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Modulation and integration of signaling pathways through receptor-Smads
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Summary

Objective: Chondrocytes and alteration in chondrocyte differentiation play a central role in osteoarthritis. Chondrocyte differentiation is
amongst others regulated by members of the transforming growth factor-beta (TGF-beta) superfamily. The major intracellular signaling routes
of this family are via the receptor-Smads. This review is focused on the modulation of receptor-Smad signaling and how this modulation can
affect chondrocyte differentiation and potentially osteoarthritis development.

Methods: Peer reviewed publications published prior to April 2009 were searched in the Pubmed database. Articles that were relevant for the
role of TGF-beta superfamily/Smad signaling in chondrocyte differentiation and for differential modulation of receptor-Smads were selected.

Results: Chondrocyte terminal differentiation is stimulated by Smad1/5/8 activation and inhibited the by Smad2/3 pathway, most likely by mod-
ulation of Runx2 function. Several proteins and signaling pathways differentially affect Smad1/5/8 and Smad2/3 signaling. This will result in an
altered Smad1/5/8 and Smad2/3 balance and subsequently have an effect on chondrocyte differentiation and osteoarthritis development.

Conclusion: Modulation of receptor-Smads signaling can be expect to play an essential role in both the regulation of chondrocyte differenti-
ation and osteoarthritis development and progression.
ª 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Transforming growth factor-beta (TGF-beta) is the name
giving archetype of a large family of growth factors involved
in numerous biological processes such as cell proliferation,
differentiation, embryonic development, carcinogenesis,
immune function, inflammation and wound healing1. More
than 35 members of this family of growth factors are
known. The proteins are synthesized as propeptide precur-
sors with a signal domain followed by the prodomain and
the mature domain. Most family members are produced
as homodimers.

TGF-beta is secreted in a biologically dormant form and
the propeptide (latency associated peptide, LAP) has to
be cleaved from the mature peptide before activation. After
cleavage, LAP remains associated with the mature domain
and only after dissociation TGF-beta is active. The binding
of LAP to the mature form is reversible and exogenous LAP
can function as a TGF-beta inhibitor when present in high
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concentrations. In mammals there are three isotypes of
TGF-beta. The isoforms show a high degree of homology
of 84e92%. The expression of the three isoforms is differ-
ently regulated at the transcriptional level due to different
promotor sequences.
TGF-beta signaling

The main TGF-beta signaling route is through specific,
membrane-bound, type I and type II serine/threonine kinase
receptors and its intracellular effectors, Smads. In addition
to the Smad pathway other routes have been described.
TGF-beta binds to a constitutive active type II receptor
where after a type I receptor is recruited and so-called re-
ceptor-Smads (R-Smads) are phosphorylated by the type
I receptor. A complex of two receptor-Smads and one com-
mon-Smad (Smad4) is formed that shuttles to the nucleus
to modulate gene expression2.

Seven TGF-beta superfamily type I receptors, also known
as activin receptor-like kinases (ALKs), are described3. ALK
1, 2, 3 and 6 signal via the Smad1, 5 or 8 pathway while
ALK 4, 5 and 7 signal by phosphorylating Smad2 or 3.
The canonical TGF-beta type I receptor is ALK5, phosphor-
ylating Smad2 and Smad3. However, recently it has been
shown that of the seven ALKs known, not only ALK5 but
also other ALKs can be involved in TGF-beta signaling.
The doctrine that TGF-beta binds to ALK5 thereby
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activating only the Smad2/3 pathway excluding the Smad1/
5/8 pathway [so-called bone morphogenetic protein (BMP)
pathway] is challenged by these findings.

