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Abstract

Hartwig, Larsson and Silvestrov in [J.T. Hartwig, D. Larsson, S.D. Silvestrov, Deformations of Lie al-
gebras using σ -derivations, J. Algebra 295 (2) (2006) 314–361] defined a bracket on σ -derivations of a
commutative algebra. We show that this bracket preserves inner derivations, and based on this obtain struc-
tural results providing new insights into σ -derivations on Laurent polynomials in one variable.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In [16,23–25] a new class of algebras called quasi-Lie algebras and its subclasses, quasi-hom-
Lie algebras and hom-Lie algebras, have been introduced. An important characteristic feature of
those algebras is that they obey some deformed or twisted versions of skew-symmetry and Jacobi
identity with respect to some possibly deformed or twisted bilinear bracket multiplication. Quasi-
Lie algebras include color Lie algebras, and in particular Lie algebras and Lie superalgebras, as
well as various interesting quantum deformations of Lie algebras. Let us mention here as signif-
icant examples deformations of the Heisenberg Lie algebra, oscillator algebras, sl2 and of other
finite-dimensional Lie algebras, of infinite-dimensional Lie algebras of Witt and Virasoro type
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applied in physics within the string theory, vertex operator models, quantum scattering, lattice
models and other contexts, as well as various algebras arising in connection to non-commutative
geometry (see [3–14,16–21,26–29,34] and references therein). Many of these quantum deforma-
tions of Lie algebras can be shown to play the role of underlying algebraic objects for calculi
of twisted, discretized or deformed derivations and difference type operators and thus in corre-
sponding general non-commutative differential calculi.

Considering these deformed differential calculi, vector fields are replaced by twisted vec-
tor fields when derivations are replaced by twisted derivations. In [16, Theorem 5], it was proved
that under some general assumptions these twisted vector fields are closed under a natural twisted
non-associative skew-symmetric multiplication satisfying a twisted 6-term Jacobi identity. This
identity generalizes the usual Lie algebras 3-term Jacobi identity that is recovered when no twist-
ing is present (see Theorem 2.2.3). This result is shown to be instrumental to the construction
of various examples and classes of quasi-Lie algebras. Both known and new one-parameter and
multi-parameter deformations of Witt and Virasoro algebras and other Lie and color Lie algebras
have been constructed within this framework in [16,23–25].

In this article, we gain further insight in the particular class of quasi-Lie algebra deformations
of the Witt algebra. These were introduced in [16] via the general twisted bracket construction,
and associated with twisted discretization of derivations generalizing the Jackson q-derivatives to
the case of twistings by general endomorphisms of Laurent polynomials. In Section 2 we present
necessary definitions, facts and constructions on σ -derivations that are central for this article. In
Proposition 2.3.1 we observe that inner derivations are stable under the bracket defined in [16].
In the last part of this section, we present a characterization of the set of inner derivations for
UFD (Proposition 2.4.1), and also general inclusions concerning sets of inner derivations and
image and pre-image subsets with respect to the twisted bracket (Proposition 2.4.6). In Section 3
we develop the preceding framework for a particular important UFD, the algebra A = C[t±1] of
Laurent polynomials in one variable. For this specialization more deep and precise results can
be obtained. We shall focus here on the fact that in the present paper we deal with an endo-
morphism σ of A which is NOT assumed to be an automorphism. The space of σ -derivations
Dσ (A) endowed with the twisted bracket mentioned above is the deformation of the Witt alge-
bra within the class of quasi-hom-Lie algebras in the sense of [16]. In Theorem 3.2.1 we show
that the space of σ -derivations can be decomposed into a direct sum of the space of inner σ -
derivations and a finite number of one-dimensional subspaces. In Theorem 3.3.4, we show that
for arbitrary σ the Z-gradation of this non-linearly q-deformed Witt algebra with coefficients in
C becomes a Z/dZ-gradation with coefficients in C[T ±1] for some element T of A. The usual
q-deformed Witt algebra associated to ordinary Jackson q-derivative corresponds to the auto-
morphism σ : t �→ qt , and appears as a “limit case” where d = 0 and all σ -derivations are inner.
In Subsection 3.4, we provide a more detailed description of what relations for the bracket in
the non-linearly q-deformed Witt algebra become modulo inner σ -derivations. Finally, in Sub-
section 3.5, we describe normalizer-like subsets in detail for the non-linearly q-deformed Witt
algebra.

Throughout this article, A will denote an associative, commutative and unital algebra over
the field C of complex numbers. We will sometimes mention more general results concerning
non-commutative algebras, and we will precise our assumptions on A in these cases. In the last
section the algebra A will be the algebra of Laurent polynomials C[t±1].
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2. Some general facts on σ -derivations

2.1. Definitions

In this section we do not assume that A is commutative, and as in the rest of the paper the
endomorphism σ is not assumed to be an automorphism. We recall here some basic definitions
and facts concerning σ -derivations. On this subject and more generally on Ore extensions one
may see the reference books [30] or [22, Section 1.7].

Definition 2.1.1. Let A be an algebra, and let σ be an endomorphism of A. A σ -derivation is a
linear map D satisfying D(ab) = σ(a)D(b) + D(a)b for all a, b ∈ A. We denote the set of all
σ -derivations by Dσ (A).

Example. It is easy to check that for any p ∈ A, the C-linear map Δp defined by Δp(a) =
pa − σ(a)p for all a ∈ A is a σ -derivation of A. Note that if A is commutative, then we have
Δp = p(id − σ).

Definition 2.1.2. The map Δp defined above is called the inner σ -derivation associated to p.
The set of all inner derivations of A will be denoted Innσ (A).

For any map τ : A → A denote Ann(τ ) = {a ∈ A | aτ(b) = 0 ∀b ∈ A}, the left annihilator
ideal of τ . In particular if A is commutative then this is a two-sided ideal, and also Δp = Δq ⇔
(p − q) ∈ Ann(id − σ).

The σ -derivations play a crucial role in the definition of Ore extensions.

Definition 2.1.3. Let A be an algebra, σ an endomorphism of A, and Δ a σ -derivation. Then the
Ore extension R = A[X;σ,Δ] is the algebra such that:

• A is a subalgebra of R;
• R is a free A-module with basis {Xn, n ∈ N};
• the multiplication is defined in R by the rule Xa = σ(a)X + Δ(a) for all a ∈ A.

The following facts can be easily checked [15, Lemmas 1.5, 2.4].

Lemma 2.1.4. Let σ be an endomorphism of an algebra A.

(1) Let p ∈ A, and Δp ∈ Innσ (A). Then the identity map on A extends to an isomorphism τ

between the Ore extensions A[X;σ,Δp] and A[Y ;σ ], such that τ(X) = Y + p.
(2) Assume A is commutative. Then for all Δ ∈ Dσ (A), and for all a, b ∈ A one has

(
a − σ(a)

)
Δ(b) = (

b − σ(b)
)
Δ(a).

