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SUMMARY

The nervous system is enormously complex, yet the
number of cues that control axonal growth is sur-
prisingly meager. Posttranslational modifications
amplify diversity, but the degree to which they are
employed is unclear. Here, we show that Furin and
SKI-1 combine with autocatalytic cleavage and a
disulfide bridge to generate four membrane-bound
and three soluble forms of the repulsive guidance
molecule (RGMa). We provide in vivo evidence that
these proprotein convertases are involved in axonal
growth and that RGMa cleavage is essential for Neo-
genin-mediated outgrowth inhibition. Surprisingly,
despite no sequence homology, N- and C-RGMa
fragments bound the same Fibronectin-like domains
in Neogenin and blocked outgrowth. This represents
an example in which unrelated fragments from one
molecule inhibit outgrowth through a single receptor
domain. RGMa is a tethered membrane-bound
molecule, and proteolytic processing amplifies
RGMa diversity by creating soluble versions with
long-range effects as well.

INTRODUCTION

Axonal outgrowth is precisely orchestrated during development

to ensure correct connectivity within the nervous system (Tess-

ier-Lavigne and Goodman, 1996). Surprisingly, however, there

are a relatively limited number of known guidance proteins

(Thanos and Mey, 2001). Posttranslational modification is one

strategy to generate multiple activities from a single protein. In

theory, complex proteolytic processing with alternate use of

multiple specific cleavage sites could dramatically increase

diversity (Zisman et al., 2007). Semaphorins, which have several

cleavage sites, are one example (Adams et al., 1997), but the

extent to which this strategy is utilized and the effects on activity,

receptor specificity, and/or short (membrane-bound) versus

long-range (soluble) effects are largely unknown.

The GPI-anchored protein RGMa is key to the development of

various projections within the CNS and is thought to act solely as
Developm
a membrane-bound protein (Monnier et al., 2002). Its activity is

similar to that of the ephrins, as it inhibits retinal ganglion cell

(RGC) outgrowth (Monnier et al., 2002). RGMa acts through the

transmembrane receptor Neogenin, which is expressed in

a high-temporal low-nasal gradient in RGC axons (Rajagopalan

et al., 2004). In vitro, temporal axons that express Neogenin

avoid RGMa-expressing cells, whereas Neogenin-deficient

nasal axons are not affected by RGMa (Rajagopalan et al.,

2004). In vivo, perturbation of the RGMa gradient in the optic

tectum causes pathfinding mistakes for temporal fibers (Matsu-

naga et al., 2006). Thus, Neogenin and RGMa provide positional

information for retinal axons invading the tectum. Besides its

contribution to the establishment of the neuronal architecture,

RGMa is a major impediment to neuronal regeneration. Strik-

ingly, antibodies that block RGMa activity promote functional

recovery after spinal cord injury (Hata et al., 2006). Thus, to opti-

mize therapeutics that promote axonal regeneration it is critical

to understand how RGMa contributes to the nonpermissive

regenerative milieu of the CNS.

Current understanding of RGMa processing derives from

studies in transfected COS-7 cells, but the in vivo cleavage

pattern remains uncharacterized (Tassew et al., 2009). Here we

show that RGMa processing is far more complex than originally

thought. Thus, alternative cleavage by the Proprotein Conver-

tases Subtilisin Kexin Isozyme-1 (SKI-1) and Furin generates

multiple membrane-bound and soluble forms, and the resulting

peptides have dramatically different potencies, including

released forms. In stark contrast to nonmembrane-bound eph-

rins that do not influence axonal outgrowth, we show that soluble

forms of RGMa are inhibitory. Unexpectedly, distinct RGMa

products with no sequence homology operate through the

same Fibronectin III (3-4) domains in Neogenin. As RGMs are

implicated in many human disorders (Papanikolaou et al.,

2004; Nohra et al., 2010), the discovery of multiple derivatives

is expected to have important implications for therapeutic

targeting.
RESULTS

Complex In Vivo RGMa Processing
We performed western blotting on membrane preparations

under reducing (+DTT) and nonreducing conditions (-DTT) to

allow analysis of the RGMa disulfide bridge. As reported,
ental Cell 22, 391–402, February 14, 2012 ª2012 Elsevier Inc. 391

https://core.ac.uk/display/82051711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pmonnier@uhnres.utoronto.ca
http://dx.doi.org/10.1016/j.devcel.2011.11.022


D

E

F

Av
er

ag
e 

ne
ur

ite
le

ng
th

 
(

m
) 

0

150
Axonal growth on cell

supernatants

Mock RGMa

+-

Brain

+- +-

COS-7

B

60-

33-

HEK-293

supernatant

CAnti-C-RGMa, membrane preps Anti-N-RGMa

HEK-293

**

37-

DTT

27-

60-

1             2             3           4           5            6                               

A

CFL-RGMa

U-RGMa

C-RGMa

RGMa37

N-RGMa

NN-RGMa

RGMaΔ

60

60

33

37

+DTT-DTT
33

60

33

33

18

Detected
by anti

C-RGMa

Detected 
by anti 

N-RGMa

M
em

brane

S-S
C-RGMa

S-S

N-RGMa

S-S

Supernatant

22

60

NGase   - +           -

22-
18-

Furin  SKI-1

Brain

matrix

Figure 1. Analysis of RGMa Processing

(A) Schematic representation of the seven RGMa peptides identified in our

analysis. In membranes under reducing (+DTT) or nonreducing (-DTT) condi-

tions, an anti-C-RGMa revealed four RGMa fragments. In cell supernatant

(-DTT), an anti-N-RGMa revealed that three RGMa fragments are released.

