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Ak t rae t - -A  new, very simple, totally automated and powerful technique for numerical differentiation 
based on the computation of the derivative of a suitable filtered version of the noisy data by discrete 
mollification is presented. Several numerical examples of interest are also analyzed. 

1. I N T R O D U C T I O N  

In several practical contexts, it is sometimes necessary to estimate the derivative of a function whose 
values are given approximately at discrete points. It is well known that the process of differentiation 
is an ill-posed problem because small errors in the data might cause large errors in the computed 
derivative. Numerical differentiation has been discussed by many authors and a number of solution 
methods have been proposed. Finite differences approaches have been used, for example, in Refs 
[1]-[4]. Regularization procedures have been analyzed in Refs [5]-[7] and more recently in [8]. For 
methods of statistical nature see Refs [9]-[12]. In this paper we present yet another method of 
solution based on attempting to reconstruct a mollified version of the derivative. This approach 
was first introduced, for a different algorithm, in Ref. [13] and leads naturally to a very simple and 
powerful computational technique. Our approximation is generated initially by filtering the noisy 
data by discrete convolution with a suitable averaging kernel and then using centered differences 
to numerically solve the associated well-posed problem. The efficiency of this method is demon- 
strated in Section 5 where we describe several examples, presented in Ref. [8]. 

In Section 2 we describe the stabilized problem and in Section 3 we introduce a new automatic 
algorithm to uniquely determine the radius of mollification, depending on the amount of noise in 
the data. Section 4 describes in detail the computational procedures related with our method. 

2. STABILIZED PROBLEMS 

Let I = [0, 1] and let C°(I) denote the set of continuous functions over I with 

IIf (x)I[~., = maxlf(x) l  < ~ .  
x E l  

Given a compact set K, K = L we consider the problem of estimating in K, the derivative g'(x) 
of a function g(x) defined on I and observed with error. We assume g(x)~ C°(1) and 
g"(x)eC°(K). Instead of g(x), we know some data function g'(x)eC°(l) such that 
II g'(x) - g(x)I1~0.~ ~< e. 

Following Ref. [13], in order to stabilize the differentiation problem, we introduce the function {{; }-' 6 exp[s2/(s2-62)] ds exp[x2/(x2-62)] if ] x l < ~  
p6(x) = 6 (1) 

0 if Ixl>/& 

p~(x) is a C ° (infinitely differentiable) function in R with support in Ix[ < 6, such that pr(x) >t 0 
and 

fRp~ (x) = dx 1. 
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If 6 > 0, 6 smaller than the distance from K to c~L the function 

J ~ f  ( x ) = ( p ~ ,  f ) ( x ) =  ~xX*f p A x  - s ) f  ( s )ds  (2) 

is a C ® function in R and for fixed x ~ K, p , ( x  - s) has compact support in I. J J i s  the mollifier 
o f f  and 6 is the radius of mollification. Moreover, 

d 
dx  J 6 f  (x)  = (pa , f ) ' ( x )  (3a) 

= (p'~ , f ) ( x ) .  (3b) 

The following two Lemmas and Theorem 1 are proved, with minor modifications, in Ref. [13] 
and are included here for completeness. 

Lemma 1. I f  IIg"ll~.x <<. M,  then [ l (pa ,g ) ' -g ' l l® ,x<<.6M.  

Proof. For x e K, 

I 
x + 6  

(P6 * g ) ' ( x )  = p~(x -- s)g ' (s)  ds 
d x - 6  

and 

I 
x + ~  

g ' ( x )  = p~(x - s )g ' ( x )  ds. 
dx- ,~  

Subtracting and using the mean value theorem, 

~ x + ~  

[(P6 * g) ' (x )  - g ' ( x ) ]  <~ 6 M  p~(x - s) (Is = 6M. 
d x - 6  

Thus, 

II (p6 * g ) ' - g "  I1~,~ ~ 6M. 

Lemma 2. If  g ' ( x )  ~ C°(1) and Ilg' - g I1~.1 ~< E, then 

where 

E0~ 

II (p~ * g ' ) '  - (p6 * g) II~,K-~ ~-, 

{f0 } a = exp [s2/(s 2 -- 62)] ds ="~ 1.65. 

Proof. For x e K, 

](P6 * gO'(x  ) -- (P6 * g)'(x)l ~< p6(x -- s)  Ig ' (x )  -- g(s)l  ds 
d x - 6  

<~E p6(x Ea 
d x - ~  = -~" 

It follows that 

II (P~ * g ' ) '  - (p~ * g)'  I1®,~ ~< 3-" 

Lemma 2 shows that attempting to reconstruct the derivative of the mollified data function is 
a stable problem with respect to perturbations in the data, in the maximum norm, for 6 fixed. 