The first statement of this lemma provides one of the reasons why we get interested in σ -
derivations up to inner in the following sections.
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2.2. A bracket on σ -derivations

Henceforth, A is supposed to be a commutative algebra. Then Dσ (A) becomes a left A-
module by (aΔ)(r) = aΔ(r) for all a, r ∈ A. Note that in the non-commutative case this opera-
tion makes Dσ (A) a left module only over the center of A.

Now we fix a σ -derivation Δ, and consider the cyclic left A-submodule of Dσ (A) gener-
ated by Δ. The interest of considering cyclic submodules is reinforced by the following result
proved by Hartwig, Larsson and Silvestrov in [16, Theorem 4], in the case where A is a unique
factorization domain.

Theorem 2.2.1. (See Hartwig, Larsson, Silvestrov [16].) Let σ be an endomorphism of a unique
factorization domain A, and σ �= id. Then Dσ (A) is a free A-module of rank one with generator

Δ0 = id − σ

g
, with g = gcd

(
(id − σ)(A)

)
.

Remark 2.2.2. We do not know of any example of a commutative algebra A such that Dσ (A) is
an A-module of rank greater than 1.

The authors also define in [16, Theorem 5] a bracket (i.e. a non-associative antisymmetric
multiplication, but not of Lie type in general) on this cyclic submodule and prove the following
results.

Theorem 2.2.3. (See Hartwig, Larsson, Silvestrov [16].) Let σ be an endomorphism of a com-
mutative algebra A, and σ �= id. Let Δ ∈ Dσ (A) be a σ -derivation such that:

• σ(Ann(Δ)) ⊆ Ann(Δ);
• ∃δ ∈ A such that Δ ◦ σ = δσ ◦ Δ.

Then the map

[·,·]σ : AΔ × AΔ → AΔ

defined by setting

[aΔ,bΔ]σ = (
σ(a)Δ

) ◦ (bΔ) − (
σ(b)Δ

) ◦ (aΔ), for a, b ∈ A, (1)

where ◦ denotes composition of functions, is a well-defined C-algebra product on the C-linear
space AΔ, satisfying the following identities for a, b, c ∈ A:

[aΔ,bΔ]σ = (
σ(a)Δ(b) − σ(b)Δ(a)

)
Δ, (2)

[aΔ,bΔ]σ = −[bΔ,aΔ]σ . (3)

In addition,
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[
σ(a)Δ, [bΔ,cΔ]σ

]
σ

+ δ
[
aΔ, [bΔ,cΔ]σ

]
σ

+ [
σ(b)Δ, [cΔ,aΔ]σ

]
σ

+ δ
[
bΔ, [cΔ,aΔ]σ

]
σ

+ [
σ(c)Δ, [aΔ,bΔ]σ

]
σ

+ δ
[
cΔ, [aΔ,bΔ]σ

]
σ

= 0. (4)

Remark 2.2.4.

(1) The condition σ(Ann(Δ)) ⊆ Ann(Δ) is clearly satisfied if Ann(Δ) = {0}, which is the case
for non-zero Δ for instance if A is a domain.

(2) The existence of δ such that Δ ◦ σ = δσ ◦ Δ, with the extra assumption that δ = q ∈ C∗,
is the definition of q-skew derivations given in [15]. These particular σ -derivations play an
important role in quantum groups, see for instance [2,31] or the book [1] and references
therein. Note that in this case (4) can be written as a 3-term Jacobi-like identity, showing that
(AΔ, [·,·]σ ) is a hom-Lie algebra and thus in particular also a quasi-Lie algebra [16,24].

(3) The identity (2) is just a formula expressing the product defined in (1) as an element of
AΔ. Identities (3) and (4) are expressing, respectively, skew-symmetry and a generalized
((σ, δ)-twisted) Jacobi identity for the product defined by (1). Theorem 2.2.3 shows, that
under stated conditions, (AΔ, [·,·]σ ) is a quasi-hom-Lie algebra and thus also a quasi-Lie
algebra [16,23]. For special choices of A, σ and Δ the algebra (AΔ, [·,·]σ ) may belong
to the class of hom-Lie algebras, a subclass of quasi-hom-Lie algebras with 3-term twisted
Jacobi identity.

If A is a unique factorization domain then the space of σ -derivations is a free A-module
of rank one generated by a σ -derivation which satisfies the hypotheses of Theorem 2.2.3, with
δ = σ(g)

g
(see Theorems 2.2.1, 2.4.1 and [16, Theorem 4]). Nevertheless note that even if a σ -

derivation Δ may satisfy these hypotheses, that may not be the case for any σ -derivation in the
cyclic module AΔ. More precisely, for a ∈ A one has aΔ ◦ σ = aδσ ◦ Δ which may not be
written in the form δ′σ ◦ (aΔ), that is δ′σ(a)σ ◦ (Δ), if a does not divide σ(a). Let us have a
look at an example of a non-integral ring.

Example 2.2.5. Let A = C[X,Y ]/〈XY 〉 be the quotient of the commutative polynomial alge-
bra in 2 variables by the ideal generated by the product XY . This commutative algebra is not
an integral domain, and as a vector space is isomorphic to C ⊕ XC[X] ⊕ YC[Y ]. Consider
the endomorphism σ defined by σ(X) = Y and σ(Y ) = X. Then it can be easily seen that any
σ -derivation Δ has to satisfy Δ(X)+Δ(Y) = 0. Conversely, any linear map Δ on CX ⊕CY sat-
isfying Δ(X) = −Δ(Y) can be uniquely extended to a σ -derivation of A. So Dσ (A) is generated
as an A-module by the σ -derivation Δ0 which is defined by Δ0(X) = −Δ0(Y ) = 1. Consider
the σ -derivation Δ = XΔ0. Then Δ(X) = X and Δ(Y) = −X. The conditions of Theorem 2.2.3
are not satisfied. Indeed, Ann(Δ) = YC[Y ] yields σ(Ann(Δ)) = XC[X] � Ann(Δ). The con-
dition Δσ = δσΔ is not satisfied either for any choice of δ ∈ A, since assuming existence of
such δ and applying this relation to X one gets −X = XΔ0(Y ) = Δ(Y) = Δσ(X) = δσΔ(X) =
δσ (XΔ0(X)) = δσ (X) = δY, which is impossible for δ ∈ A. For any element a ∈ A let

a = μa + XPa(X) + YQa(Y ) = μa + X

degPa∑
Pa,kX

k + Y

degQa∑
Qa,kY

k

k=0 k=0
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be the unique representation of a with respect to the direct sum decomposition A = C⊕XC[X]⊕
YC[Y ]. In A the following equalities hold for any a, b ∈ A:

Δ0
(
Xk

) = Xk−1 + Y k−1, Δ0
(
Y k

) = −(
Xk−1 + Y k−1) for k > 1;

Δ
(
Xk

) = XΔ0
(
Xk

) = Xk, Δ
(
Y k

) = XΔ0
(
Y k

) = −Xk for k > 1;

Δ
(
Pa(X)

) = Δ

( degPa∑
k=0

Pa,kX
k

)
=

degPa∑
k=1

Pa,kX
k = Pa(X) − Pa,0;

σ(X)Δ
(
Pa(X)

) = YΔ
(
Pa(X)

) = 0;

Δ
(
Qa(Y )

) = Δ

( degQa∑
k=0

Qa,kY
k

)
= −

degQa∑
k=1

Qa,kX
k = −Qa(X) + Qa,0

= −Δ
(
Qa(X)

);
Δ(a) = Δ

(
μa + XPa(X) + YQa(Y )

)
= Δ(X)Pa(X) + σ(X)Δ

(
Pa(X)

) + Δ(Y)Qa(Y ) + σ(Y )Δ
(
Qa(Y )

)
= XPa(X) − XQa(X) = X(Pa − Qa)(X);

bΔ(a) = (
μb + XPb(X)

)
X(Pa − Qa)(X)

= (
μbX + X2Pb(X)

)
(Pa − Qa)(X).