In endothelial cells, but also in other cell types such as
chondrocytes, it has been shown that TGF-beta can signal
via ALK1, in this way activating the Smad1/5/8 route4e8. In
endothelial cells TGF-beta signaling via ALK1 is facilitated
by the co-receptor endoglin and results in different gene ac-
tivation and cellular responses than ALK5 signaling4e6.
ALK1 appears to be recruited into a TGF-beta receptor
complex in combination with ALK5. In this complex, ALK5
kinase activity is essential for optimal ALK1 activation by
TGF-beta5. However, it is not clear whether ALK5 kinase
activity is crucial for TGF-beta activation of ALK1 in other
cell types. ALK5 kinase activity inhibitors were unable to
block ALK1-mediated stimulation of fibrosis by TGF-beta9.
This indicates that TGF-beta can activate ALK1 and the
Smad1/5/8 route independent of ALK5 kinase activity. Not
only ALK1 but also ALK2 and ALK3 have been shown to
be involved in Smad1/5/8 activation by TGF-beta10,11. In
epithelial cells, TGF-beta-induced Smad1/5/8 phosphoryla-
tion appeared to be either ALK2 or ALK3 dependent10.
Activation of ALK5-ALK2/3 receptor complexes resulted in
the simultaneous phosphorylation of Smad1/5 and
Smad2/3 and the subsequent formation of mixed R-Smad
complexes. The TGF-beta-induced activation of Smad1/5
in epithelial cells was critically dependent on both the
TGF-beta type II receptor and ALK5 kinase activity. More-
over, the authors suggest that mixed Smad1/5-Smad2/3
complexes bind unique promoter elements and control
a subset of TGF-beta-regulated genes distinct from that of
receptor-Smad homodimers10. Recently it has been shown
that in certain mammary epithelial cell lines TGF-beta can
even directly activate Smad1 phosphorylation via the L45
loop of ALK512. These findings indicate that TGF-beta sig-
nals not only via Smad2/3, but that in addition to this prevail-
ing signaling pathway, in a number of cell types TGF-beta
can signal via the Smad1/5/8 route. Activation of the
Smad1/5/8 route by TGF-beta occurs in different cell types
in different ways and is probably not only cell type, but also
differentiation stage specific. As a consequence, blocking
TGF-beta activity by blocking different ALKs or different
Smad pathways will result in cell-specific outcomes.

Although signaling via the Smad pathway appears to be
the most important signaling pathway for TGF-beta, it is cer-
tainly not the only signaling pathway13,14. MAP kinase, Rho-
like GTPase and phopshatidylinositol-3-kinase pathways
are activated by TGF-beta (see for a recent review
Zhang)14. It has been shown that TGF-beta activates p38
and JNK trough TRAF6-facilitated recruitment of TAK1
(TGF-beta activated kinase1). Activation of TAK1 occurs in-
dependent of ALK5 kinase activity15. The activation of dif-
ferent pathways be TGF-beta furthermore stresses that
one has to take into account the dissimilar handling of the
TGF-beta signal in different cell types and subsequent var-
iation in TGF-beta effects.

TGF-beta and chondrocyte differentiation

Cartilage formation (chondrogenesis), as can be ob-
served amongst others in the developing embryo, is a rigor-
ously regulated process. Non-differentiated mesenchymal
precursor cells condensate and set off chondrogenic differ-
entiation. Differentiation of prechondrocytes into differenti-
ated chondrocytes involves a chondroblast phase
characterized by high cell proliferation and deposition of
cartilage-specific molecules, such as type II collagen and
aggrecan. The stage of differentiated chondrocytes is in
the growth plate followed by chondrocyte terminal differen-
tiation and endochondral ossification. During terminal differ-
entiation chondrocytes become hypertrophic, characterized
by cell enlargement and expression of type X collagen,
MMP-13 and osteocalcin. Hypertrophic chondrocytes un-
dertake apoptosis and are finally replaced by bone. On
the other hand, during the formation of articular cartilage ter-
minal differentiation is blocked which results in permanent
cartilage residing at the end of the long bones. However,
during osteoarthritis, chondrocytes in articular cartilage un-
dergo phenotypic changes that resemble the alteration that,
as a rule, take only place in terminally differentiating
chondrocytes.

TGF-beta plays a role in all phases of chondrogenesis,
mesenchymal condensation, chondrocyte proliferation,
extracellular matrix deposition and finally terminal differenti-
ation. TGF-beta is the key initiator of chondrogenesis by
mesenchymal precursor cells16e19. Cellular condensation
is strongly stimulated by TGF-beta-induced elevation of
N-cadherin expression, in this way enhancing cell adhe-
sion. TGF-beta treatment initiates and maintains chondro-
genesis of mesenchymal precursor cells through the
stimulatory activities on MAP kinases and modulation of
wnt signaling17. Proliferation of chondroblasts and deposi-
tion of cartilage-specific extracellular matrix molecules,
such as aggrecan and type II collagen, is also stimulated
by TGF-beta20e22. A way in which type II collagen synthesis
is stimulated by TGF-beta is by association of a Smad3/4
and Sox9 complex with the enhancer region of type II colla-
gen gene23. Moreover, in the developing mandible TGF-b is
a positive regulator of chondrogenic cell determination via
control of Sox9 expression24.