Molecular weights are indicated on the right; UG unglycosylated. Black arrow

head indicates autocatalytic cleavage site, black arrow represents known

shedding cleavage site. Red arrows indicate calculated cleavage sites cor-

responding to soluble isoforms.

(B) Western blots with an anti-C-RGMa on membranes from RGMa-trans-

fected COS-7 cells, the developing chick brain, and RGMa-transfected

HEK293 cells. Analysis was performed under nonreducing conditions (-DTT) to

preserve the disulfide bridge or under reducing conditions (+DTT). Under

nonreducing conditions, one band is visible in COS-7 cells (60 kDa), whereas

three bands (33, 37, and 60 kDa) are visible in chick brain and HEK293. Under

reducing conditions two bands (33 and 60 kDa) are visible in membranes. This

revealed four membrane-bound RGMa proteins in chick brain (represented in

A; see also Figure S1).

(C) Western blots (-DTT) performed with an anti-N-RGMa on brain matrix

extracts (urea 3M) revealed a 30 kDa band. In supernatants from RGMa-trans-

fected HEK cells, two bands at 60 and 30 kDa are apparent. PNGaseF (NGase)

treatment to remove N-glycosylations (UG) reduced the 60 kDa to a 45 kDa

band and the 30 kDa to 22 and 18 KDa bands (arrow heads) (represented in A).

(D and E) Temporal retinal explants cultured on supernatants from cells

transfected with control (Mock, D) or RGMa (E). Bar, 200 mm.

(F) Average axonal length was significantly shorter on supernatants from

RGMa-transfected cells versus control (Mock; **p < 0.0005). Data are

average ± SEM from three independent experiments.
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membranes from COS-7 cells transfected with RGMa contained

a single 60 kDa protein, which DTT reduced to a 33 kDa

C-terminal RGMa fragment (‘‘C-RGMa’’) due to the presence

of an autocatalytic cleavage site at residue 150 (Figures 1A

and 1B, lanes 1 and 2; Tassew et al., 2009). Some of the

60 kDa band remained even after DTT treatment (Figure 1B,

lane 2) suggesting thatmembranes contain both cleaved and un-

cleaved full-length RGMa (Figure 1A, CFL-RGMa and U-RGMa,

respectively; Tassew et al., 2009). Whereas the C-terminal anti-

body only detected full-length 60 kDa protein on nonreduced

COS-7 membranes (Figure 1B, lane 1), this protein plus the

33 kDa C-RGMa fragment and an unexpected 37 kDa species

(‘‘RGMa37’’) were observed on nonreducedmembrane prepara-

tions from chick brain (Figure 1B, lane 3). Thus, in brain C-RGMa

is present on membranes both as a linked heterodimer with

N-RGMa (33 kDa+22 kDa), and on its own (33 kDa alone) (Fig-

ure 1B). The RGMa37 fragment disappeared after treatment

with DTT (Figure 1B, lane 4) and must, therefore, arise from a

second in vivo cleavage site located within the N-terminal part

of RGMa, and consists of the 33 kDa C-RGMa fragment

disulfide linked to a calculated 4 kDa N-RGMa fragment (Fig-

ure 1A). In summary, western blots with the C-terminal antibody

suggest the presence of four distinct membrane-anchored

RGMa proteins in vivo: CFL-RGMa (60 kDa), U-RGMa (60 kDa),

C-RGMa (33 kDa), and RGMa37 (37 kDa).

RGMa Is Processed into Soluble Proteins that Inhibit
Axonal Growth
To further test and extend these conclusions we sought to iden-

tify cell lines which, unlike COS-7, recapitulate themore complex

cleavage pattern seen in chick brain. Strikingly, western blotting

with the C-terminal antibody on membranes from HEK293, and

SH-SY5Y cells, but not COS-7 or DF1 cells, transfected with

RGMa showed a pattern similar to the one observed in brain (Fig-

ure 1B, lanes 5 and 6; Figure S1 available online). While RGMa

processing in HEK293 or SH-SY5Y cells did not seem as efficient

as in the brain, these model cell lines could be used to study

this process. The presence of two cleavage sites within the

N-terminal domain should lead to the release of two small

N-terminal fragments (Figure 1A, N-RGMa and NN-RGMa,

respectively). Thus, we sought to identify these fragments in

chick brain matrix extracts using N-terminal anti-RGMa anti-

bodies. Surprisingly, we could only reveal the presence of one

30 kDa band that was bigger than any of the expected N-terminal

fragments (Figure 1C). We extended this study to the medium of

RGMa-transfected HEK293 cells and detected two RGMa

proteins with apparent molecular masses of 60 and 30 kDa (Fig-

ure 1C, lane 1). The 60 kDa has been described before and

results from RGMa shedding from the membrane (RGMaD) by

a phospholipase (Hata et al., 2006) and may not be biologically

relevant as it is not seen in brain matrices. The 30 kDa band

was broad, so we surmised that it represented a glycosylated

N-terminal fragment. To test this hypothesis, we removed N-

glycosylations using PNGaseF and assessed its resultingmolec-

ular mass bywestern blot. Once unglycosylated (UG), the 60 kDa

was reduced to one 45 kDa band whereas the 30 kDa resulted

in 2 bands (18 and 22 kDa) that correspond to N-RGMa and

NN-RGMa (Figure 1C). Thus, RGMa processing in HEK leads

to the secretion of three soluble fragments: N-RGMa (30 kDa;
ier Inc.
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Figure 2. Furin and SKI-1 Process RGMa and Are Involved in Path-

finding

(A) RGMa-expressing cells were treated with the protease inhibitors AEBSF or

RVKR, or DMSO (control) and membranes blotted. AEBSF and RVKR both

strongly reduced RGMa cleavages, shown by the reduction of the 33 and

37 kDa bands (asterisks) (see also Figures S2A and S2B).