Then, using the definition or Proposition 2.3.1, one gets

[aΔ,bΔ]σ = Δ(b)a − Δ(a)b

= X(Pb − Qb)(X)
(
μa + XPa(X)

) − X(Pa − Qa)(X)
(
μb + XPb(X)

)
= X

(
μa(Pb − Qb)(X) − μb(Pa − Qa)(X)

) + X2(QaPb − QbPa)(X).

There are several questions coming to mind concerning this example, which will be treated
in further details in a forthcoming paper. For instance, does there exists a non-zero linear sub-
space of AΔ which is closed under the bracket and where (4) holds? For the linear subspace
B0 = {a = μa + XPa(X) + YQa(Y ) ∈ A | Pa = Qa} = {a = λa(Pa(X) + Pa(Y )) ∈ A | λa ∈ C}
of A, the linear subspace B0Δ of the linear space AΔ is closed under the bracket [·,·]σ ,
since [aΔ,bΔ]σ = 0 for all a, b ∈ B0. Since the bracket is identically zero on B0, the Ja-
cobi identity (4) trivially holds for any δ ∈ A. As results from the formulas above we have
B0 = Ker(Δ). Actually, it follows directly from (2) that the bracket is identically zero in general,
on the whole space Ker(Δ)Δ for any commutative algebra A.

2.3. Inner σ -derivations

We recall from Definition 2.1.2 that a σ -derivation Δ is inner if and only if there exists an
element p ∈ A such that Δ(a) = pa −σ(a)p for all a ∈ A. Because A is commutative, it is easy
to see that if Δ is inner, then aΔ is inner for all a ∈ A, so that AΔ ⊆ Innσ (A). So we mainly get
interested in the case where Δ itself is not inner.
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Now we prove, that when defined, the bracket [·,·]σ of two inner σ -derivations is an inner
σ -derivation.

Proposition 2.3.1. Let σ be an endomorphism of a commutative algebra A, and Δ ∈ Dσ (A).
Then Δ(b)σ (a) − Δ(a)σ (b) = Δ(b)a − Δ(a)b, and hence for the bracket satisfying (2) the
following statements hold.

1. The equality [aΔ,bΔ]σ = (Δ(b)a − Δ(a)b)Δ holds for all a, b ∈ A.
2. Let a, b ∈ A be such that aΔ and bΔ are inner, that is aΔ = pa(id − σ) and bΔ =

pb(id − σ) for some pa,pb ∈ A. Then [aΔ,bΔ]σ is inner and [aΔ,bΔ]σ = c(id − σ),
with c = Δ(b)pa − Δ(a)pb .

3. Let a ∈ A be such that aΔ is inner, that is aΔ = pa(id − σ) for some pa ∈ A and let b ∈ A.
Then σ(a)Δ(b) = (pa − Δ(a))(b − σ(b)).

Proof. 1. The equality Δ(b)σ (a) − Δ(a)σ (b) = Δ(b)a − Δ(a)b is equivalent to the equality
(a − σ(a))Δ(b) = (b − σ(b))Δ(a) from Lemma 2.1.4, and both are just two different ways of
rewriting the equality

Δ(a)b + σ(a)Δ(b) = Δ(ab) = Δ(ba) = Δ(b)a + σ(b)Δ(a)

using the σ -Leibniz rule for Δ and commutativity of A.
2. So, if aΔ = pa(id − σ) and bΔ = pb(id − σ) for some pa,pb ∈ A, then

[aΔ,bΔ]σ = (
Δ(b)a − Δ(a)b

)
Δ = Δ(b)aΔ − Δ(a)bΔ

= Δ(b)pa(id − σ) − Δ(a)pb(id − σ) = (
Δ(b)pa − Δ(a)pb

)
(id − σ).

3. If b ∈ A and aΔ = pa(id − σ) with pa ∈ A, then using the equality (b − σ(b))Δ(a) =
(a −σ(a))Δ(b) from Lemma 2.1.4 and commutativity of A one gets σ(a)Δ(b) = aΔ(b)− (b −
σ(b))Δ(a) = pa(b − σ(b)) − (b − σ(b))Δ(a) = (pa − Δ(a))(b − σ(b)). �
Remark 2.3.2.

(1) In the UFD case, let σ , g and Δ = Δ0 be defined as in Theorem 2.2.1, and aΔ = pa(id − σ)

and bΔ = pb(id − σ) for some pa,pb ∈ A. Then a = gpa and b = gpb , and one gets c =
σ(g)(Δ(pb)pa − Δ(pa)pb).

(2) Note that if σ(Ann(Δ)) ⊆ Ann(Δ), then [·,·]σ defined by (1) is a well-defined bilinear
multiplication, and (Innσ (A) ∩ AΔ, [·,·]σ ) is a subalgebra of (AΔ, [·,·]σ ) according to
Proposition 2.3.1. However, we will see later that it does not need to be an ideal (see Re-
mark 3.4.3). Note also that when A is UFD and σ �= id, there exists Δ such that any
σ -derivation is of the form aΔ according to Theorem 2.2.1, that is Dσ (A) = AΔ. Then
Innσ (A) ∩ AΔ = Innσ (A).

(3) In the non-commutative case, with the notations of Definition 2.1.2, one can proof in
the same way as in the proof of Proposition 2.3.1 that if aΔ = Δpa and bΔ = Δpb

and
[aΔ,bΔ]σ = (Δ(b)a −Δ(a)b)Δ holds, then [aΔ,bΔ]σ = Δt , with t = Δ(b)pa −Δ(a)pb .
Moreover, under the assumption that Δ sends the center Z(A) of A to itself, we can still
prove, that (2) implies [aΔ,bΔ]σ = (Δ(b)a − Δ(a)b)Δ for a, b ∈ Z(A). Actually, even
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without the assumption Δ(Z(A)) ⊆ Z(A), this implication holds for all a, b ∈ A such that
Δ(b) commutes with σ(a) and Δ(a) commutes with σ(b). Thus it holds for all a, b ∈ A also
if any element of Δ(A) commutes with any element in σ(A). Note that we assume that σ is
just an endomorphism of A and thus might not be surjective, thus making the last condition
more general than Δ(Z(A)) ⊆ Z(A).