Theorem 1. Under the conditions of Lemmas 1 and 2, 

II (P6 * g ' ) '  - g" II o~. K ~ 6 M  + ea/6. (4) 

Proof. The estimate follows from Lemmas 1 and 2 and the triangle inequality. 
We observe that the r.h.s, of  inequality (4) is minimized by choosing 6 = (ca~M) m, but this 
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optimal selection of  the radius of mollification is, in actual computations, impossible because M 
is not known in general. 

3. P A R A M E T E R  S E L E C T I O N  

In this section we indicate a procedure to determine the radius of mollification, 6, based on 
properties of  the filtered data p~ • g'.  

We need to extend the data function gO(x) defined on I = [0, 1] to all R in such a way that g ' (x)  
decays smoothly to zero in 14 - L where Ia = [--a, 1 + a] for some a > 0, and it is zero in R - Ia. 
For instance, we can define 

g ' (x)  = g'(O)exp[x2/(x 2 - -  a2)], --a ~< x ~< 0 

g ' ( x ) = g ' ( O ) e x p { ( x - -  1)2/[(x -- 1)2--a2]}, l ~<x ~< l + a .  (5) 

The mollification of  the extended data function g ' ( x )  by convolution with the kernel p~(x) is 
actually an averaging process that satisfies 

Lemma 3. If  di~>di2~>0 , then IIJ~,g~l[~.1<.pIJ~g~ll~.l and I [ J ~ g ~ - g ' [ l ~ , ~  
11Jr,g' rlo~.l. 

Proof. It follows from expressions (2) and (5) and the fact [14] that J~g'(x)  ~ g ' ( x )  uniformly 
on L i f 6  --*0. 

The monotonicity properties in Lemma 3 show that there is a unique ~ such that 

II Jsg' - g'll ~o., = E. (6) 

This particular parameter choice criterion is characterized by selecting, among all possible mollifiers 
of  g '  satisfying II J ~ g ' - g '  I1~.~ ~< E, the mollifier with minimum maximum norm. More precisely, 

Theorem 2. min II J~g' I1~.1 = II Jsg' I1~.i, where X is such that 
I l J r g  ~ - g~ II ~ o , I  ~ c 

II Jsg' - g'  II ~, ~ = E, 

Proof. Suppose there exists 6 such that I I Jag ' -g '  II < E. It follows then that S < ~ and by 
Lemma 3, II Jsg' II~.z ~< II J~g' I1~,/. 

The parameter selection (6) determines ~ in a manner consistent with the amount of noise in 
the data function g'.  Note that if II g '  - g II ~< E, then II Jsg" - g II ~< 2E. Furthermore, the bisection 
method can easily be implemented to numerically determine ~ The computational details are 
presented in the next section. 

4. N U M E R I C A L  P R O C E D U R E  

To numerically approximate d[Jrg'(x)]/dx, a quadrature formula for the convolution equation 
(6) is used in Ref. [13]. The actual implementation of this well-posed problem assumes that t~ is 
known. Instead, our procedure for numerical differentiation is based on formula (3a), a particular 
choice of  8 and centered differences. 

Since in practice only a discrete set of  data points is available, we assume in what follows that 
the data function g' is a discrete function in I = [0, 1], measured at the N + 1 sample points 
xi = lax,  i = O, 1 . . . . .  N, N A x  = 1. Given a > Ax, we use equation (5) to extend the data to 
Ia = [ - a ,  1 + a] and since the data is defined to be zero in R - Ia, we consider the extended discrete 
data function g' defined at equally spaced sample points on any interval of  interest. 

The parameter selection is implemented by solving the discrete version of equation (6) using the 
bisection method. The following steps summarize the method. 

Step 1: Set 6rain = Ax,/imx = 0.5 and choose an initial value of di between 6rain and 
~max" 

Step 2: Compute drg '=  p~.  g' by discrete convolution on a sufficiently large 
interval. 
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Step 3: If  F ( 6 ) =  max I J~g ' ( x~ ) -  g'(xi)l  = E + r/, where t/ is a given tolerance, 
O<~i~<n 

exit. 

Step 4: If  F(6) - E < - r / ,  s e t  t~mi n = ~. If F(J)  -- E > r/, set Jmax = 6. The updated 
value of  ~ is always given by ½ (t~max + 6mi,). 

Step 5: Return to Step 2. 

Once the radius of  mollification o ~ and the discrete data function J~g' are determined, we use 
centered differences to approximate the derivative of  Jsg'  at the sample points of  the interval 

l 

5.  N U M E R I C A L  R E S U L T S  

In this section we discuss the implementation of  our numerical method and the tests which we 
have performed in order to investigate the accuracy and stability of  the numerical differentiation 
procedure. 