(B) RGMa-expressing cells were treated with RVKR or RRLL protease inhibi-

tors or DMSO (control). Blots on membranes under reducing (+DTT) and

nonreducing (-DTT) conditions show that RVKR inhibits the two cleavage

events (asterisks), whereas the SKI-1 inhibitor RRLL inhibited generation of the

33 kDa protein only (asterisk). In the presence of DTT a 33 kDa band appears

indicating that autocatalytic cleavage is not sensitive to treatments.

(C) RGMa was cotransfected with R134E or empty plasmid (control). In

membranes, R134E strongly reduced formation of the 33 kDa protein

(asterisk), confirming that it is the result of SKI-1 activity.

(D) RGMa was cotransfected with ppFurin or empty plasmid (Ctrl). ppFurin

strongly reduced formation of the 37 kDa fragment, confirming that it results

from Furin activity (see also Figure S2).

(E) RGMa-expressing cells were treated with DMSO (control) or RVKR and

supernatants were blotted with anti-N-RGMa. RVKR suppressed release of

N-terminal proteins (asterisk).

(F–H) In situ analysis demonstrated that Furin and SKI-1 are expressed in the

tectum in RGMa-expressing radial glial cells (arrows). Controls (sense) did not

show any staining (H).

(I) Injection of empty virus did not induce axonal phenotypes and all axons

established terminal arbors within the terminal zone (TZ).

(J) Ectopic expression of a SKI-1 pro-form (R134E) induced axonal pheno-

types with numerous fibers establishing arbors outside the TZ.

(K) Ectopic expression of ppFurin to neutralize Furin induced axonal

phenotypes with numerous fibers establishing arbors outside the TZ (arrow-

heads).
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Developm
22 kDa unglycosylated [UG]), NN-RGMa (30 kDa; 18 kDa [UG])

and RGMaD (60 kDa; 45 kDa [UG]).

To address the role of RGMa soluble proteins on growing

axons, we cultured retinal explants in the presence of superna-

tant from cells that were either Mock transfected or transfected

with full-length RGMa (Figures 1D–1F). Interestingly, cells grown

on supernatant from RGMa-transfected HEK293 cells showed

markedly reduced axonal growth (41.3 ± 6 mm) relative to those

grown on media from Mock-transfected cells (131 ± 2.1 mm).

Thus, RGMa-expressing cells release factors that hamper

axonal growth.

SKI-1 and Furin Process RGMa
The identification of 33 and 37 kDa species in membranes could

be explained by two cleavage events, one within the N-terminal

domain and one next to the autocatalytic site, respectively (Fig-

ure 1A). To identify the enzyme(s) that cleave(s) RGMa we

treated cells with protease inhibitors. Of the many inhibitors

tested, only AEBSF, a membrane permeable inhibitor for serine

proteases, showed a significant reduction of RGMa cleavage

(Figure 2A; Figure S2A). Interestingly, another non-membrane-

permeable serine protease inhibitor (Aprotinin) did not show

any reduction in cleavage. Because this indicates that RGMa is

cleaved on its way toward the cell surface, we tested two inhib-

itors of transport from the endoplasmic reticulum (ER) to the

Golgi (Seidah et al., 1999). Both Golgicide A and Brefeldin A

did not have any effect on RGMa processing, indicating that it

is cleaved within the ER (Figure S2B). This behavior corresponds

to the one observed with Proprotein Convertases (PCs); hence,

we tested the cell-permeable RVKR peptide, a broad inhibitor

for PCs (Seidah and Chrétien, 1999). Membranes were analyzed

by western blotting under nonreducing conditions, which

showed that both the 33 and the 37 kDa bands, were completely

abolished by RVKR treatments (Figure 2A). PCs normally require

two arginines for cleavage; however, we could not identify any

PC consensus sequence next to the autocatalytic site. Thus,

we suspected that another PC that does not require arginines

to induce cleavage was involved in RGMa processing. Because

Subtilisin Kexin Isoenzyme-1 (SKI-1) does not require a basic

residue at the cleavage site (Pasquato et al., 2006), we tested

whether specific SKI-1 inhibition with the cell-permeable RRLL

peptide inhibitor could prevent RGMa processing. Indeed, this

peptide completely abolished formation of the 33 kDa band

but not the 37 kDa suggesting that SKI-1 mediates generation

of the former protein (Figure 2B). In all cases, the presence of

DTT resulted in the formation of the 33 kDa band indicating

that treatments with these inhibitors did not suppress the auto-

catalytic cleavage event (Figure 2B).