2.4. The UFD case

We present here some general statements concerning σ -derivations in the UFD case. In the
next section we will give some more precise and deep results in the particular case A = C[t±1].
One can first precise Theorem 2.2.1 in the following way.

Proposition 2.4.1. Let σ �= id be an endomorphism of a unique factorization domain A. Set
g = gcd((id − σ)(A)). Then

(1) Dσ (A) = AΔ, with Δ = id−σ
g

;
(2) the σ -derivation aΔ is inner if and only if g divides a. In other words, Innσ (A) = gAΔ. In

particular, Δ itself is inner if and only if g is a unit.

Proof. The first point is just Theorem 2.2.1. Then for any σ -derivation Δ̃ = aΔ with a ∈ A.
Obviously, if a = bg then aΔ = b(id − σ) is inner.

Conversely, assume that aΔ is inner. Then there is an element b ∈ A such that aΔ(r) = b(r −
σ(r)) for all r ∈ A. Multiplying by g one obtains agΔ(r) = bg(r − σ(r)), i.e. a(r − σ(r)) =
bg(r − σ(r)) by definition of Δ. Now one can choose r such that r − σ(r) �= 0 (existing by
σ �= id), and conclude that a = bg using the fact that A is a domain.

Finally, when a = 1, that is aΔ = Δ, the condition that g divides a = 1 means precisely the
same thing as g being a unit (an invertible element in A). �

We aim now to use the bracket [·,·]σ to understand what is “between” Dσ (A) and Innσ (A).
So we define some subspaces of Dσ (A), which will be more precisely described in the next
section for A = C[t±1].

Recall that Dσ (A) = AΔ and Innσ (A) = gAΔ.

Definition 2.4.2. We define the following subspaces of Dσ (A).

(1) S1 = SpanC[Innσ (A), Innσ (A)]σ ;
(2) S̃1 = {Δ̃ ∈ Dσ (A) | [Δ̃, S1]σ ⊆ Innσ (A)};
(3) S1 = {Δ̃ ∈ Dσ (A) | [Δ̃;S1]σ ⊆ S1}.

Remark 2.4.3.

(1) The space S1 would be the usual derived Lie algebra of Innσ (A) for σ = id.
(2) It follows from Proposition 2.3.1 that one always has S1 ⊆ Innσ (A).
(3) Because S1 ⊆ Innσ (A) it follows from Proposition 2.3.1 that Innσ (A) ⊆ S̃1. As we will

see in Theorem 3.5.2, in the case of q-deformed Witt algebras, S̃1 is the whole space of
σ -derivations. This is why we introduce the “smaller” space S1.
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(4) It is also clear that S1 ⊆ S̃1, and S1 is the normalizer of S1 in Dσ (A) with respect to [·,·]σ .
We consider this space rather than the normalizer of Innσ (A) because it will appear in Corol-
lary 3.4.5 of Proposition 3.4.4 that this normalizer is just the space of inner σ -derivations for
the context of the main specific example considered in depth further in the article.

Lemma 2.4.4. Let A be a UFD. The following inclusion S1 ⊆ σ(g)gAΔ holds.

Proof. This inclusion relies on Remark 2.3.2. We are in the UFD case, and if a, b ∈ A are such
that aΔ,bΔ ∈ Innσ (A), then a = gpa and b = gpb for some pa,pb ∈ A, and [aΔ,bΔ]σ =
σ(g)(Δ(pb)pa − Δ(pa)pb)gΔ. Hence [Innσ (A), Innσ (A)]σ ⊆ σ(g)gAΔ. �

The following corollary is a direct consequence of the preceding lemma and part (2) of Propo-
sition 2.4.1.

Corollary 2.4.5. Let A be a UFD.

(1) The strict inclusion σ(g)gAΔ � Innσ (A) holds if and only if σ(g) is not a unit in A (i.e.
not invertible element in A).

(2) If σ(g) is not a unit in A, then the strict inclusion S1 � Innσ (A) holds.

Proof. (1) Since Ann(Δ) = {0} and there are no zero divisors in A for any a, b ∈ A:

σ(g)gaΔ = gbΔ ⇔ (
σ(g)a − b

)
g = 0 ⇔ σ(g)a = b.

The equality σ(g)gAΔ = Innσ (A) holds if and only if a solution a ∈ A for σ(g)a = b exists for
any b ∈ A, which is equivalent to σ(g) being invertible, i.e. a unit in A.

(2) By Lemma 2.4.4, S1 ⊆ σ(g)gAΔ. By part (1), if σ(g) is not a unit in A, then σ(g)gAΔ �

Innσ (A). Thus S1 � Innσ (A) as well. �
We can summarize the preceding inclusions as follows.

Proposition 2.4.6. Let A be a UFD. Then S1 ⊆ Innσ (A) ⊆ S1 ⊆ S̃1.

Proof. Only the inclusion Innσ (A) ⊆ S1 is left to prove. Set Δ̃ ∈ Innσ (A). Since S1 ⊆ Innσ (A),
we have [

Δ̃, S1]
σ

⊆ [
Δ̃, Innσ (A)

]
σ

⊆ [
Innσ (A), Innσ (A)

]
σ

⊆ S1

because Δ̃ ∈ Innσ (A). By definition this means that Δ̃ ∈ S1. �
All these spaces will be considered in more detail in the case of Laurent polynomials

A = C[t±1] in the last section of the paper.
The following statement is an extension of a result proved in [33] for A = C[t±1] to arbitrary

unique factorization domains.

Proposition 2.4.7. Let A be a UFD. Then S̃1 = Dσ (A).
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Proof. Since g = gcd((id − σ)(A)) divides g − σ(g) it also divides σ(g). Hence, σ(g) = gw

for some w ∈ A, and thus σ(σ (g)) = σ(g)σ (w) = gwσ(w), in particular meaning that g divides
σ(σ (g)). Therefore, for any Δ̃ = aΔ ∈ Dσ (A) and any Δ1 = σ(g)gbΔ ∈ S1, using the part (1)
of Proposition 2.3.1 and commutativity of A, it follows that

[Δ̃,Δ1]σ = [
aΔ,σ(g)gbΔ

]
σ

= (
Δ

(
σ(g)gb

)
a − Δ(a)σ (g)gb

)
Δ

= (
g
(
Δ

(
σ(g)b

)
a − Δ(a)σ (g)b

) + σ
(
σ(g)

)
Δ(g)σ (b)a

)
Δ

= g
(
Δ

(
σ(g)b

)
a − Δ(a)σ (g)b + wσ(w)Δ(g)σ (b)a

)
Δ ∈ Innσ (A) = gAΔ,

which proves that S̃1 = Dσ (A) for any unique factorization domain A. �
3. Non-linearly q-deformed Witt algebras

We develop now the preceding framework for a particular algebra A, namely C[t±1], in order
to obtain some more deep and precise results. In this case, Dσ (A) with the twisted bracket is the
deformation of the Witt algebra in the sense of [16]. The deformations of the Witt algebra are of
importance in mathematical physics (see [16] and references therein, and the introduction of the
present work). Note that as C[t±1] is a UFD, Proposition 2.4.1 and Proposition 2.4.6 apply.