In all the examples, Ax = 0.01, a = 0.1 and I = [0, 1]. The exact data function is denoted by g ( x )  
and the noisy data function g ' ( x )  is obtained by adding an E random error to g(x) ,  i.e. 

g ' (x , )  = g(x , )  + cO,, (7) 

where xl = iAx ,  i = O, 1 . . . .  , N, N A x  = 1 and 0i is a uniform random variable with values in [ -  1, 1] 
such that 

max Ig'(x~) - g(x~)l ~< e. 
O <<. i <~ N 

After extending the discrete data function as explained in Section 4, the parameter selection 
criterion was implemented with the tolerance r/, used in Step 3 of  the algorithm, set to reflect a 
0.05 error in the satisfaction of  the constraint. In all cases, independently of the initial choice of  
6, convergence to the value o e" determined by the selection criterion was reached in no more than 
eight iterations. The discrete numerical approximation to the derivative g ' (x) ,  denoted g'(xi), is 
then reconstructed by means of  centered differences in I~--- [~', 1 - ~']. In what follows we use 
I lf  II~,,s and IIf Ih, zs to represent 

max If(xi) l  and I f  (xi)l 2 , Xie I~, 
x i e l ~  i f  1 

respectively. 

Example 1 

As a first example we consider g (x )  = x(1 - ½x). Figure 1 shows the solution obtained by our 
method ( + )  and the exact derivative g ' ( x )  = 1 - x. With E = 0.05 and Ax = 0.01, the correspond- 

1 . 0 0  

0 . 7 5  
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• 0 . 5 0  
e- 
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r~ 0.25 
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O.Z5 0 .50  0.75 1.00 

x VaLues 

Fig. 1. g(x) = x(1 - ½x), E = 0.05, Ax = 0.01, ~" = 0.2. C o m p u t e d  solu t ion ,  + + + ;  t rue so lu t ion ,  - -  
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Fig. 2. g(x)=sin4nx, L =O.Ol, Ax =O.Ol, $=0.02. Fig. 3. g(x) = sin IOnx, L = 0.1, Ax = 0.01, d = 0.02. 
Computed solutions, + + +; true solution, -. Computed solution, + + +; true solution, --. 

ing radius of mollification in this case is d = 0.2. The resolution in this problem is quite good 
considering the relative high noise level which we used. The associated error norms are given by 

llg’-~‘II,,,, = 0.001108 and )I g’ - g’]lz,,, = 0.00576. 

Example 2 

Our second example is rather oscillatory on [0, 11. We chose g(x) = sin 47rx and we use c = 0.01. 
With Ax = 0.01, $ = 0.02. In Fig. 2, we plot the numerical solution obtained by our method (+) 
and the exact derivative g’(x) = 47t cos 4nx. The corresponding relative error norms are given by 

118’--g”‘lI,,,~/ll~‘II,,,, = 0.02439 and )lg’ -g”’ 112,,b/l(g’ ]]2,,6 = 0.01976. 

Example 3 

In Fig. 3 we plot the exact derivative of g(x) = sin 1Olrx and the solution obtained by our 
method (+). The data function is highly oscillatory and the noise level c = 0.1 very high. With 

-1.oo(%5O 
Fig. 4. Response to noise as a function of 6 for gb’(x,) = cf?,, 6 = 0.1. II . IUrn.,, -; II . 112.1~ ---. 

C.A.M.W.A. ,3,&n 
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Ax = 0.01, the resul t ing rad ius  o f  mol l i f ica t ion  is o r = 0.02. The  relat ive e r ror  no rms  are  given by 

II g '  - ~ '  II oo,1~/11 g '  II oo,,s -- 0.13282 and  II g '  - g '  112. ls/lI g '  112, ~ = 0.11180. W e  conc lude  tha t  even in 
this r a the r  difficult case, the m e t h o d  pe r fo rms  qui te  sat isfactor i ly .  

F ina l ly ,  in o rde r  to invest igate  the  s tabi l i ty  o f  our  numer ica l  m e t h o d  we would  like to de te rmine  
the ampl i f ica t ion  fac tor  assoc ia ted  with  er rors  in the d a t a  when using the numer ica l  d i f ferent ia t ion 
procedure .  I f  we set g(x i )  = 0 in equa t ion  (7), we can c ompu te  the response  o f  the m e t h o d  to pure  
noise as a func t ion  o f  the rad ius  o f  mol l i f ica t ion  and thereby  get a measure  o f  the ampl i f ica t ion  
factor .  Since all o f  the response  n o r m s  are essent ial ly  p ropo r t i ona l ,  we only show in Fig.  4 a 
representa t ive  curve for  E = 0.1. The  solid curve gives II • I1~,1 and  the dashed  curve co r r e sponds  
t o  II • 112,/. W e  not ice  tha t  the "der iva t ive  o f  the no ise"  has  been c o m p u t e d  on I = [0, 1] for  every 
value o f  & To  ob ta in  these responses,  we read  the discrete  d a t a  on the in terval  [ - 1 ,  2] wi th  
Ax  = 0.01 and  pe r fo rmed  the discrete  convo lu t ion  in [ - 0 . 5 ,  1.5] for  each value o f  6. Then  we 
app l i ed  centered  differences to  o b t a i n  the a p p r o x i m a t e  der ivat ive  in I = [0, 1] using the co r r e spond-  
ing 6 value.  
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