To confirm that SKI-1 is involved in RGMa processing, we

expressed a prosegment inhibitor of this enzyme (R134E; Fig-

ure 2C; Pullikotil et al., 2004) together with RGMa. Here again,

SKI-1 inhibition dramatically reduced formation of the 33 kDa

band (Figure 2C). Next, we tested whether Furin processes

RGMa by using a Furin-prosegment inhibitor construct that

specifically prevents Furin cleavage (ppFurin; Zhong et al.,

1999). Here, the formation of the 37 kDa species was blocked

suggesting the involvement of Furin (Figure 2D). This was

confirmed by the fact that soluble RGMa formed a 37 kDa

band when treated by purified Furin (Figure S2). Finally, to
ental Cell 22, 391–402, February 14, 2012 ª2012 Elsevier Inc. 393
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confirm that Furin and SKI-1 generate soluble N-terminal

peptides, we studied cell supernatants after treatment with

RVKR. As expected, the 60 kDa band but not the 30 kDa band

was released by RGMa-expressing cells (Figure 2E).

In summary, RGMa processing is far more complex than

previously appreciated; thus, autocatalytic cleavage and

proteolytic cleavage by SKI-1 and Furin generate seven distinct

species (Figure 1A). Furthermore, RGMa is N-glycosylated,

adding to the complexity of its posttranslational modifications

(Figure 1).

SKI-1 and Furin Are Involved in Axonal Guidance
Although Furin activates Semaphorins (Adams et al., 1997), its

in vivo function on growing axons remains unclear. We therefore

investigated the role of Furin and SKI-1 on visual paths. First, we

studied expression of these proteins using in situ hybridization

in the optic tectum. Our data revealed that both proteins are

expressed in RGMa-expressing radial glia cells (Figures 2F–

2H), which fits the idea that they may be involved in retino-tectal

pathfinding. Next, we performed ectopic-expression of SKI-1-

(R134E) and Furin-inhibitors (ppFurin) in developing chicks

(Figures 2I–2K) using the RCAS viral vector and studied retinal

tracts from the eye to the optic tectum using DiI tracing. As

expected, both SKI-1 and Furin inhibitions induced axonal

phenotypes within the tectum. We observed that many fibers

failed to target the terminal zone and arborized randomly within

the tectum, when compared to controls (Figures 2I–2K). ppFurin

induced aberrant paths in all embryos (n = 8) and 70% (7 of 10) of

the R134E embryos but none of the controls (n = 6) displayed

phenotypes. Furin and SKI-1 may regulate the activity of other

guidance molecule. Indeed, Furin activates Semaphorins, which

are critical for the growth of many axons (Adams et al., 1997).

While these experiments do not directly show that RGMa

cleavage by Furin and SKI-1 regulates axonal paths, they are

consistent with that model and provide in vivo evidence that

these enzymes play a critical role in the regulation of axonal

growth.

RGMa Cleavage Is Required for Neogenin Binding
and Outgrowth Inhibition
The above insights raise important questions regarding the bio-

logical relevance of each of the multiple cleavage sites and the

relative activity of each resulting peptide. First we examined

whether RGMa cleavage is required for interaction with Neoge-

nin. For this, we generated mutations next to the auto-catalytic

cleavage site (D149A, H151A) and showed that these mutations

altered all cleavage events (Figure 3B). These mutations did not

change RGMa processing toward the cell surface (Figure S3).

We then performed an ELISA assay in which Neogenin-AP inter-

acts with membranes from COS-7 cells transfected with RGMa

constructs (Figures 3A–3C; Figures S3A–S3C). In agreement

with previous observations, wt RGMa interacted with Neoge-

nin-AP (Rajagopalan et al., 2004), however, the two RGMa

mutants did not interact with Neogenin (Figures 3B and 3C).

Binding of membrane-bound RGMa to Neogenin is believed to

be necessary for RGMa to exert its inhibition on axonal growth

(Rajagopalan et al., 2004). To address this issue, we tested

whether the RGMa mutants (D149A, H151A) inhibit axonal

growth of Neogenin-expressing temporal axons. As controls,
394 Developmental Cell 22, 391–402, February 14, 2012 ª2012 Elsev
we cultured nasal axons that express lower amounts of Neoge-

nin. As expected, temporal explants grown on wt RGMa

membranes extended shorter axons (197.6 ± 7.5 mm) when

compared to the otherwise long axons on Mock membranes

(407.9 ± 16.7 mm) (Figures 3D and 3E). Outgrowth on U-RGMa

mutants was 70.8% (335.7 ± 11.7 mm; p < 0.0001; D149A) and

82.2% longer (360 ± 6.1 mm; p < 0.0001; H151A) than on wt

RGMa (Figures 3D and 3E). Because they express lower

amounts of Neogenin, the reduction in length for nasal axons

on wtRGMa versus control was lesser than the one observed

with temporal axons (Figure 3E).

To confirm that catalytic cleavage is essential for Neogenin-

mediated inhibition, we studied neurite growth on Neogenin-

expressing NIE-115 cells (Endo and Yamashita, 2009). RGMa-

containing membranes inhibited NIE-115 neurite extension

compared to control Mock-transfected membranes (Figures 3F

and 3G). This effect was Neogenin-dependent as it was sup-

pressed when cells were treated with a Neogenin shRNA (Fig-

ure 3G; Figure S3), but not with control shRNA (Figure 3F and

3G). Here again, noncleavable mutants did not inhibit growth

(Figures 3F and 3G).