Most of the articles on σ -derivations of C[t±1] are concerned with the case where σ is an
automorphism (see for instance [21,32]). We do not assume here that σ is an automorphism, so
it involves some power s of t , which as we will see plays a crucial role in the study of Dσ (A).

3.1. Some notations

In this subsection we review some notations and definitions that will be used throughout this
article.

Degree, valuation. For a Laurent polynomial f (t) = ∑n1
n=n0

αnt
n with αn ∈ C, αn0 �= 0, αn1 �= 0

we denote ν(f ) = n0 the valuation of f and deg(f ) = n1 its degree.

The endomorphism σ . Because an endomorphism of the algebra A = C[t±1] sends units to
units, the image of t by σ must be a monomial. So denote σ(t) = qts , with q ∈ C∗ and s ∈ Z.
Note that σ is injective if and only if s �= 0, and surjective if and only if s = 1 or s = −1.

Generators of Dσ (A)Dσ (A)Dσ (A). If σ �= id then by Theorem 2.2.1 one has Dσ (A) = AΔ with Δ(f ) =
(f − σ(f ))/g, where g = gcd((id − σ)(A)). Then one can check (see [16, Example 3.2]) that
g = α−1tk−1(t − qts) with α ∈ C∗ and k ∈ Z. Since g is defined up to a unit, then α and k are
arbitrary. If s � 1 then choose k = 0 and α = 1, so that g(t) = 1 − qts−1. If s � 0 then choose
k = −s + 1 and α = −q , so that g(t) = −q−1(t1−s − q) = 1 − q−1t1−s . To avoid repetition of
these two cases in future claims, we denote ε the sign of s − 1, with the convention that ε = 1
if s = 1. Then g(t) = 1 − qεtd is a usual polynomial (ν(g) = 0) of degree d = |s − 1| such that
g(0) = 1. For s �= 1 one has d � 1. Note that with our conventions, for σ = Id (i.e. s = 1 = q),
one gets g = 0. It follows easily from the choices we made while defining Δ that

Δ(t) =
{

t if s � 1;
−qts if s < 1.

(5)
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The monomial T = qts−1 = qtεd will play a crucial role in the following. Note that g =
1 − qεtd = 1 − qεt(s−1)ε = 1 − (qt(s−1))ε = 1 − T ε which is equal to 1 − T if s � 1, and
1 − T −1 = −T −1(1 − T ) if s < 1. Thanks to Proposition 2.4.1 this means that Innσ (A) is
generated by (1 − T )Δ as an A-module.

We consider the basis (δn)n∈Z of Dσ (A) defined by δn = −tnΔ for all n ∈ Z. Note also that
σ(T ) = T s , and that T “acts” on Dσ (A) as T δn = qδn+s−1. Last, since Δ(t) �= 0 and A is a
domain, we have Ann(Δ) = {0}.
3.2. Decomposition of Dσ (C[t±1])

If s = 1 then two cases may occur. Firstly, if s = 1 and q = 1 then σ is the identity map, so
one gets the usual Witt algebra, and we will not consider this case here. Secondly, if s = 1 and
q �= 1 then g = 1 − q is a unit, and Proposition 2.4.1 implies that all σ -derivations are inner, so
that Dσ (A) = Innσ (A) = S̃1 = S1. Also T is a unit, and we can deduce from Proposition 3.3.3
below and Proposition 2.4.1 that S1 = Dσ (A).

As we are interested in the study of what happens “between” Dσ (A) and Innσ (A), we shall
assume that s �= 1. Note that then g is not a unit in A, so thanks to Corollary 2.4.5 we have
S1 � Innσ (A).

The vector space Dσ (A) is made a non-associative algebra thanks to the bracket [·,·]σ defined
in Theorem 2.2.3. Since g is not a unit, the set Innσ (A) of inner σ -derivations is a proper subal-
gebra of (Dσ (A), [·,·]σ ). Moreover, thanks to Proposition 2.4.1 we know that a σ -derivation f Δ

is inner if and only if g divides f , that is Innσ (A) = gAΔ. This leads to the following result.

Theorem 3.2.1. Let σ be the endomorphism of A = C[t±1] defined by σ(t) = qts . From Propo-
sition 2.4.1 we have Dσ (A) = AΔ. We denote d = |s − 1|, and δn = −tnΔ for all n ∈ Z. Assume
that s �= 1. Then

Dσ (A) = Cδ0 ⊕ Cδ1 ⊕ · · · ⊕ Cδd−1 ⊕ Innσ (A) (6)

= CΔ ⊕ CtΔ ⊕ · · · ⊕ Ctd−1Δ ⊕ Innσ (A). (7)

Hence any Δ̃ ∈ Dσ (A) can be uniquely decomposed as Δ̃ = f (t)Δ + h(t)(id − σ) so that
f ∈ C[t] with deg(f ) < d and h(t) ∈ C[t±1].
Proof. Note that for all n ∈ N one has Cδn = CtnΔ. We first show that Dσ (A) = CΔ + CtΔ +
· · · + Ctd−1Δ + Innσ (A). Take any non-zero Δ̃ = f (t)Δ ∈ Dσ (A), with f (t) = ∑n1

n=n0
αnt

n,
with ν(f ) = n0 and deg(f ) = n1. Up to an inner σ -derivation we can always assume that
ν(f ) � 0. If not, consider f1 = f − αn0 t

n0g: we have f Δ = f1Δ + αn0 t
n0gΔ, αn0 t

n0gΔ ∈
Innσ (A) and ν(f1) > ν(f ). If ν(f1) � 0 we are done, else we repeat this operation with f1. Then
after at most ν(f ) iterations we have a polynomial f̃ such that ν(f̃ ) � 0 and g divides f − f̃ ,
that is (f Δ − f̃ Δ) ∈ Innσ (A). So assume that f ∈ C[t]. Now we can make the usual Euclidian
division of f by g in C[t], and we obtain f = q(t)g(t) + r(t), with deg(r) < deg(g) = d . Since
Innσ (A) = gAΔ we are done.

Now we prove that this sum is a direct sum. Set α0, . . . , αd−1 in C and f ∈ C[t±1] such
that

∑d−1
i=0 αit

iΔ + fgΔ = 0. Since Ann(Δ) = {0} this implies
∑d−1

i=0 αit
i + fg = 0. First we

prove that f must be a non-Laurent polynomial, that is ν(f ) � 0. Assume on the contrary that
ν(f ) = n0 < 0, and f has lowest degree term βn0 t

n0 �= 0. Then because g = 1 − λtd with d > 0,
the term of lowest degree of

∑d−1
i=0 αit

i +fg is βn0 t
n0 , a contradiction since

∑d−1
i=0 αit

i +fg = 0.
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Now the latest equality is nothing else but the Euclidian division of the 0 polynomial by g in
C[t]. By uniqueness we have αi = 0 for all i and f = 0. �

In Subsection 3.4 we will give a description of the bracket in Dσ (A) in terms of this decom-
position, thanks to the brackets computed in [16]. But first we re-interpret these in terms of the
element T = qts−1 defined in Subsection 3.1, and show that the algebra Dσ (A) is graded by a
finite cyclic group.

