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Abstract

Gécseg, F. and B. Imreh, Finite isomorpkhically complete systems, Discrete Applied Mathematics
36 (1992) 307-311.

In the theory of finite automata it is an important problem to characterize such systems of
automata from which any automaton can be built under a given composition and representation.
Such systems are called complete with respect to the fixed composition and representziion. From
practical point of view, it is useful to deiermine those compositions and representations for which
there are finite complete systems. In this paper we show that the existence of finite complete
systems implies the unboundedness of the feedback dependency of the compositicn.

By an automaton we mean a system 4 =(X, A,0) where X and A are nonempty
finite sets, the set of inputs and the set of states, respectively, and 6: AX X > A is
the transition function.

Since each automaton can be considered a unoid (a universal algebra with unary
operational symbols), the notions such as isomorphism, embedding and sub-
automata can be introduced in a natural way.

The concept of a composition can be defined in different ways. If we impose some
restrictions on the feedback dependency of the general product (see [4,5]), then we
obtain special compositions. Such restrictions as ‘‘the ith feedback function may de-
pend on some arguments only’’ can be given by functions y:N—PB(N), where
N={1,2,...} and P(N) denotes the power set of N. Taking a cuitable nonempty set
of such functions, we obtain a composition. This approach was used in [6], where
a decomposition theorem was pioved.
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We get another approach to the same notion by considering a composition as a
network of automata. In this case each vertex of the network denotes an auto-
maton, and the input of an automaton may depend only on those automata which
have direct connections to the given one. In [2,7] this approach is used to study
completeness under the isomorphic simulation as representation. In this paper we
are also using this approach.

Let D= (E, V) be a directed graph consisting of a nonempty finite set of vertices
V=1{i,...,n} and edges EC Vx V. Consider an arbitrary nonempty set @ of such
finite dirccted graphs. Moreover, let A;=(X;,A;,9;) (i=1,...,n) be a system of
automata, X a finite nonempty set and ¢ a mapping of 4, X xXA,XX into
X X++xX,. It is said that the automaton A4 =(X,A,d) is a D-product of A;

(i=1,...,n) with respect to X and ¢ if the following conditions are satisfied:

(l) A =“:'1=1 Ais

(2) there exists a graph D=({1,...,n},E) in @ such that the mapping ¢ can be
given in the form

@@y ooy @y X) =(@1(@1s ooy @y X, o n, Oy, . oe, @y, X)),

where (ay,...,a,)€ A, xe X and each ¢; (1=i<n) is independent of any a; with
(LD&E,
(3) for arbitrary xe X and q;€ A, (i=1,...,n)

6(”!: eey appx) = (Jl(als Q’](a], ---,a",X)), L] 95'1(‘1”’ wn(al’ one ,a”,X)))-

For this product we shall use the notation
'HI Ai(Xs 0, D)-

Now let I be a system of automata. It is said that I" is isomorphically complete
with respect to the @-product if any automaton can be embedded isomorphically
into a @-product of automata from 7.

We shall use the following special automata. For every natural number m=1 let
T,,=(T,,{1,...,m},d,,) be the automaton for which 7, is the set of all transforma-
tions of {1,...,m} and 9,,(j,t)=1t(j) for arbitrary je{l,...,m} and teT,,.

Now we are ready to prove the following statement:

Theorem 1. Let @ be an arbitrary nonempty set of finite directed graphs. If there
exists a finite isomorphically complete system of finite automata with respect to the
@-product, then for every integer k=1 there is a graph De @ such that D has a
subgraph for which the indegree of each vertex is at least k.

Proof. Let us suppose that a finite system I” of finite automata is isomorphically
complete with respect to the @-product. Then there is an integer s=1 such that
|C| <s holds for every automaton C=(X,C,d¢) in I". Now let k=1 be an arbitrary
fixed integer and m=s**'. Consider the automaton 7. Since I is isomorphically
complete with respect to the @-product, there exist a graph D=({1,...,n},E)e @
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and automata Ay, ...,4, el such that T,, can be embedded isomorphically into a
@-product

B=(Tm’ B, JB)Z H Ai(7;m ¢ D).
i=1

Let us denote by u:{l,...,m} > B a suitable isomorphism, and for arbitrary
re{l,...,m} let (a,,...,a,,) be the image of r under pu.
Now define the set V’ as foilows:

V'={ie{l,...,n}| there are l <u#v=m with a,#a,}.

We shall show that the subgraph D’'=(V', EN(V’x V")) has the required properties.
To this end let i be an arbitrarily fixed vertex of D and {i,,...,i;} ={ve V| (v,i)eE}.

{Ecnacially if 7 hac a lann ados than i= §; .U ) Naw lat nic cninnnca that thara
\CS5PECiany, 11 7 1aS & iO0P CGEC, WISl 1€ iy «--s¢j 5.7 1¥OW 181 US SUPPOST unat undic

are indices u #v (1 <u,v=m) with a,;=a,; and a,;=a,; (j=i),...,ij). Let I=sw=m
be an arbitrary integer and ¢, such a transformation of {l,...,m} for which
t,u)=u, t, (v)=w. Then é,,(u,t,)=u and 9,,(v,t,,) = w. From this, using the fact
that y is an isomorphism, it follows that

opu(u),t,)=uu)
and

Og(p(v) 1) =u(w)
hold in the @-product B. But then, by the definition of the %-product,

5,-((1“;, (pi(auli ey @ymy tw)) =ay
and
ai(auia (pi(auls cenry aum tw)) = awi'

Again, by the definition of the @-product, we obtain

‘pi(aula seesQypy t,)= ‘pi(auip cees Ayjps tw)

and

Wi(aul’ sensQups tw) = (pi(aui|9 cees @y tw)-
Therefore

0i(@yuis @i(@yiys - -+ > Ayis 1)) = Ay
and

0i(yis 0i(@yips -5 Qs 1)) = Ay

According to our assumption a,,=a,;, a,, =a,, (j=1,...,!), and so, the arguments
of J; are the same in both equations. But then a,=a,,;. On the other hand,
1 <=w=m is arbitrary, which results a,,=a,, (w=1,...,m).