We next examined the effect of RGMa cleavage on axonal

pathfinding and performed ectopic expression of wt RGMa

andU-RGMa (H151A). As expected, tectal infection with a vector

that expressed wt RGMa induced strong pathfinding mistakes

(Figure 3H). In 100% of the embryos (13 of 13), we observed

that axons established terminal arbors outside the predicted

terminal zone (TZ) indicating that RGMa overexpression per-

turbed pathfinding. In contrary, no obvious axonal phenotype

was observed when H151A was overexpressed in the tectum

(Figure 3I). Here, 89% (8 of 9) of the embryos displayed normal

behavior with all fibers terminating their growth within the pre-

dicted TZ.

Together, these data demonstrate that RGMa catalytic pro-

cessing is required for interaction with Neogenin and the result-

ing neurite/axon growth inhibition.

C-RGMa on Its Own Is Sufficient for Neogenin Binding
and Growth Inhibition
It has been assumed that C-RGMa on its own is sufficient to

inhibit axonal growth (Rajagopalan et al., 2004). This notion

derives from experiments that were performed before the identi-

fication of a disulfide bridge between N- and C-RGMa (Tassew

et al., 2009), and remains to be tested. C-RGMa (33 kDa) is

poorly targeted to the cell surface when expressed on its own

(Tassew et al., 2009). Thus, to target C-RGMa to the cell surface,

we developed a construct (C-RGMaTEV) in which the original

autocatalytic cleavage site between N- and C-RGMa was

replaced by a TEV cleavage site (Phan et al., 2002; Figure 4A;

Figure S4). In ELISAs, either RGMawt or C-RGMaTEV membrane

preparations boundNeogenin-AP, but notably C-RGMaTEV (Kd =

6.8 nM) had a higher affinity than RGMawt (Kd = 11.96 nM;

Figures 4C–4E). These data suggested that C-RGMa may inhibit

axonal growth more effectively that the full-length protein.

Indeed, membranes containing C-RGMaTEV inhibited temporal

axons more potently than RGMawt (Figures 4F and 4G). As ex-

pected, outgrowth from nasal axons was significantly higher,

which is consistent with a role for Neogenin as the receptor (Fig-

ure 4G). To confirm that Neogenin mediated C-RGMa inhibition,
ier Inc.



Figure 3. RGMa Cleavage Is Required for RGMa

Inhibition through Neogenin

(A) RGMa proteins tested.

(B) Expression of Neogenin-AP (Neo-AP) and RGMa

constructs in COS-7 and HEK293 cells. The introduction

of a single mutation (H151A, D149A) next to autocatalytic

cleavage site (aa 150) abolished cleavage in COS-7 cells.

The same mutations abolished all cleavage events in

HEK293 cells.

(C) Microtiter plates were coated with transfected COS-7-

membranes and Neogenin-AP binding studied. Binding is

abolished in noncleavable mutants (D149A, H151A)

versus wtRGMa (wt; see also Figures S3A–S3C).

(D) Temporal explants grown on Mock, wtRGMa (wt), and

noncleavable mutants (D149A; H151A) membranes.

Axonal growth is reduced on wtRGMa versus Mock and

mutants. Bar, 150 mm.

(E) In four independent experiments, mutation of the

cleavage site abolished RGMa inhibition on temporal

axons (**p < 0.05). Nasal axons that express less Neogenin

were less inhibited.

(F) NIE-115 cells were grown on Mock, wtRGMa (wt),

D149A, and H151A membranes, after transfection with

GFP plasmid plus a control shRNA (Ctrl-shRNA) or a

Neogenin shRNA (Neo-shRNA). NIE-115 cells transfected

with Ctrl-shRNA extend shorter neurites on wtRGMa

versus Mock, D149A, and H151A. Bar, 30 mm.

(G) D149A and H151A significantly increased length (**p <

0.001) compared to wtRGMa. Neogenin silencing with

Neo-shRNA suppressed wtRGMa inhibition. All data are

average ± SEM from three independent experiments (see

also Figure S3).

(H) Ectopic expression of RGMa induced axonal pheno-

types with numerous fibers establishing arbors outside the

Terminal Zone (TZ; arrowheads).

(I) Ectopic expression of H151A did not induce axonal

phenotypes and all axons established terminal arbors

within the TZ.
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we performed silencing experiments using NIE-115 cells on

C-RGMaTEV, RGMawt, and Mock-transfected membranes. In

agreement with retinal axon data, C-RGMaTEV and RGMawt

significantly hampered neurite growth, an effect that vanished

in the presence of Neogenin shRNA but not control shRNA

(Figures 4H and 4I).

To rule out the possibility that the activity in C-RGMaTEV

membranes resulted from unwashed N-RGMa fragments, we

sought to identify the C-RGMa domain that interacts with

Neogenin (Figure 4J). Using an interaction assay, we identified

a domain spanning aa residues 182–271 that is sufficient for

interaction with Neogenin (Figures 4J and 4K). In outgrowth
Developmental Cell 22, 391
experiments, C-RGMa182-271 strongly inhibited

temporal fibers (Figure S4B). A lesser effect

was obtained on nasal fibers suggesting that

this effect is mediated by Neogenin (Figure 4L).

To assess the function of C-RGMa182-271 on

retino-tectal map formation we performed its

ectopic expression in the chick tectum (Figures

S4B–S4E). In 90% (9 of 10) of the embryos,

C-RGMa182-271 expression resulted in aberrant

pathfinding (Figures 4M–4O). Together, these

data demonstrate that C-RGMa on its own is
sufficient for Neogenin interaction and inhibition of axonal

growth.