3.3. Grading of Dσ (A)

We recall first the following result.

Theorem 3.3.1. (See Hartwig, Larsson, Silvestrov, [16, Theorem 31].) When A is C[t±1], the
C-linear space Dσ (A) = ⊕

n∈Z
C · dn, where D = αt−k+1 id−σ

t−qts
, dn = −tnD and σ(t) = qts ,

s ∈ Z can be equipped with the bracket product

〈·,·〉σ : Dσ (A) × Dσ (A) −→ Dσ (A)

defined on generators according to (1) as

[dn, dm]σ = qndnsdm − qmdmsdn. (8)

This bracket satisfies defining commutation relations

• [dn, dm]σ = α sign(n − m)

max(n,m)−1∑
l=min(n,m)

qn+m−1−lds(n+m−1)−(k−1)−l(s−1) for n,m � 0;

• [dn, dm]σ = α

(−m−1∑
l=0

qn+m+ld(m+l)(s−1)+ns+m−k +
n−1∑
l=0

qm+ld(s−1)l+n+ms−k

)
for n � 0, m < 0;

• [dn, dm]σ = −α

(
m−1∑
l1=0

qn+l1d(s−1)l1+m+ns−k +
−n−1∑
l2=0

qm+n+l2d(n+l2)(s−1)+n+ms−k

)
for m � 0, n < 0;

• [dn, dm]σ = α sign(n − m)

max(−n,−m)−1∑
l=min(−n,−m)

qn+m+ld(m+n)s+(s−1)l−k for n,m < 0.

Furthermore, this bracket satisfies skew-symmetry [dn, dm]σ = −[dm,dn]σ and a twisted Jacobi
identity (written explicitly in [16, Theorem 31]).

Remark 3.3.2.

(1) If s = 1 then (8) becomes [dn, dm]q = qndndm − qmdmdn which is the bracket for the usual
q-Witt algebra associated to Jackson q-derivative [16, Theorem 27], reducing further to the
usual commutator for Witt Lie algebra if s = 1 and q = 1.
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(2) Note that D and generators dn are more general than Δ and generators δn we defined here,
because we have specially chosen g = gcd((id − σ)(A)) so that g becomes a usual (non-
Laurent) polynomial in t for any s ∈ Z both when s − 1 � 0 and when s − 1 < 0, in contrast
to Theorem 3.3.1 not making any distinction of this kind or polynomial requirement on g.

Now for arbitrary s ∈ Z, recall that T = qts−1, and σ(T ) = T s . For all n ∈ Z define the
T -integer as a geometric sum, more precisely one has {0}T = 0, {n}T = ∑n−1

k=0 T k for n > 0
and {n}T = −∑−1

k=n T k for n < 0. Note that with this definition (1 − T ){n}T = 1 − T n for all
n ∈ Z. So, if T �= 1 (that is σ �= id), then the formula {n}T = 1−T n

1−T
∈ C[T ±1] can be used in

computations for all n ∈ Z with this quotient meaning the geometric sums {n}T . We also will use
the following notation

{n}T ;ε = 1 − T n

1 − T ε
= 1 − T n

1 − T

1 − T

1 − T ε
= 1 − (T ε)εn

1 − T ε

= {εn}T ε = {n}T
{ε}T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{0}T ;ε = 0, for ε = ±1;∑n−1
k=0 T k, n > 0, for ε = 1;

−∑n
k=1 T k, n > 0, for ε = −1;

−∑−1
k=n T k, n < 0, for ε = 1;∑0

k=n+1 T k, n < 0, for ε = −1;

which turns out to be handy when treating all s ∈ Z and n ∈ Z in the same time.
Thanks to these notations we shall rewrite the preceding formulas in the following way.

Proposition 3.3.3. For all n,m ∈ Z, the following relations hold:

[δn, δm]σ = T nδnδm − T mδmδn = ({n}T ;ε − {m}T ;ε
)
δn+m. (9)

Proof. Recall that g = 1 − T ε . For all n,m ∈ Z we have

[δn, δm]σ = (
Δ

(−tm
)(−tn

) − Δ
(−tn

)(−tm
))

Δ

=
(−tm + (qts)m

g

(−tn
) − −tn + (qts)n

g

(−tm
))

Δ

=
(

tm+n − (T )mtm+n

1 − T ε
− tn+m − T ntn+m

1 − T ε

)
Δ

=
(

1 − (T )n

1 − T ε
− 1 − T m

1 − T ε

)(−tn+mΔ
)

= ({n}T ;ε − {m}T ;ε
)
δn+m. �

Let us remark here that the second expression in formula (9) shows that these non-linearly
deformed Witt algebras, constructed a priori in [16] by taking any endomorphism of C[t±1]
instead of the automorphism defined by t �→ qt , really “look like” the q-Witt algebra. More
precisely, if one takes for σ the automorphism t �→ qt , then s = 1, so ε = 1, d = 0 and T = q .
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Then {n}T ;ε = {n}T = {n}q are the usual q-integers, and (9) is the usual bracket of the q-Witt
algebra, as defined for instance in [16] or [21], and leading for q = 1 to the classical Witt algebra.

Note that A = ⊕d−1
i=0 t iC[T ±1] is naturally a Z/dZ-graded ring, and that the natural map

A → AΔ = Dσ (A) is an isomorphism of graded Z-modules. Concerning the quasi-Lie structure,
we show that Dσ (A) admits a Z/dZ-gradation with coefficients in C[T ±1]. This echoes the Z-
gradation of the q-Witt algebra (case d = 0) with coefficients in C.

Theorem 3.3.4. Let σ be the endomorphism of A = C[t±1] defined by σ(t) = qts , with q ∈ C∗
and s ∈ Z. Recall that Dσ (A), the space of σ -derivations of A, is endowed with the bracket [·,·]σ
defined in Theorem 2.2.3. Define d = |s − 1|, and denote Zd = Z/dZ, in particular for s = 1 one
has Z/{0} = Z. For any k ∈ Z note k = k + dZ ∈ Zd .

The non-associative algebra (Dσ (A), [·,·]σ ) is Zd -graded: Dσ (A) = ⊕
k∈Zd

Dk , with Dk =
C[T ±1]δk for any k ∈ k.

Proof. The case s = 1 is straightforward. So assume s �= 1. Then T = qtεd , with d � 1. So
C[t±1] = ⊕d−1

i=0 t iC[T ±1] as vector spaces. Now the direct sum in the theorem follows from this
and from the fact that AnnΔ = {0}. The grading results directly from formulas (9) and from the
fact that tn+m = tn+m−dq−εT ε . �
Remark 3.3.5. The homogeneous part of degree 0 is a quasi-Lie subalgebra, with linear basis
(−T nΔ, n ∈ Z), and the relations[−T nΔ,−T mΔ

]
σ

= ({
(s − 1)n

}
T ;ε − {

(s − 1)m
}
T ;ε

)(−T n+mΔ
)
,

proven as follows:[−T nΔ,−T mΔ
]
σ

= (
σ
(−T n

)
Δ

(−T m
) − σ

(−T m
)
Δ

(−T n
))

Δ

=
(

T sn T m − T sm

1 − T ε
− T sm T n − T sn

1 − T ε

)
Δ = T sn+m − T sm+n

1 − T ε
Δ

= ({
(s − 1)n

}
T ;ε − {

(s − 1)m
}
T ;ε

)(−T n+mΔ
)
.