In the early stages of chondrocyte differentiation TGF-
beta appears to be mainly stimulatory. However, this is in
contrast with the actions of this growth factor in late stages
of chondrocyte differentiation. TGF-beta inhibits chondro-
cyte terminal differentiation. TGF-beta has been shown to
stabilize the phenotype of the prehypertrophic chondro-
cytes25. Withdrawal of TGF-beta from the culture medium
is essential to further differentiate human mesenchymal
stem cells to hypertrophic chondrocytes22,26. In cultures of
primary mouse limb bud mesenchymal cells TGF-beta in-
hibits the expression of the terminal differentiation marker
type X collagen27. Moreover, mice homozygous for a tar-
geted disruption of Smad3 show abnormally increased
numbers of hypertrophic chondrocytes28. Ferguson et al.
have shown that Smad signaling is essential for the inhibi-
tory effect of TGF-beta on terminal diferentiation29. Smad2
and 3 are the key mediators of the inhibitory effect of
TGF-beta on chondrocyte terminal differentiation and
Smad3 appears to play a more pronounced role than
Smad2. These data imply that TGF-beta stimulates the ini-
tial stages of chondrogenesis but represses chondrocyte
terminal differentiation.

Signaling via Smad2/3 blocks chondrocyte terminal differ-
entiation but Smad1/5/8 signaling is strictly required for
chondrocyte hypertrophy. Combined loss of Smads1 and
5 results in obstruction of chondrocyte terminal differentia-
tion and severe cartilage defects30. Smad6 and Smurf1
are inhibitors of mainly Smad1/5/8 signaling and mice over-
expressing either Smad6 or Smurf1show normal chondro-
cyte proliferation but inhibited chondrocyte terminal
differentiation31. In differentiating chicken chondrocytes
blocking Smad6 with an antisense morpholino enhanced,
while overexpression of Smad6 blocked BMP-2-induced
chondrocyte hypertrophy32. In contrast, overexpression of
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Smurf2 accelerates chondrocyte maturation as a result of
decreased Smad2/3 signaling.33

Chondrocyte terminal differentiation is stringently con-
trolled by the transcription factor Runx2. In mice that lack
Runx2 chondrocyte terminal differentiation is totally blocked
and these animals have no bone formation34. The signals of
the various Smad pathways that control chondrocyte termi-
nal differentiation are integrated via Runx235e39. Data indi-
cate that the Smads undergo a physical interaction with
Runx2. Interaction of Runx2 with Smad1 has been shown
to be essential for the function of Runx2 while complex for-
mation of Smad3 with Runx2 inhibits Runx2 func-
tion35,36,40e42. The master switch Runx2 is controlled by
Smad2/3 and Smad1/5/8, setting this switch off or on to
control terminal differentiation.