Three RGMa Soluble Proteins Inhibit Axonal Outgrowth
via Neogenin
Because RGMa is GPI anchored and has the same action on

growing fibers as ephrins (Drescher et al., 1997), it has been

assumed that only membrane-bound RGMa inhibits axons

(Monnier et al., 2002). To our knowledge, the release of three

soluble RGMa proteins (RGMaD, N-RGMa, and NN-RGMa;

Figure 1A) has not been reported before; we therefore sought

to determine their function using purified proteins on growing
–402, February 14, 2012 ª2012 Elsevier Inc. 395



Figure 4. C-RGMa Induces Neogenin-Mediated Inhibition

(A) Representation of RGMa with a TEV site.

(B) Under nonreducing conditions, RGMa appears as a 60 kDa band, whereas RGMa-TEV is cleaved by TEV and only C-RGMa (33 kDa) is apparent.

(C and D) Neogenin-AP binds saturably to wtRGMa (C) and C-RGMa (D). Binding of Neogenin-AP or RGMa-AP to microtiter wells coated with C-RGMa and

wtRGMamembranes.Neogenin-APbinding toBSAwas less than 5%of these levels. CalculatedKdofNeogenin-AP is indicated. Data are fromsix determinations.

(E) Scatchard of Neogenin-AP binding (see also Figure S4).

(F) Temporal-axon growth was reduced on wtRGMa and C-RGMa membranes versus Mock. Bar, 150 mm.

(G) C-RGMa andwtRGMa significantly reduced length (**p < 0.001) of temporal axons. Nasal axonswere inhibited to a lesser extent. Data are average ±SEM from

four independent experiments.

(H) NIE-115 cells transfected with Ctrl-shRNA + GFP extend shorter neurites on C-RGMa versus Mock. Transfection of Neo-shRNA + GFP restored growth. Bar,

30 mm.

(I) C-RGMa andwtRGMa reduced NIE-115-neurite length (**p < 0.0001) in Ctrl-shRNA cells. Neo-shRNA suppressed this inhibition. Data are average ± SEM from

three independent experiments.
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Figure 5. Soluble RGMa Proteins Display Neoge-

nin-Dependent Inhibition

(A) RGMa proteins tested.

(B) Temporal explants on laminin, laminin+5 mg/ml N-

RGMa, 2.5 mg/ml NN-RGMa, and 10 mg/ml RGMaD. The

three RGMas inhibited growth. Bar, 200 mm.

(C) RGMa proteins significantly decreased growth (**p <

0.0001). Proteins displayed a concentration-dependent

effect, NN-RGMa having the strongest effect. Nasal axons

were less inhibited. Data are average ± SEM from four

independent experiments. Bar, 150 mm.

(D) NIE-115 cells on laminin, laminin+5 mg/ml NN-RGMa,

with control shRNA (Ctrl-shRNA)+GFP or a Neogenin

shRNA (Neo-shRNA) +GFP. Cells transfected with Ctrl-

shRNA extended shorter neurites on laminin+NN-RGMa,

compared to laminin. Neo-shRNA restored growth. Bar,

40 mm.

(E) RGMaD, N-RGMa, and NN-RGMa inhibited growth.

Neo-shRNA increased the average neurite-length on

N-RGMa, NN-RGMa, and RGMaD, when compared to

Ctrl-shRNA (**p < 0.05). Data are average ± SEM from four

independent experiments.

(F) Supernatants (Sup.) from cells transfected with N-

RGMa or NN-RGMa were pulled down (IP) by Neogenin-

but not BSA-coated beads.

(G–I) Neogenin-AP (2 mg/well) bound saturably to purified

RGMaD (G), N-RGMa (H), and NN-RGMa (I). RGMa-AP

(2 mg/well) did not bind to RGMa proteins. Neogenin-AP

binding to BSA was less than 5% of these levels. Kd of

Neogenin-AP is indicated.

(J) Scatchard plot of RGMa proteins binding.

Data are average ± SEM from four to eight determinations

(see also Figure S5).
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fibers (Figure S5). Strikingly, RGMaD, N-RGMa, and NN-RGMa

significantly inhibited retinal fibers in a concentration-dependent

manner (Figures 5B and 5C). All proteins restricted outgrowth

and displayed a greater activity on temporal versus nasal fibers,
(J) Binding study of RGMas to Neogenin. RGMas were expressed as AP fusion proteins and teste

Neogenin (binding; �, base line; ++, > 5 3 base line; +++, > 10 3 base line).

(K) Supernatants (Sup.) from cells transfected with C-RGMa182-271 were pulled down (IP) by Neogen

(L) C-RGMa182-271 reduced axonal length (**p < 0.005). Nasal axons were less inhibited. Data are av

(M–O) Ectopic expression of RGMa182-271 induced pathfinding errors in the visual pathway. In contro

(TZ), whereas in RGMa182-271 experiments fibers displayed aberrant paths (arrows) and connections

Developmental Cell 22, 391
indicating that their receptor is present in higher

quantities on temporal fibers. Remarkably, the

shorter NN-RGMa fragment was the most

potent inhibitor of outgrowth as 1 mg/ml of this

protein led to 71% inhibition of temporal fibers,

similar to that obtained with 10 mg/ml of N-

RGMa (74%) or 20 mg/ml of RGMaD (72%;

Figure 5C).