3.4. The bracket “modulo inner σ -derivations”

Motivated by the previous results we are interested next in obtaining a more detailed descrip-
tion of what the relations for the bracket in Theorem 3.3.1 become modulo inner σ -derivations.

Notation. We will use the following notation for congruence of two σ -derivations modulo inner
σ -derivations: ∀Δ̃, Δ̂ ∈ Dσ (A), the expression Δ̃ ≡ Δ̂ means that Δ̃ − Δ̂ ∈ Innσ (A).

Motivated by Theorem 3.2.1, and since [Innσ (A), Innσ (A)]σ ⊆ Innσ (A) and the bracket is
skew-symmetric, computation modulo Innσ (A) of the brackets of the following two types are of
a special interest:

[δn, δm]σ , with 0 � n < m � d − 1;
[δn, gδm]σ , with m ∈ Z and 0 � n � d − 1. (10)
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Recall we denote by ε the sign of s − 1 with convention ε = 1 if s = 1. As noticed in Subsec-
tion 3.1, for all s ∈ Z one has Innσ (A) = gDσ (A) = (1 − T ε)Dσ (A) = (1 − T )Dσ (A).

Lemma 3.4.1. For all n,m ∈ Z, one has:

(1) [δn, δm]σ ≡ ε(n − m)δn+m;
(2) δm ≡ q−εδm−d .

Proof. (1) We know that [δn, δm]σ = ({n}T ;ε − {m}T ;ε)δn+m according to Proposition 3.3.3.
Since Innσ (A) = (1 − T )AΔ, we must compute the remainder of the Euclidian division of the
polynomial F(T ) = {n}T ;ε − {m}T ;ε by 1 − T . This reminder is F(1) = ε(n − m).

(2) For any m ∈ Z we have

δm = −tmΔ = −td tm−dΔ = tdδm−d = tε(s−1)δm−d = q−ε
(
qts−1)ε

δm−d

= q−εT εδm−d = q−εδm−d − (
1 − T ε

)
q−εδm−d = q−εδm−d − gq−εδm−d ≡ q−εδm−d

modulo inner σ -derivations Innσ (A). �
The following properties follow directly from Lemma 3.4.1.

Proposition 3.4.2. The following statements hold.

(1) For all n,m ∈ Z such that 0 � n,m < d and n + m < d :

[δn, δm]σ ≡ ε(n − m)δn+m;
[δ0, δm]σ = −εmδm + Δ̃, where Δ̃ ∈ Innσ (A).

(2) For all n,m ∈ Z such that 0 � n,m < d and d � n + m < 2d :

[δn, δm]σ ≡ ε(n − m)q−εδn+m−d ;
[δ0, δm]σ = −εmq−εδm−d + Δ̃, where Δ̃ ∈ Innσ (A).

(3) For n,m,p ∈ Z such that pd � n + m < (p + 1)d :

[δn, δm]σ ≡ ε(n − m)q−εpδn+m−pd;
[δ0, δm]σ ≡ −εmq−εpδm−pd;
[δ0, δm]σ = −εmq−εpδm−pd + Δ̃, where Δ̃ ∈ Innσ (A).

Remark 3.4.3. Note that in the first formula, there is no more q appearing, just like in the
classical Witt algebra. This however does not induce such a formula on the quotient space
Dσ (A)/Innσ (A) because Innσ (A) is not an ideal for the [·,·]σ bracket, as results from the next
proposition.

For the other type of bracket in (10) we have the following properties.
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Proposition 3.4.4. For all n,m ∈ Z the following formulas hold.

[δn, gδm]σ = [δn, δm]σ − qε[δn, δm+d ]σ ; (11)

[δn, gδm]σ ≡ εdδn+m, [gδn, δm]σ ≡ −εdδn+m; (12)[
δn, g

rδm

]
σ

≡ 0,
[
grδn, δm

]
σ

≡ 0 for all r, n,m ∈ Z such that r � 2; (13)[
guδn, g

vδm

]
σ

≡ 0 for all u,v,n,m ∈ Z such that u,v � 1; (14)

[δn, gδm]σ ≡ εdδn+m ≡ εdq−εpδn+m−pd = (s − 1)q−εpδn+m−p|s−1|
for all n,m,p ∈ Z such that pd � n + m < (p + 1)d; (15)

[δn, gδ0]σ = −[δn, gΔ]σ ≡ −εdδn ≡ −εdq−εpδn−pd = −(s − 1)q−εpδn−p|s−1|
for all n,p ∈ Z such that pd � n < (p + 1)d; (16)

[δ0, gδm]σ = −[Δ,gδm]σ ≡ −εdδm ≡ −εdq−εpδm−pd = −(s − 1)q−εpδm−p|s−1|
for all m,p ∈ Z such that pd � m < (p + 1)d; (17)

[δ0, gδ0]σ = [Δ,gΔ]σ ≡ εdδ0 = −εdΔ. (18)

Proof. The formula (11) follows from bilinearity of the bracket, g = 1 − T ε and T εδm =
qεδm+d . The formulas (12) and (13) are obtained using part (1) of Proposition 3.4.2, part (2)
of Lemma 3.4.1 and binomial theorems as follows:

[
δn, g

rδm

]
σ

= [
δn,

(
1 − T ε

)r
δm

]
σ

=
r∑

k=0

(−1)k
(

r

k

)[
δn, T

εkδm

]
σ

=
r∑

k=0

(−1)k
(

r

k

)
qεk[δn, δm+dk]σ ≡

r∑
k=0

(−1)k
(

r

k

)
qεkε(n − m − dk)δn+m+dk

≡
r∑

k=0

(−1)k
(

r

k

)
qεkε(n − m − dk)q−εkδn+m

=
(

r∑
k=0

(−1)k
(

r

k

)
ε(n − m − dk)

)
δn+m

=
(

ε(n − m)

(
r∑

k=0

(−1)k
(

r

k

))
− εd

(
r∑

k=0

(−1)k
(

r

k

)
k

))
δn+m

=
{

0, for r � 2,

εdδn+m, for r = 1.

The other two formulas in (12) and (13) follow from the first ones by the skew-symmetry of
the bracket. Then (14) follows from the fact that the bracket of two inner σ -derivations is still
inner.