In conclusion, chondrocyte terminal differentiation can be
stimulated by signaling via the Smad1/5/8 route and in-
hibited via the Smad2/3 route43. Since it has been shown
that TGF-beta can activate both routes, the role of TGF-
beta in regulating terminal differentiation can be variable
and context dependent. It can be anticipated that the effect
of TGF-beta on chondrocyte differentiation will be modified
by mechanical loading, inflammation and aging. Moreover,
since regulation of chondrocyte phenotype is not only im-
portant during bone formation but also during development
of osteoarthritis, a role for a shifting function of TGF-beta in
this disease process can be anticipated. We have evidence
that a change in TGF-beta signaling, from mainly Smad2/3
to dominant Smad1/5/8 signaling, plays a role in altered ar-
ticular chondrocyte behavior and the development of osteo-
arthritis44e46. However, we and others have demonstrated
that many factors in addition to TGF-beta can affect chon-
drocyte behavior and play a potential role in osteoarthritis.
Chondrocyte activation can amongst others be altered by
inflammatory cytokines, via the wnt signaling cascade or
by extracellular matrix-derived triggers, such as activation
via DDR-2 receptors47e53. Of note, one has to be aware
that most of those factors will influence TGF-beta signaling,
modulating the stability and activity of the different Smad
routes, and in this way modulate the effect of TGF-beta
on chondrocyte differentiation and osteoarthritis develop-
ment. Modulation of R-Smad stability and activity, and the
potential consequence for chondrocyte differentiation and
osteoarthritis will be discussed below. The focus is on
mechanisms that can be expected to influence the
Smad2/3 and Smad1/5/8 routes differently since these
mechanisms can be expected to modulate chondrocyte dif-
ferentiation and play a role in development of osteoarthritis.
Noteworthy, we do not consider terminal differentiation of
chondrocytes in the growth plate and changes in articular
chondrocytes in osteoarthritis as absolutely equivalent,
but alteration in these cells show a number of parallel char-
acteristics, such as high expression of MMP-13, that can be
controlled by overlapping mechanisms.

Regulation of receptor-Smad activity

The Smad family can be divided in the R-Smads (1, 2, 3,
5 and 8), the common-Smad (Smad4) and the inhibitory
Smads (6 and 7). The activity of R-Smads can be regulated
on different levels. The intracellular steady state levels of
the R-Smads will be determined by the balance of synthesis
and breakdown of these molecules. Changes in expression
of R-Smads have been demonstrated in various tumors,
both decreased and increased expression54,55. In human
chondrocytes expression of Smads1, 4, and 5 has been
shown to be up-regulated by interleukin-1, suggesting
a connection between interleukin-1 and the Smad1/5 sig-
naling pathway. However, in osteoarthritic chondrocytes
none of the Smads was up- or down-regulated, suggesting
that differences in basal expression levels of the R-Smads
are not relevant for osteoarthritic pathophysiology56. In car-
tilage of old mice we have demonstrated elevated basal
levels of Smad3 but decreased Smad2/3 signaling46.

Little is known about the regulation of the synthesis of
non-activated R-Smads and how this will effect signaling.
A pathway that leads to reduced levels of non-activated
R-Smads is ubiquitination and subsequent proteosomal
degradation of R-Smads. The ubiquitinases Smurf1 and 2
and CHIP have been reported to direct the R-Smads for
degradation, in this way decreasing the R-Smad steady
state levels and TGF-beta family signaling57e62.

A particularly important facet of the function of the
R-Smads as intracellular signaling molecules is turning-on
and turning-off of the signal by phosphorylation of the C-ter-
minal SXS site. Phosphorylation of the SXS-site activates
the receptor Smads. Phosphorylation of the R-Smads is
carried out by the different ALKs63. However, phosphoryla-
tion of the SXS site is counterbalanced by dephosphoryla-
tion by specific phosphatases occurring in the nucleus.
Recently it has been shown that the protein phosphatase
PPM1A dephosphorylates Smad2/3 in this way controlling
TGF-beta signaling64,65.

Signal transduction via R-Smads involves phosphoryla-
tion of the C-terminal SXS motive. However, this site is
not the only site were the Smad proteins can be phosphor-
ylated. Receptor-Smads contain two highly conserved seg-
ments, the MH1 and the MH2 domain, joined together by
a more variable linker domain. The linker domain can be
modified by phosphorylation, thereby altering the receptor-
Smad half life. With special consideration of the differential
regulation of the Smad2/3 and Smad1/5/8 pathways it is
highly relevant that the linker region of Smad1, 5 and 8 con-
tain a number of serine residues available for phosphoryla-
tion that are missing in Smad2 and 3. Phosphorylation of
the Smad linker region can be predicted to alter the balance
of the Smad2/3 and Smad1/5/8 pathway in this way manip-
ulating chondrocyte differentiation.