Because all fragments displayed stronger

effect on temporal versus nasal axons, we

tested whether Neogenin mediates their inhibi-

tion. NIE-115 cells expressing a control shRNA

extended shorter processes on RGMaD, N-

RGMa, and NN-RGMa compared to laminin

alone, which was suppressed in cells express-

ing Neogenin-shRNA (Figures 5D and 5E).
Here also, NN-RGMa (5 mg/ml) was more potent than N-RGMa

(10 mg/ml) and RGMaD (20 mg/ml; Figure 5E). Together with the

temporal/nasal difference described above (Figure 5C), these

data show that Neogenin mediates inhibition by N-RGMa,
d in ELISA plates coated with the extracellular domain of

in- but not BSA-coated beads.

erage ± SEM from three independent experiments.

l experiments (M), all the fibers targeted the terminal zone

(arrow heads) outside the TZ (N and O).
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Figure 6. Overexpression of Soluble RGMaProteins Perturbs Axonal

Pathfinding in the Embryonic Chicken Visual System

At embryonic day 1.5 (E1.5), RCAS-virus (control) and RCAS-RGMa (positive

control), RCAS-N-RGMa, and RCAS-NN-RGMa were injected into the devel-

oping optic tectum. At E15, a DiI crystal was placed in the temporal retina to

label fibers.

(A) In control experiments, all axons converge toward a well-defined terminal

zone (TZ).

(B–D) Infections with RGMa, N-RGMa, and NN-RGMa-expressing RCAS-

virus, induced (1) the absence of terminal zone, (2) the presence of ectopic

anterior terminations, (3) aberrant turns and ectopic posterior terminations. All

errors are indicated by arrow heads. The insets represent a drawing of the flat-

mounted retina to indicate the location of the DiI crystal in a dorsotemporal

position of the retina and the path of axons toward the optic fissure. t,

temporal; d, dorsal; v, ventral; n, nasal. The hypothetical TZ is represented in

each panel (see also Figure S6).

(E) Quantification of axonal phenotypes. -TZ, no terminal zone; AT, ectopic

anterior terminations; PT, ectopic posterior terminations; Ab, aberrant turns.
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NN-RGMa, and RGMaD (Figures 5D and 5E). Unexpectedly, this

revealed that, unlike ephrins, soluble RGMa proteins inhibit

axonal growth.

RGMa Soluble Proteins Display Various Affinities
to Neogenin
These data prompted us to examine whether Neogenin interacts

directly with soluble N-terminal RGMa proteins. We performed

pull down on supernatants from cells expressing N-RGMa or

NN-RGMa, and observed coimmunoprecipitation with Neoge-

nin- but not BSA-coated beads (Figure 5F), raising the possibility

that they directly interact with Neogenin. Because RGMa

proteins displayed varying potency, we determined binding

affinities to Neogenin (Figures 5G–5J). Purified RGMaD bound
398 Developmental Cell 22, 391–402, February 14, 2012 ª2012 Elsev
to Neogenin-AP with a Kd of 16.9 nM (Figure 5G). The interaction

was specific because RGMa-AP did not bind detectably to

RGMa fragments and Neogenin-AP did not bind to BSA-coated

wells. In the same assay, N-RGMa exhibited a higher affinity to

Neogenin-AP with a calculated Kd of 11.8 nM (Figure 5H). Strik-

ingly, the affinity of Neogenin for NN-RGMa was substantially

greater with a Kd of 1.5 nM, 11-fold greater than the soluble

full-length RGMaD protein (Figures 5I and 5J). A similar study

in which NN-RGMa-AP and N-RGMa-AP interact with Neoge-

nin-coated plates was performed and confirmed NN-RGMa’s

higher affinity (Kd = 1.2 nM) for Neogenin compared to N-

RGMa (Kd = 8.2 nM; Figure S5). These affinities correlate with

the inhibitory action of RGMa proteins on outgrowth (Figure 5C).

N-RGMa and NN-RGMa Perturb Pathfinding In Vivo
RGMa gain- and loss-of-function experiments indicate that it is

a key protein for the establishment of visual maps (Matsunaga

et al., 2006). However, these experiments did not establish which

RGMa fragment(s) is (are) involved in pathfinding. The fact that

secreted RGMa proteins may control retinal axon pathfinding

was unexpected as RGMa was believed to (1) function similar

to ephrins, which require polymerization in membranes to guide

axons (Egea and Klein, 2007) and (2) use its C-terminal portion to

inhibit axonal growth. To assess a role of N-RGMa, and NN-

RGMa during retinal-map formation, we performed ectopic

expression of these proteins in the developing tectum using

viral-mediated expression (Figure S6). In controls (empty virus),

retinal fibers directly targeted the predicted terminal zone (TZ;

Figure 6A). However, when N-RGMa and NN-RGMa were over-

expressed (Figure 5) pathfinding was greatly perturbed (Figures

6B–6D). Abnormal axonal paths included terminations outside

the TZ, aberrant turns within the optic tectum, as well as the

absence of a clear TZ (Figures 6B–6D). In situ hybridization has

demonstrated that expression patterns of other guidance mole-

cules are not affected by ectopic expression of RGMa (Matsu-

naga et al., 2006), thus, the axon-targeting phenotype arises

from an effect of overexpression of RGMa constructs and not

from a modification of other proteins. In summary, ectopic

expression of soluble RGMa N-terminal proteins indicates that

they are involved in the formation of visual maps.

