the
programmer to have an understanding of the global structure of the program:
the relationships between modules, or classes in the case of object-oriented
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programming. One goal of reverse engineering research is to provide tech-
niques for aiding the programmer in recovering such design information from
the program itself.

One technique that can be used for recovering design information is Logic
Meta Programming [11]. This technique revolves around the use of logic pro-
gramming for posing queries on a program. Using a library of logic rules that
define which high-level relationships between program elements hold under
which conditions, a programmer can build an understanding of a program by
querying it for such relationships.

One particularly interesting kind of design information about an object-
oriented program is where it makes use of design patterns [4]. These define
patterns for using classes in a certain way to solve common problems, such as
the Strategy pattern for dynamically changing an object’s behaviour and the
Visitor pattern for performing operations on all objects in a tree structure.
The fact that a program makes use of these patterns is usually not immedi-
ately obvious from the code because the pattern is not a single element in the
program but rather is defined by structural relationships between elements
as well as the behaviour that arises from it. It has been shown that knowl-
edge about the presence of these patterns improves the software maintenance
process [9].

While Logic Meta Programming (LMP 2 ) can currently already be used
to detect design patterns based on detecting the salient structural relations
defining a pattern [2], there is no model yet for detecting patterns based on
the behaviour they give rise to. Such a model is necessary as in some cases
a pattern is more easily detectable based on the behaviour, or because the
resulting logic rules become more readable because they better capture the
pattern.

We have currently explored how pattern detection rules based on behaviour
can be written using an ad-hoc model based on execution trace information.
Our position for this workshop is that Abstract Interpretation research can
provide a better theoretically-founded model. We wish to receive further feed-
back from the Abstract Interpretation community on this position. To provide
the necessary background this paper further explains the following: section 2
gives a brief overview of the current LMP approach, section 3 describes a par-
ticular design pattern in more detail, sections 4 and 5 respectively contrast the
current structural-based pattern detection approach and our proposed novel
behavioural-based one and in section 6 we consider the question of how ab-
stract interpretation can be used.

2 In the remainder of this paper, the acronym LMP will denote Logic Meta Programming.

C. De Roover et al. / Electronic Notes in Theoretical Computer Science 131 (2005) 15–2516



... ... ....

.... ......

... ... .....

..... ......

represented
by

Object-Oriented Program

Element isClass
Element hasMethod: remove
...

Meta Model

reason
about

if ?x isInHierarchyOf:
     Element

Logic Rules & Queries

Fig. 1. An overview of Logic Meta Programming with a structural meta model

2 Logic Meta Programming

Logic Meta Programming is a technique in which a Prolog-like language [3] is
used as a meta language for reasoning about object-oriented programs. Over
the years, it has been applied to a variety of problems in object-oriented soft-
ware engineering, some examples are: reasoning about object-oriented design
[11,10]; checking and enforcing programming patterns [7]; supporting evolu-
tion of software applications [8] and checking architectural model conformance
[12]. Following the example of these researchers, we use the SOUL logic meta
programming system to conduct experiments on programs written in Smalltalk
[5]. The SOUL approach to logic meta programming is however generic and
can be applied to most class-based object-oriented programming languages,
as is evidenced by the existence of SOUL for Java [2].

Figure 1 illustrates the overall approach of LMP. To allow the use of logic
queries to reason about the program, it is represented as logic facts according
to a meta model. In the current structural meta model these facts state the
classes and methods present in the program, and the basic relations between
these such as one class being the subclass of another.

Starting from the basic structural facts, more complex relationships can be
derived by defining the appropriate logic rules. For example the following rules
express what it means for one class to (in)directly be a subclass of another 3 :

?directSubclass isInHierarchyOf: ?root if
?directSubclass isSubclassOf: ?root.

?indirectSubclass isInHierarchyOf: ?root if
?indirectSubclass isSubclassOf: ?parent,
?parent isInHierarchyOf: ?root

The first rule expresses that one class is in the class hierarchy of another
class when it is the subclass of that class. The second rule expresses that
classes that are the subclasses of a class that is in the hierarchy of some class
are also in the hierarchy of that same class.

