
Discrete Applied Mathematics 36 (1992) 507-3 11 
North-Holland 

307 

Note 

Finite isomorphically complete 
systems 

F. Gkseg and B. Imreh 
Department of Infornratics, A. Jtizsqf I ‘niversity, 6720 Szeged, Aradi vPrtantik tere I, Hungary 

Received 3 January 1991 

Revised 7 May 1991 

A bstract 

Gecseg, F. and B. lmreh, Finite isomorphically complete systems, Discrete Applied Mathematics 

36 (1992) 307-3 11. 

In the theory of finite automata it is an important problem to characterize such systems of 

automata from which any automaton can be built under a given composition and representation. 

Such systems are called complete with respect to the fixed composition and represent:;ion. From 
practical point of view, it is useful to determine those compositions and representations for which 

there are finite complete systems. In this paper we show that the existence of finite complete 

systems implies the unboundedness of the feedback dependency of the composition. 

By an automaton we mean a system A = (X, A, 6) where X and A are nonempty 
finite sets, the set of inputs and the set of states, respectively, and 6 : A x X-, A is 
the transition function. 

Since each automaton can be considered a unoid (a universal algebra with unary 
operational symbols), the notions such as isomorphism, embedding and sub- 
automata can be introduced in a natural way. 

The concept of a composition can be defined in different ways. If we impose some 
restrictions on the feedback dependency of the general product (see [4,5]), then we 
obtain special compositions. Such restrictions as ‘*the ith feedback function may de- 
pend on some arguments only” can be given by functions y : IV+ ‘Q(N), where 
N= ( 1,2, . . . > and p(N) denotes the power set of N. Taking a suitable nonempty set 
of such functions, we obtain a composition. This approach was used in [6], where 
a decomposition theorem was proved. 
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We get another approach to the same notion by considering a composition as a 
network of automata. In this case each vertex of the network denotes an auto- 
maton, and the input of an automaton may depend only on those automata which 
have direct connections to the given one. In [2,7] this approach is used to study 
completeness under the isomorphic simulation as representation. In this paper we 
are also using this approach. 

Let D= (E, V) be a directed graph consisting of a nonempty finite set of vertices 
v= ; i, . . . . n) and edges EC Vx V. Consider an arbitrary nonempty set 9 of such 
finite directed graphs. Moreover, let Ai = (Xi,& Si) (i = 1, . . . , n) be a system of 
automata, X a finite nonempty set and q a mapping of A 1 x l x A, XX into 
XI x -0. x XN. It is said that the automaton A =(X,/I, 8) is a $&product of Ai 
(i= 1, . . . . n) with respect to X and q.~ if the following conditions are satisfied: 

(1) A =ny=* Ai, 
(2) there exists a graph D = (( 1, . . . , n ), E) in 9 such that the mapping (p can be 

given in the form 

(P@l , . . ..a.,,x)=(P,(al, ..-,a,,,x), . . ..q+.(al, .:-,a,,,x)), 

where (al, . . . , a,,} E A, x E X and each Cpi (I 5 is n) is independent of any aj with 

(j,i)eE, 
(3) for arbitrary XEX and aiEAi (i= 1, . . ..n) 

&a 1,...,a,,,x)=(6,(al,~l(al,...,a,,,x)),...,6,(a,,Co,(a~,.=.~a,,x))~. 

For this product we shall use the notation 

fi Ai(X, (P, D)- 
i= I 

Now let r be a system of automata. It is said that r is isomorphically complete 
with respect to the g-product if any automaton can be embedded isomorphically 
into a 5?-product of automata from r. 

We shall use the following special automata. For every natural number m> 1 let 

TU,=(G1, (1, l ... m},6,,,) be the automaton for which T,,, is the set of all transforma- 
tions of (l,..., m> and a,,,( j, t) = t(j) for arbitrary je { 1, . . . , m> and t E T,,l. 