The above observation yields that for arbit-a:y ie V', the elements

(ari’ari,v ---sar,',) (r=1,...,m)

are pairwise different, where ij,...,i, are all the ancestors of i in D. Now, if
ije V-V’ for some 1<j</, then a,=a, (r=1,...,m) holds for a fixed state
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a; € A; . But then for arbitrary ie V' the elements (a,;, 4, ---,4a,;) (r=1,...,m) ar¢
pairwise different, where iy, ..., i denote all the ancestors of i/ in D’. On the other
hand, |A;|<s and |4;|=<s (j=1,...,{), and so, the number of the pairwise dif-
fercnt (/+1)-tuples (@@, ---,ay) @;€A;, a;€A; (j=1,...,1)) is not greater
than s'*!. Therefore, m=<s'"!. But m=s"*!. Thus k</. This means that the in-
degree of i is at least & for arbitrary i€ V', which completes the proof of our state-
ment. [

Remark 2. From the above thecorem it follows that for the well-known notions of
composition as the quasi-direct product, the a;-product [3,4], the v;-product [1],
and the star-product {7] no finite isomorphically complete systems exist.

It is unknown yet whether the converse of Theorem 1 is true. To end this paper
we give two classes of examples in which the conditions of Theorem 1 are sufficient.
In the rest of the paper A4, will denote the automaton A4, =({x, y}, {0,1},d,) with
0-(0,x)=0.(1,y)=1 and 8,(0,y)=6,(1,x)=0. It is well known that 4, forms an
isomorphically complete class for the general product (see [5]).

Example 3. Let d be a fixed nonnegative integer. Moreover, let @ be a set of directed
graphs. If for arbitrary positive integer n there is a graph D in @ with n vertices
which has a subgraph D’ such that the indegree of each vertex in D’ is at least k and
n—-k=d, then A, is isomorphically complete with respect to the @-product.

Forarbitrary D=(E, V)e @ (E={],...,n})and i (1 <i<n)setin(i)={j| (j,i)e V}.
Let D, be a graph in @ which for a positive integer # with n> 2d satisfies the above
conditions under a subgraph D, and integer k. Moreover, let {1,...,m} be the set
of all vertices of D,. Let ¢ be maximal with d<[m/t]. Of course, such a ¢ exists,
since k>d and m=k. Take the following subset S of {0,1}": an (sy, ...,s,)€ {0, 1}"
is in S iff the next two conditions are satisfied:

(D) for all 4, j (I=sisj<[m/t)t), s;=s; if j—i=0 (mod 1),

(2) 5;=0if [m/tlt<i=n.
Let B=(X, B, ) be an automaten with at most 2’ states. Moreover, let 7 be a one-
to-one mapping of B into S. Now define the functions

@it 40,1} X% {0,1} x X > {x, y}

\/
n times

in the following way:
(i) for arbitrary ze X and (sy;,...,5,) €S,

52(Sli9 (0,‘(5']1, s S 2)) =85

if 1<i<[m/t]t and there are b, b,eB with (b))~ (s s;) (j=1,2) and

(SVILRALEES
J(b|,2)=b2,

(i)) for arbitrary ze X and (sy,...,5,)€S, ¢9;(5;,...,5,,2) =y if [m/tlt<i=<n,
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(iii) in all other cases ¢; is defined arbitrarily in accordance with the definition
of the @-product.
Then g¢; is well defined since, by d<[m/t] and m-k=<d, for all i (1 <i<[m/t]t)
there is an / (0=s/<[m/t}) such that {{t+]1,...,(/+1)¢} Cin(i).

Let us denote the resulting @-product by C= (X, C,d’). Then t is an iscmorphism
of B into C. Moreover, if n is unboundedly increasing, then ¢ is unboundedly
increasing, too. Therefore, A, is isomorphically complete with respect to the
@-product.

The above example shows that if the difference of n and & is under a fixed bound,
then the converse of Theorem 1 is true. By the next example the difference between
n and k can be arbitrary.

Example 4. Let K be a set of pairs (k, n), where k= 1,2, ... and n (> 1) is an arbitrary
integer with k | n. For every (k, n) € K take a directed graph Dy =1, ...,n}% Vi)
with

Vik.my = 1O s 1) li=1,...,n, j=1,...,k},

where i©,j denotes thc least positive residue of i—j modulo n. Set @=
{Dye.ny | (k,n)e K'}. For each pair (k,n)eK, let S ,, denote the following subset
of {0,1}": (sy,...,5,)€{0,1}" is in Sy, iff for all i, j (1=i,j<n), s;=s; if i=j
(mod k). Take an automaton B= (X, B,d) with at most 2* states and a one-to-one
mapping 7 of B into S ,. One can show, in a way similar to that in the previous
example, the existence of a @-product C=(X,C,d") of A, such that 7 is an iso-
morphism of B into C.
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