As with regular Prolog, one can use the isInHierarchyOf: predicate in

3 The logic language used for LMP has a syntax that is somewhat different from Prolog’s
[6]: an expression such as ?a m: ?b n: ?c is a functor with a name consisting of the two
words ’m’ and ’n’; ?a, ?b and ?c are variables.
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logic queries both to verify whether there is a hierarchy relationship between
two classes and to detect the classes another class has in its hierarchy. In the
first of the two example logic queries below, the isInHierarchyOf: predicate
is used to verify that the class String somehow inherits from the class Object,
in the second query it is used to find all classes that inherit (in)directly from
the class Object. For the first query the logic evaluator will try to logically
prove that the isInHierarchyOf: predicate holds for the given arguments
and for the second query it will return all the values for the variable ?x that
make the predicate hold.

if String isInHierarchyOf: Object
if ?x isInHierarchyOf: Object

Thus for better understanding a program, a programmer can use LMP
to verify her intuitions about or detect the relationships between program
elements using logic rules. While even simple rules like isInHierarchyOf:

can aid in this understanding, the conditions for detecting more interesting
and complex relationships can be encoded in rules as well as will be discussed
in the next section for the Visitor design pattern.

3 Design Patterns

In the following section we will demonstrate how logic meta programming
can be used to detect and verify complex software patterns. To this end,
we will first describe a prototypical software pattern which we will use as a
running example: the Visitor design pattern. We will particularly emphasise
and compare the two complementary perspectives from which this software
pattern can be described: a structural perspective and a behavioural one. As
will be explained later, detecting the Visitor design pattern on the basis of the
behavioural perspective is more reliable but requires a new approach to LMP.

From the structural point of view, a pattern is described in terms of class
hierarchies and specific statements in methods. The behavioural point of view
describes a pattern in contrast by the protocol that governs the interaction
between the run-time entities the pattern is composed of.

The Visitor design pattern is a pattern of moderate complexity and makes
a perfect case study for the merits of the inclusion of behavioural information
for the detection of software patterns. It is one of the twenty-three design
patterns introduced by the “gang of four” in their book [4] on reusing proven
and often re-occurring software designs.

The pattern solves a common problem where many unrelated operations
need to be performed on objects of different types held together in a compound
structure. Its essence is a well-defined protocol between the class traversing a
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Fig. 2. Class diagram describing the architecture of the Visitor design pattern

compound structure and the components it contains. The protocol demands
that a visited component notifies the traversing class of its type. This allows
operations relying on a traversal of the compound structure to be defined
separately from the components themselves.

A more detailed description of the Visitor protocol above can be under-
taken either from the structural or the behavioural point of view. From the
former, we are mainly interested in the implementation of this protocol. The
architectural building blocks are shown in figure 2. The Visitor abstract
class has a method visitConcreteElementX: for each element of type X in
the object structure. Instead of scattering the implementation of the com-
pound traversal operation across the entire object structure, the correspond-
ing partial implementations can be gathered into visitConcreteElementX:

methods of Visitor subclasses. Each component in the compound object
structure must in turn implement an accept: method.

From the behavioural point of view, the objects in the object structure
accept a Visitor subclass with their accept: method and subsequently
call the visitConcreteElementX: method corresponding with their type on
the received visitor. More specifically, if we study the dynamic behaviour
of the Visitor Design Pattern using the annotated sequence diagram shown
in figure 3, we can conclude that a recursive double dispatching over in-
stances held by a parent node characterises this pattern’s behaviour. The
visitation of anObjectStructure begins and ends at certain moments in
time between which a visitation of the subelements aConcreteElementB and
aConcreteElementA occurs. The latter visitation comprises a third visitation
on aConcreteElementC.

4 Detection of the Visitor Structure

The current approach to logic meta programming in SOUL uses a static meta
model for representing a program’s source code as logic predicates. This kind
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Fig. 3. An annotated sequence diagram demonstrating the recursive nature of the Visitor design
pattern

1 ?visitor withSelector: ?visitSelector visits: ?element withSelector: ?accept if
2 ?visitor isClass,
3 ?visitor implements: ?visitSelector,
4 ?element isClass,
5 ?element implements: ?accept withBody: ?acceptBody,
6 ?acceptBody methodArguments: ?acceptArgs,
7 ?acceptBody methodStatements:

8 <return(send(?visitor, ?visitSelector,?visitArgs ))> ,

9 ?visitArgs contains: variable([#self]),
10 ?acceptArgs contains: ?visitor.

Fig. 4. Structural Visitor detection rule

of meta model agrees with the structural point of view from which the Visitor
design pattern can be described. It results in a straightforward translation
of the structural architecture shown in figure 2 into an equivalent executable
logic rule shown in figure 4.