Phosphatases that dephosphorylate the linker region are
expected to play a vital part in the regulation of Smad activ-
ity. The small C-terminal domain phosphatases 1, 2, and 3
(SCP1e3) dephosphorylate the linker regions of Smad1
and Smad2/3 in mammalian cells and in Xenopus embryos.
Overexpression of SCP 1, 2, or 3 decreased linker phos-
phorylation of Smads1, 2 and 3. Depletion of SCP1/2/3 en-
hanced Smad2/3 linker phosphorylation. SCP1 increased
TGF-beta-induced transcriptional activity showing that
linker phosphorylation inhibits the transcriptional response.
Moreover, siRNA knockdown of SCP1/2 increased the
phosphorylation of the Smad1 C-terminus. In contrast,
SCP1/2 knockdown did not increase the C-terminal phos-
phorylation of Smad2/3. Consequently, SCP1/2 knockdown
inhibited Smad2/3 transcriptional responses, but it en-
hanced Smad1 transcriptional responses66. This indicates
that dephosphorylation by SCP1/2 differentially regulates
the Smad2/3 and Smad1/5/8 routes. No data are available
yet about the regulation of SCP1/2/3 activity on
chondrocytes.

Smad6 and Smad7

The inhibitory Smads, Smad6 and Smad7, are crucial in
the negative regulation of TGF-beta superfamily signaling.
Smad7 is universally expressed and inhibits the Smad2/3
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and Smad1/5/8 route while Smad6 is expressed in a cell-
specific manner and preferentially inhibits Smad1/5/8 sig-
naling67,68. As a consequence Smad7 inhibits chondrogen-
esis at multiple steps69. Smad6 but not Smad7 has been
found to interact with Runx2 and Smad6 but not Smad7 en-
hances proteasomal degradation of Runx232,69,70. It can be
concluded that Smad7 blocks both arms of the Smad path-
ways that regulate terminal differentiation. Down-regulation
of Smad6 will stimulate, and up-regulation will block terminal
differentiation. In this respect it is interesting that it has been
shown in cultured human articular chondrocytes that stimu-
lation with interleukin-1 resulted in up-regulation of Smad7
and down-regulation of Smad671. It can expected that in
this way interleukin-1 pushes chondrocyte terminal differen-
tiation and plays a role in osteoarthritis development.

Smurf1 and Smurf2

Smurf1 and Smurf2 are E3 ubiquitin ligases known to in-
hibit TGF-beta and BMP signaling. Smurf1 selectively inter-
acts with Smads specific for the ‘‘BMP pathway’’ (Smad1
and 5) and triggers their degradation. In contrast, Smurf2
can also stimulate the degradation of Smad2 and
Smad359,60,72, although the degradation of Smad3 has
been contradicted61. The Smurfs not only modulate Smad
degradation but also ALK half life. For instance, Smurf2
down-regulated steady state ALK5 levels thereby having
an effect on Smad activation73. In C2C12 cells it has been
shown that increased expression of Smurf1 blocked BMP-in-
duced osteogenic differentiation but has no effect on a TGF-
beta-induced differentiation block. Elevated Smurf1 in these
cells markedly reduced the level of endogenous Smad5,
whereas that of Smad2, Smad3, and Smad7 remained unal-
tered74. This indicates that Smurf1 will be able to modulate
chondrocyte differentiation by shifting the balance to de-
creased Smad1/5/8 signaling thereby blocking terminal dif-
ferentiation. In contrast, elevated expression of Smurf2
might play a role in accelerated terminal differentiation and
osteoarthritis. Human osteoarthritic cartilage showed ele-
vated Smurf2 expression compared to normal cartilage72.
Overexpression of Smurf2 in a developing chicken wing
bud has been shown to accelerate chondrocyte endochon-
dral ossification33. Furthermore, Smurf2-transgenic mice ex-
hibit articular cartilage fibrillation, osteophyte formation, and
increased expression of type X collagen and MMP-13, all
hallmarks of osteoarthritis. These changes coincided with re-
duced TGF-beta signaling and reduced pSmad3 expres-
sion33,72,75. Smurf2 up-regulation apparently inhibits
Smad2/3 signaling thereby releasing the differentiation block
of this pathway on chondrocyte terminal differentiation.
wnt signaling