All the other formulas follow by (12) and Lemma 3.4.1. �
Corollary 3.4.5. {Δ̃ ∈ Dσ (A) | [Δ̃, Innσ (A)]σ ⊆ Innσ (A)} = Innσ (A).
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Proof. We already know that Innσ (A) is included in the space on the left-hand side of the equal-
ity by Proposition 2.3.1. Conversely, consider a polynomial P ∈ A such that PΔ belongs to this
space. Then in particular one must have [PΔ,gΔ] ∈ Innσ (A). But from formulas in Proposi-
tion 3.4.4 we have [PΔ,gΔ]σ ≡ εdPΔ, and so dPΔ ∈ Innσ (A), that is PΔ ∈ Innσ (A). �
3.5. The spaces S1 and S1

As before, let A = C[t±1], σ(t) = qts , and g = 1 − (qts−1)ε , with ε = sign(s − 1) and con-
vention ε = 1 if s = 1. We have shown previously that Dσ (A) = AΔ, Innσ (A) = gAΔ and
[Innσ (A), Innσ (A)]σ ⊆ Innσ (A). Recall also the following notations from Section 2.4.

Definition 3.5.1.

S1 = SpanC

[
Innσ (A), Innσ (A)

]
σ
;

S̃1 = {
Δ̃ ∈ Dσ (A)

∣∣ [
Δ̃, S1]

σ
⊆ Innσ (A)

};
S1 = {

Δ̃ ∈ Dσ (A)
∣∣ [

Δ̃;S1]
σ

⊆ S1}.
By Proposition 2.4.6 we have the inclusions S1 ⊆ Innσ (A) ⊆ S1 ⊆ S̃1. Now we can describe

these spaces in the case we are considering here.

Theorem 3.5.2. The following statements hold.

(1) If s = 1 then Dσ (A) = Innσ (A) = S1 = S̃1 = S1.
(2) If s = 0 then Dσ (A) = C ⊕ Innσ (A) = S̃1 = S1, and S1 = 0.
(3) If s �= 0,1 then 0 �= S1 � Innσ (A), and S̃1 = Dσ (A).

Moreover, if s �= −1 then S1 = Innσ (A).

Proof. (1) This was already noted at the beginning of Subsection 3.2.
(2) The decomposition of Dσ (A) is Theorem 3.2.1. For the rest, just note that in this case

g = 1 − q−1t and σ(g) = 0. So, it follows from Lemma 2.4.4 that S1 = 0. Then by definition of
these sets one gets S̃1 = S1 = Dσ (A).

(3) The strict inclusion 0 �= S1 � Innσ (A) follows from Corollary 2.4.5 since A = C[t±1] is
UFD. The equality S̃1 = Dσ (A) was also proved for any UFD in Proposition 2.4.7 and hence
holds in particular for A = C[t±1].

We already noticed (Proposition 2.4.6) that S1 ⊇ Innσ (A) for s �= 0,1,−1. For the inverse
inclusion, we note first that g divides σ(g). We shall remark also that considering Remark 2.3.2
for pb = t and pa = 1 we get Δ(t)gσ (g)Δ ∈ S1. Recall from (5) that Δ(t) is always a monomial.
Now the proof will involve several steps, listed below.

Step 1. We first restate our problem. Consider a σ -derivation P̃ (t)Δ ∈ S1. Our aim is to show that
P̃ (t)Δ ∈ Innσ (A). According to Theorem 3.2.1 one should write P̃ (t) = ∑d−1

i=0 ait
i + g(t)R(t),

so that g(t)R(t)Δ ∈ Innσ (A). We must show that P = ∑d−1
i=0 ait

i = 0.

Step 2. Because of Lemma 2.4.4 we have [P(t)Δ,Δ(t)gσ (g)Δ]σ ∈ gσ(g)AΔ. For conve-
nience we denote Φ = Δ(t)gσ (g). Since AnnΔ = 0, we have gσ(g) dividing T = σ(P )Δ(Φ)−
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Δ(P )σ(Φ). But σ(Φ) = σ(δ(t))σ (g)σ (σ (g)) is a multiple of gσ(g) because σ(g) is a multiple
of g. So gσ(g) divides σ(P )Δ(Φ). Since Δ is a σ -derivation we have

Δ(Φ) = Δ
(
Δ(t)gσ (g)

) = σ
(
Δ(t)

)
Δ

(
gσ(g)

) + Δ2(t)gσ (g),

so gσ(g) divides σ(P )σ (Δ(t))Δ(gσ(g)). Now remember that Δ(t) is a monomial, so a unit,
and σ(Δ(t)) also. We conclude that gσ(g) divides σ(P )Δ(gσ(g)).

Step 3. Since Δ(gσ(g)) = σ(g)Δ(σ(g)) + Δ(g)σ (g), we have that g divides the polynomial
σ(P )(Δ(σ(g)) + Δ(g)).

One has the following formulas concerning g:

g = 1 − qεtd = 1 − T ε, σ (g) = 1 − qε+d tds = 1 − qεstds = 1 − T εs,

σ
(
σ(g)

) = 1 − T εs2 = 1 − qεs2
tεs

2(s−1) =
(

s2−1∑
k=0

(
qεtd

)k

)(
1 − qεtd

)

=
(

s2−1∑
k=0

(
qεtd

)k

)
g =

(
s2−1∑
k=0

(
T ε

)k

)
g.

Step 4. Now we prove that g and Q = Δ(σ(g)) + Δ(g) = Δ(g + σ(g)) are relatively prime, so
by Gauss’s Lemma g must divide σ(P ). By definition Δ = (id − σ)/g, and so Δ(σ(g) + g) =
(σ (g) − σ 2(g) + g − σ(g))/g = 1 − (σ 2(g)/g). By the formulas above, Q = −T ε

∑s2−2
0 T εk

and it is prime with g, as any root t0 ∈ C of g satisfies T (t0) = 1, so Q(t0) = 1 − s2 �= 0 (by
hypothesis on s).

Step 5. Finally, the rest of the proof is reduced to the hypothesis that g divides σ(P ), with P =∑d−1
i=0 ait

i . Note that g = 1 − qεtd admits exactly d distinct roots (the d th-roots of q−ε ) in C.
Let t0 be one of these roots. Then σ(P )(t0) = ∑

ai(qts0)i = ∑
ait

i
0 since qts−1

0 = (qεtd0 )ε = 1.
So P(t0) = 0, and P admits d distinct roots. Thus P = 0, as the degree of P is at most d −1. �
Remark 3.5.3.

(1) The formulas we use for g in the proof also lead to

Δ(g) = g − σ(g)

g
= (1 − T ε) − (1 − T εs)

1 − T ε
= 1 − 1 − T εs

1 − T ε

= 1 − 1 − (qεtd)s

1 − qεtd
= 1 − {εs}T ;ε.

(2) Note that the computation of S1 in the last case relies on the fact that s2 �= 1, and that is
the reason why we assumed s �= −1. When s = −1 things should behave mostly like when
s = 1, but we were not able to solve the technical problems arising in this case.
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(3) The “normalizer-like” sets S1, S̃1 bear information on the relation between Dσ (A) and
Innσ (A). It is interesting that by Theorem 3.5.2, for non-linearly q-deformed Witt algebra,
this chain of sets terminates almost at the start and thus this way one does not get the chain
of subalgebras that one might expect between Dσ (A) and Innσ (A). It would be interesting
to describe some broader classes of algebras that have or do not have similar properties.
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