The withSelector:visits:withSelector: predicate states that a ?visitor
with method selector ?visitSelector visits a ?element class with method
selector ?accept. This logic statement is true if all of the following conditions
are satisfied. First of all, the ?visitor variable must be bound to a class
from the program’s source code. This class must furthermore implement a
method with selector ?visitSelector. There must also be a class bound to
the ?element variable which must implement a method named ?accept im-
plemented as ?acceptBody. The Visitor protocol demands that this method is
called with the visiting object as its argument which is stated on the last line
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1 ?visitor visits: ?composite from: ?begin till: ?end invokedBy: ?invoker if
2 ?invoker doubleDispatchesOn: ?composite
3 selector: ?acceptselector
4 at: ?begin
5 andOn: ?visitor
6 selector: ?visitselector
7 at: ?end,

8 (?visitor visits: ?part from: ? till: ? invokedBy: ?)

9 forall: (?composite contains: ?part at: ?begin)

Fig. 5. Behavioural Visitor detection rule

of the rule. In the body of the ?accept method, a message ?visitSelector

must be sent back to the visiting object with the visited element as its ar-
gument. This is verified by matching the method’s source code with the
statements in the methodStatements part of the rule.

While the above rule is effectively used in the general approach to design
pattern detection using LMP, the highly dynamic nature of the Visitor de-
sign pattern demands a different kind of detection based on the behavioural
perspective.

First of all, the static nature of the current meta model creates a strong
dependency on the actual implementation of the pattern in the source code
with little room for small deviations. The above rule assumes for instance
that the descend through the object structure is controlled by the visitor
instead of by the object structure itself. This is evidenced by the body of
the ?accept: method which is required to match the following statement list
exactly: a return of the result of the ?visitSelector message being sent to
the ?visitor class. In order to be able to detect the implementation variant
in which the control over the descend is located in the visiting object, an
additional logic rule must be defined. This solution is far from elegant nor
efficient.

Furthermore, the above deviation isn’t the only one possible. The logic
rule also demands that the literal symbol self is passed as an argument to
the ?accept method. Another implementation variant might pass the visited
object indirectly through a method invocation and will thus remain unde-
tected.

While logic meta programming with a static meta model can be used to
detect a pattern based on the structural perspective, the independence from
exact source code allows for a more expressive and flexible formulation of logic
pattern detection rules in the behavioural perspective. In the following section
we will explain how our current meta model can be modified to allow pattern
detection from the behavioural perspective.
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Fig. 6. An overview of Logic Meta Programming with a behavioural meta model

Fig. 7. Example of a composite object structure visited by a ChapterVisitor and extract of the
corresponding execution history.

5 Detection of the Visitor Behaviour

As mentioned in the previous section, we would like to detect the Visitor design
pattern by the behaviour it exhibits at run-time. The inclusion of behavioural
information however demands a modification of the meta model according
to which logic facts represent the program under investigation. Our ad-hoc
approach to a more dynamic meta model is based upon execution traces. In
contrast to the situation depicted in figure 1, our new meta model models a
program as an ordered collection of execution events that occur at run-time.
Gathering these events requires the program to be executed. Figure 6 gives a
general overview of this approach to logic meta programming.

We record three kinds of execution events: method invocations, variable
assignments and method exits. An invocation is modelled by the methodEntry
predicate which records the order of the event in the execution history, the
instance sending the message, the receiving object, the method selector and
the method’s arguments:

methodEntry(?sequenceNumber, ?sendingInstance,
?receivingInstance, ?receivedSelector,
?receivedArguments)

The other execution events are modelled by similar logic predicates. Figure 7
depicts an example program with the corresponding execution trace.

Previously, we demonstrated how instances of the visitor design pattern

C. De Roover et al. / Electronic Notes in Theoretical Computer Science 131 (2005) 15–2522



can be detected using the structural meta model by searching for literal trans-
lations of the pattern’s architecture in a program’s source code. Using the new
behavioural meta model, we can however also detect instances of the pattern
using the succinct rule shown in figure 5 which is a straightforward translation
of the corresponding sequence diagram shown in figure 3.