Now we are ready to prove the following statement: 

Theorem 1. Let 9 be an arbitrary nonempty set of finite directed graphs. If there 
exists a fi.Gte isomorphically complete system oj finite automata with respect to the 
g-product, then for every integer k I I there is a graph D E 9 such that D has a 
subgraph for which the indegree of each vertex is at least k. 

Proof. Let us suppose that a finite system f of finite automata is isomorphically 
complete with respect to the g-product. Then there is an integer sz 1 such that 
IC( cs holds for etery automaton C= (X, C, 6,) in F. Now Iet kr 1 be an arbitrary 
fixed integer and m = sk + I. Consider the automaton T,,,. Since f is isomorphically 
complete with respect to the @product, there exist a graph D = ({ 1, . . . , n}, E) E 9 
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and automata A 1, l l . , A, E f such that T,, can be embedded isomorphically into a 
g-product 

S=(T~,,B,~B)= fi Ai(T,,,,P,JJ). 
i=l 

Let us denote by p: (1, . . ..I@ + B a suitable isomorphism, and for arbitrary 
TE (1, . . . . m) let (a,,, . . . . ar,,) be the image of r under p. 

Now define the set V’ as fohows: 

V’=(iE{l,..., n) 1 there are lrufvlrn with a”i+a,i). 

We shall show that the subgraph D’= ( V’, En ( V’ x V’)) has the required properties. 
To this end let i be an arbitrarily fixed vertex of D and {it,. . . , il} = {v c V 1 (v, i) E E}. 

(Especially, if i has a loop edge, then i E (i I ) . . . , i,} .) Now let us suppose that there 
are indices M#V (1 su,vsm) with a,,i=a,i and aUj=aUj (j=i,,...,i,). Let 1 swsm 
be an arbitrary integer and I, such a transformation of ( 1, . . ..m} for which 
t,,,(u)= u, t&)= w. Then 6,(u,t,) =U and &(vJ,)= w. From this, using the fact 
that p is an isomorphism, it follows that 

hold in the g-product B. But then, by the definition of the &product, 

and 
6i(a”i,(pi(a”,,---,a,,,t,))=a”i 

ai(Q,i,(Pi(Q,r, . ..9a.,,t,))=a,i. 

Again, by the definition of the @-product, we obtain 

4Pi(a,l, ---9%nrfw)=(Pi(aui,9 l --9aui,9tw) 
and 

Coi(aul,...,a,,,t,)=(pi(a,i,,...,a,i,,t,). 
Therefore 

ai(a”i, (Pi(Q”i,, . - l 9 Qui,, tw)J = a,i 

and 

~it%i9ViCa,i,9 l --9%i,,t~Jl=a~i- 

According to our assumption a,i = a,i, a,, = a,,i, (j = 1, . . . , /)p and so, the arguments 
of CTi are the same in both equations. But then a,i= a,+.i. On the other hand, 
1 s ws m is arbitrary, which results a,i = a,,,, (w = 1, . . , , m). 

The above observation yields that for arbitr,p;.y r~ V’, the elements 

(ari,ari,, l --5ari,) V= 4 . . ..m) 

are pairwise different, where ir, . . . , i, are all the ancestors of i in D. Now, if 

b E V- V’ for some 15 jr 1, then a,i = a,, (r = 1, . . . , m) holds for a fixed state : 
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ai, E Ai,. But then for arbitrary i E V’ the elements (a,i, a,i,, l l l , a,i,) (r = 1, l l l ,I@ are 

pairwise different, where it, .*. , i, denote all the ancestors of i in D’. On the other 
hand, lAil cs and \Ai,l 5s (j= I ,..., I), and so, the number of the pairwise dif- 
fertnt (I+ 1)-tuples (a,.i,a,.i,, . . ..a.i,) (a,iEAi, ari,EAi, (j= 1, . . ..O) is not greater 
than s’+‘. Therefore, nz 5s” ‘. But tn = s” + ‘. Thus kl1. This means that the in- 
degree of i is at least k for arbitrary in V’, which completes the proof of our state- 
ment. El 

Remark 2. From the above theorem it follows that for the well-known notions of 
composition as the quasi-direct product, the ai-product [3,4], the Vi-product [ 11, 
and the star-product ]7] no finite isomorphically complete systems exist. 