The wnt signaling system, composed of ligands, receptors,
antagonists, and intracellular signaling molecules has an im-
portant role in chondrogenesis and cartilage development,
such as hypertrophic maturation of chondrocytes. Aberrant
wnt signaling has been shown to play a role in degeneration
of articular cartilage. Both enhanced and decreased canoni-
cal wnt signaling, simulated by increased and decreased
beta-catenin signaling, result in cartilage loss53,76. In articular
chondrocytes of adult mice activation of beta-catenin resulted
in accelerated chondrocyte differentiation while loss of signal-
ing led to increased chondrocyte apoptosis53,76. Moreover,
the wnt inhibitor dickkopf1 induced chondrocyte apoptosis
in osteoarthritic joints77. The consequence of increased wnt
signaling can be caused by a direct effect on chondrocyte dif-
ferentiation but it can also be mediated by differential modu-
lation of the Smad2/3 and Smad1/5/8 pathways.

The canonical wnt signaling results in the inhibition of
GSK3. This constitutive active kinase is part of the destruc-
tion complex that targets beta-catenin for degradation. Inhibi-
tion of GSK3 results amongst others in elevated intracellular
beta-catenin levels. In Xenopus embryos inhibition of GSK3
activity resulted in an increased duration of pSmad1 signal-
ing and epidermis induction78. This effect is mediated by
blocking of GSK3-mediated linker phosphorylation and in
this way preventing the ubiquitination and degradation of
Smad1P. Interestingly, it was shown that linker phosphoryla-
tion occurred only on Smad1 already phosphorylated at the
SXS site78. This indicates that GSK3 phosphorylation func-
tions to terminate the pSmad1 signal. From these data the
conclusion can be drawn that wnt signaling, via beta-catenin
up-regulation, prolongs the duration of the signal of the
Smad1/5/8 pathway. In murine chondrocytes overexpres-
sion of beta-catenin down regulates TGF-beta-induced
Smad3 signaling, shifting the balance to Smad1/5/8 signaling
and chondrocyte terminal differentiation79. In murine embry-
onic fibroblasts non-activated Smad3, but not Smad2, un-
dergoes proteasome-dependent degradation due to the
action of GSK3. However, GSK mainly phosphorylated cyto-
plasmatic Smad3 and GSK3-dependent phosphorylation did
not affect Smad3 activity80. Linker phosphorylation by GSK3
has not been shown to decrease Smad2/3 signaling but in-
hibits the Smad1/5/8 route, probably as result of differences
in the amino-acid constituents of the linker region80. We have
found elevated expression of the wnt-induced protein WISP-
1 in cartilage in experimental and human osteoarthritis47.
Interestingly, Inkson et al. demonstrated that WISP-1 signifi-
cantly reduced TGF-beta-induced phosphorylation of Smad2
in bone marrow stromal cells81. These observation indicate
that canonical wnt signaling will augment Smad1/5/8 signal-
ing relative to Smad2/3 signaling and in this way pushing
chondrocyte to follow the terminal differentiation step.

Mitogen-activated protein kinases (MAPK)

The linker region of R-Smads is not only phosphorylated
by GSK3 but also by MAPK, such as p38, Erk and Jnk. Also
binding of TGF-beta or BMPs to the ALK will results in ac-
tivation of MAPK via direct activation of TAK114,82e84. Inter-
estingly, a three-step activation and degradation sequence
of R-Smads has been proposed by Fuentealba et al.78. The
ALKs phosphorylate the R-Smads at the C-terminal SXS
site to initiate signal propagation. Subsequently the linker
region is phosphorylated by MAPK leading to a primed sub-
strate for GSK3 and phosphorylation by this kinase. The
two times phosphorylated R-Smads will be ubiquinated by
the Smurfs and targeted for proteosomal degradation.

The potential MAPK phosphorylation sites of either
Smad2/3 or Smad1/5/8, are analogous, but these sites dif-
fer between these R-Smad subfamilies63. This will have as
a consequence that linker phosphorylation by MAPK will be
different in the two subfamilies. Since linker phosphorylation
is involved in R-Smad degradation and half life, the dissim-
ilar phosphorylation will shift the balance between Smad2/3
and Smad1/5/8 signaling. For that reason it can be ex-
pected that MAPK phosphorylation of the linker region will
have an effect on the regulation of chondrocyte differentia-
tion (Fig. 1).