The visits:from:till:invokedBy: predicate expresses that an ?invoker

object caused a ?visitor object to visit a ?composite from the ?begin se-
quence number corresponding with the accept: method invocation till the
?end sequence number corresponding with the matching method exit event
if two conditions are met. The first condition captures the double dispatch-
ing event of the pattern: there should be a double dispatching between the
?composite and the ?visitor in which the first method plays the role of
the accept method in the pattern –the ?acceptselector is received by a
?composite with the ?visitor as its argument– and the second method be-
haves as the visit method in the pattern – the ?visitselector is received
by the ?visitor with the ?component as its argument. The second condition
captures the recursive nature of a visitor: in addition to the presence of the
above double dispatching pattern, we also demand that the visitor recursively
visits all the components of the composite.

The results of the query

if ?visitor visits: ?composite from: ?begin till: ?end

on the execution trace shown in figure 7 are shown below:

?composite ?invoker ?begin ?end ?visitor

a Chapter a VisitorInvoker 20 30 a ChapterVisitor

a Section a Chapter 21 27 a ChapterVisitor

a Paragraph a Section 22 24 a ChapterVisitor

From these results we derive that the ChapterVisitor class (the root
of a class hierarchy of visitors for transforming formatted book chapters to
for instance plain text files) visits the Chapter class beginning with method
invocation 20 ending with a method exit at sequence number 30. During this
visitation, the visitor also pays a visit to the Section class from sequence
number 21 till sequence number 27. The Paragraph class is visited from
sequence number 22 till 24.

The recursive nature of the Visitor design pattern is emphasised by the
order in which the components are visited: the visitation of the root node
ends when the invocation of the visitor on its children has ended. The control
over the recursive descend of the composite structure is located in the structure
itself which can be derived from the solutions by observing that the ?invoker
variable is always bound to the parent node in visitations originating from
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higher levels in the structure. This basic example of the Visitor design pattern
can thus not be detected using the original structural rule.

This rule is by nature insensitive to differences in common implementation
variants of the visitor as they mostly exhibit the same run-time behaviour.
For instance, it is insignificant whether the visitation of composite elements
happens through an iteration over elements in a collection (as is the case for
the Section class) or through a (possibly indirect) call to an instance variable
(as is the case for the Chapter class).

6 Towards Abstract Interpretation for Design Recovery

Together with experience gained from further experiments with a behavioural
meta model [1], the Visitor design pattern example from the previous section
indicates the need for a behaviour-based meta model for LMP. Other ex-
periments performed included the detection of the accessor method pattern,
which is more succinctly expressed using the behavioural meta model because
of variations such as lazy initialisation of the accessed variable. However,
as indicated proving the presence of these patterns in the behavioural meta
model is currently done using an extraction of the model based on tracing the
execution of the program. This introduces the problem that this information
is only valid for one of many different possible program executions. As our
current behavioural meta model doesn’t generalise over all possible execution
paths, it doesn’t allow the existence of a pattern to be proven with mathe-
matical certainty. Our position is that abstract interpretation could provide
a founding model for behavioural-based LMP for design recovery.

Abstract interpretation allows behavioural information to be derived math-
ematically from an approximation of the actual program semantics. As our
current ad-hoc behavioural meta model has shown, this kind of information
can greatly improve the effectiveness of pattern detection in logic meta pro-
gramming. Therefore, our initial future work involves further investigating
which behavioural program properties are needed for pattern detection and
which can be derived through abstract interpretation. The granularity of the
behavioural information that can be obtained through abstract interpretation
will greatly determine the kind of software patterns that can be detected.
Some patterns require for instance knowledge about specific object identities
while for other patterns general information about the classes involved suffices.

We will also investigate whether the abstract interpretation process can be
kept separate from the pattern detection process or whether they are to be in-
terleaved. In the former case, our logic programs will just be reasoning about
facts gathered by an abstract interpreter. In the latter case, the reasoning pro-
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cess might determine exactly what kind of program properties are needed to
prove the existence of a pattern and configure an abstract interpreter tailored
for that exact purpose.

We would also like to investigate whether abstract interpretation not only
enables us to prove that a certain pattern is present in every possible program
execution, but also whether a pattern is only present under certain conditions.
An exact determination of the conditions under which a pattern is present
would greatly surpass the current possibilities of logic meta programming.

Finally, approximate reasoning is another path we are pursuing in parallel
in our research for a more flexible detection of software patterns [1]. Our initial
experiments have shown that approximate reasoning aids in overcoming small
discrepancies between the facts needed to prove the existence of a pattern and
the program facts at hand. Later research might also entail investigating how
these two approaches can be combined conceptually: approximate reasoning
about approximate program semantics.
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