It is unknown yet whether the converse of Theorem 1 is true. To end this paper 
we give two classes of examples in which the conditions of Theorem 1 are sufficient. 
In the rest of the paper Az will denote the automaton A-, =({~,y}, (0, l},&) with 
&(0,X) =&(l,y) = i and &(O,y) =62(1,~) =O. It is well known that Az forms an 
isomorphically complete class for the general product (see [5]). 

Example 3. Let d be a fixed nonnegative integer. Moreover, let 9 be a set of directed 
graphs. If for arbitrary positive integer n there is a graph D in 9 with n vertices 
which has a subgraph D’ such that the indegree of each vertex in D’ is at least k and 
II - k 5 d, then AZ is isomorphically complete with respect to the &product. 

For arbitrary D = (E, V) E $2 (E = ( 1, . . . , n})andi(l &(n)set in(i)= (jl (j,i)E V). 
Let D,, be a graph in C$ which for a positive integer n with n > 2d satisfies the above 
conditions under a subgraph D,: and integer k. Moreover, let (1, . . . , m} be the set 
of all vertices of 0,:. Let t be maximal with d< [n&l. Of course, such a t exists, 
since k > d and 171 L k. Take the following subset S of (0, 1 }“: an (Sr, . . . , s,,) E (0, 1 }‘I 
is in S iff the next two conditions are satisfied: 

(1) for all i, j (1 (icjs[in/t]r), Si=Sj if j-i=0 (mod t), 
(2) Si=O if [nl/t]t<i92. 

Let B= (X, S, 6) be an automaton with at most 2’ states. Moreover, let T be a one- 
to-one mapping of B into S. Now define the functions 

(pi: (091) X0** X (091) XX* (X,y) 
\ 

V 
/ 

II times 

in the following way: 
(i) for arbitrary z&Y and (s,t, . . ..s&S. 

if l~i~[~n/t]l and there are b,,b2d? with r(~$(SJ,....,s~,z) (j= 12) and 
G(b,,z)= b2, 

(ii) for arbitrary z&Y and (s,, . . . ,s,,) ES, pi(St, . . . ,s,~,z) =y if [n&It< ic n, 
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(iii) in all other cases (pi is defined arbitrarily in accordance with the definition 
of the g-product. 
Then pi is well defined since, by d< [777/f] and 777 - ksd, for all i (15 ia [777/t]t) 

there is an I (OS/< [n~/t]) such that (/l+ 1, . . . ,(i+ l)r> Gin(i). 

Let us denote the resulting @product by C= (X, C, S’). Then r is an isomorphism 
of B into C. Moreover, if n is unboundedly increasing, then t is unboundedly 
increasing, too. Therefore, A2 is isomorphically complete with respect to the 
@product. 

The above example shows that if the difference of n and k is under a fixed bound, 
then the converse of Theorem 1 is true. By the next example the difference between 
n and k can be arbitrary. 

Example 4. Let Y be a set of pairs (k, n), where k = 1,2, . . . and n (> 1) is an arbitrary 
integer with k 1 n. For every (k, n) E K take a directed graph Dik,,l, = ({ 1, . . . , n>, Zl;k,,II) 
with 

t$.,I~=((i@,rj,i)~i=l,..~,n, j=l,..., k), 

where i@,, j denotes the least positive residue of i-j modulo n. Set 9 = 
{Dtk ,Il 1 (k, n) E K). For each pair (k, n) E K, let Slk ,II denote the following subset 
of {b, 1)“: (St ,..., s,,)E (0, 1)” is ii1 Stk,,I) iff for ali i, j (1 Ii,jln), Si’Sj if i=j 
(mod k). Take an automaton B= (X, B, 6) with at most 2” states and a one-to-one 
mapping r of B into &). One can show, in a way similar to that in the previous 
example, the existence of a g-product C= (X, C,S’) of AZ such that r is an iso- 
morphism of B into C. 
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