Cytokines, such as interleukin-1 and TNF, are known stim-
ulators of MAPK activity. Exposure of human chondrocytes
to these cytokines resulted in down-regulation of Smad3
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signal transduction and synthesis of cartilage-specific extra-
cellular matrix molecules85. In another study, interleukin-1
inhibited the level of phosphorylated Smad1 but not of
Smad5 in human chondrocytes after stimulation with BMP-
786. The inhibition of Smad1 phosphorylation was due to
p38 phosphorylation within the linker region. However, in fi-
broblast it was shown that Jnk activity was essential for the
inhibitory effects of TNF on Smad3 signaling87. Unfortu-
nately, no comparative study has been published investigat-
ing the differential modulation of the R-Smad subfamily
pathways by interleukin-1 and for that reason no conclusion
can be drawn with regard to the modulation of R-Smad sig-
naling balances by interleukin-1 or TNF. Nevertheless, mod-
ulation of TGF-beta or BMP effects on chondrocytes by
these cytokines can be expected to differ.
Additional pathways modulation R-Smad signaling

Signaling of R-Smad can be altered in the manners de-
scribed above but additional mechanisms, with expected
relevance for chondrocyte differentiation and osteoarthritis,
have been described. Osteoarthritis can be caused by in-
trinsic changes in articular chondrocytes. These intrinsic
changes can be mediated by alterations in DNA modifica-
tion since it has been shown that methylation and demethy-
lation of DNA plays a role in gene expression and cellular
differentiation. Chondrocytes in osteoarthritic joints showed
a decrease in DNA methylation compared to chondrocytes
in normal joints88,89. In addition, chondrocytes that were
treated with the cytidine analog 5-azacytidine (Aza), a com-
pound that reverses DNA methylation, expressed markers
of terminal differentiation after TGF-beta exposure, al-
though Aza-treated cells displayed a loss of canonical
TGF-beta signaling90. On the whole, demethylation resulted
in up-regulation of Smad1 and 5 expression coupled with
Fig. 1. Schematic overview of factors that affect Smad signaling routes and
and chondrocyte d
a loss of Smad2/3 signaling and stimulated terminal
differentiation.

An important facet in osteoarthritis development is me-
chanical overloading and mechanically-induced cartilage in-
jury. Mechanical injury of joints may modulate R-Smad
signaling and in this way alter chondrocyte differentiation.
Mechanical injuring of human articular cartilage explants re-
sulted in increased expression of BMP-2 and phosphoryla-
tion of Smad1 and 5. Expression of wnt16 was increased
while expression of the wnt inhibitor FRZB-1 was lowered,
indicating enhanced wnt signaling91,92. This was confirmed
by the observation that the expression of canonical wnt tar-
get genes was up-regulated in the injured explants. Phos-
phorylation of Smad1/5 and up-regulation of wnt signaling
will alter the R-Smad signaling balance and stimulate chon-
drocyte terminal differentiation. These observations link me-
chanical injury to altered chondrocyte differentiation and
potentially osteoarthritis.
Concluding remarks

A hallmark of osteoarthritis is changed chondrocyte be-
havior leading to elevated production of metalloproteinases
by altered chondrocytes and cartilage destruction. This des-
ignates the articular chondrocyte as the central player in
osteoarthritis. Understanding the regulation and disease-
associated changes in chondrocyte differentiation and be-
havior are therefore of outmost importance to understand
osteoarthritis development and progression. Signaling via
the different R-Smads, controlling chondrocyte differentia-
tion via Runx2, can be expect to play essential roles in
both chondrocyte differentiation and osteoarthritis.

The described mechanisms that regulate R-Smad stabil-
ity and activity will modulate the balance of activated
R-Smad and consequently chondrocyte differentiation and
that potentially shift the Smad2/3 and Smad1/5/8 signaling balance
ifferentiation.
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osteoarthritis development. It is of interest to note that fac-
tors shown to be involved in osteoarthritis development,
such as wnt signaling, Smurf2, inflammatory cytokines
and mechanical injury, all modulate R-Smad signaling,
and in the majority promote Smad1/5/8 compared to
Smad2/3 signaling. Hypothetically, regulation of R-Smad
signaling by these factors can be the common pathway
that integrates these mechanisms in the control of chondro-
cyte behavior and osteoarthritis.
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