C- and N-RGMa Proteins Interact with the Same
Neogenin FNIII(3-4) Domain
We next sought to identify the Neogenin domain(s) with which

C- and N-RGMa proteins interact. The extracellular portion of

Neogenin contains four Immunoglobulin like (4Ig) and six Fibro-

nectin type III (6FNIII) domains (Figure 7A). It has been reported

that 6FNIII interacts with full-length RGMa (Rajagopalan et al.,

2004). Using 6FNIII-AP, we showed that C- and N-RGMa

proteins interact with 6FNIII (Figure 7A). Next, we sought to iden-

tify which sub-region of the 6FNIII domain(s) interact with N- and

C-RGMa. To do so, we generated Neogenin constructs that

contain only some of the six FNIII domains (Figure 7A). In interac-

tion assays, the FNIII (2-5) domains bound to all C- and N-RGMa

proteins, which contrasted with domains 1–3 and 4–6 that did

not interact with any RGMa protein (Figure 7A). To further refine

the location of the binding motif, we generated a construct that

only contains the FNIII(3-4) domains, and showed that this

segment was sufficient for binding to each one of the RGMa
ier Inc.
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Figure 7. N- and C-RGMa Inhibit Axonal Outgrowth by Binding to the Same Neogenin Domain

(A) The extracellular portion of Neogenin consists of four immunoglobulin-like (4Ig) and six fibronectin type III (6FNIII) domains. ELISA plates were coated with

RGMa proteins and binding of Neogenin-AP was studied. (Binding; �, base line; + > 2 3 base line; ++ > 3 3 base line; +++ > 5 3 base line). The three to four

fibronectin (FNIII[3-4]) domains sufficed for binding to RGMa proteins.

(B) ELISA plates were coated with N-RGMa or C-RGMa and binding of 6FNIII-AP was assessed after incubation with C-RGMa182-271, N-RGMa or NN-RGMa.

Preincubation with either N- or C-RGMa proteins altered 6FNIII-AP binding to both C- and N-RGMa proteins.

(C) Temporal axons grown on combinations of N- and C-RGMa.

(D) Quantification of axonal growth on 5 mg/ml of N-RGMa, 5 mg/ml C-RGMa182-271, and 2.5 mg/ml N-RGMa + 2.5 mg/ml C-RGMa182-271 (**p < 0.005). Data are

average ± SEM from three independent experiments.

(E) Temporal axons grown on N- and C-RGMa in the presence or absence of FNIII(3-4).

(F) Quantification of axonal growth on laminin, laminin + 2.5 mg/ml of N-RGMa, and laminin + 2.5 mg/ml C-RGMa182-271 in the presence or absence of FNIII(3-4).

FNIII(3-4) significantly restored axonal growth on N-RGMa, and C-RGMa182-271 (**p < 0.01). Data are average ± SEM from three independent experiments.

(G) Model for RGMa action on Neogenin. SKI-1 and Furin digest RGMa into C- and N-terminal proteins all interact with the fibronectin domain (3-4) of Neogenin

(red) to inhibit axonal growth.
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proteins (Figure 7A). Because C- and N-RGMa fragments bind to

the same Neogenin subdomain, we tested whether they interfere

with each other. In these experiments, we assessed 6FNIII-AP

binding to C- or N-RGMa after incubation with either one of these

proteins. As expected, preincubation of Neogenin with C-RGMa

abolished binding to C-RGMa. Interestingly, preincubation with

N-RGMa also inhibited binding of Neogenin to C-RGMa, indi-

cating that C- and N-RGMa interfere in their binding to Neogenin

(Figure 7B). In agreement with these data, binding to N-RGMa

was also altered when Neogenin was preincubated to either

C- or N-terminal fragments (Figure 7B). Next we studied the

effect of the combined presence of RGMa proteins on axonal

growth. When axons were grown on equimolar concentrations

of either N-RGMa (5 mg/ml), C-RGMa182-271 (5 mg/ml, these

proteins have the same apparent molecular weight) or N-

RGMa (2.5 mg/ml) + of C-RGMa182-271 (2.5 mg/ml), all treatments

resulted in inhibitions that did not significantly differ from each

other (Figures 7C and 7D). This represents the third indication

that both N- and C-fragments act through FNIII(3-4).

To further assess the role of FNIII(3-4) in RGMa inhibition, we

tested its function-blocking capability. Retinal axons were grown

on RGMa proteins in the presence of 1 mg/ml of FNIII(3-4).

Remarkably, the presence of this fragment restored axonal

growth on RGMaD, N-RGMa, and C-RGMa, indicating that it

blocked the inhibitory activities of these proteins on retinal axons

(Figures 7E and 7F). Together, these data represent a unique

example in which two unrelated domains of a same guidance

molecule inhibit axonal growth through interaction with the

same receptor region.

DISCUSSION

RGMa has critical roles in axonal growth, cell differentiation,

apoptosis, neuronal regeneration, and bone development (Mon-

nier et al., 2002; Matsunaga et al., 2004, 2006; Hata et al., 2006;

Zhou et al., 2010). Our data revealed that proteolytic cleavage

together with the formation of a disulfide bridge generate 4

membrane-bound and three soluble RGMa species. This level

of complexity was not expected as it was believed that only

full-length RGMa, in which RGMa is either uncleaved or its N-

and C-RGMa fragments remain attached by a disulfide bridge,

is expressed in vivo (Tassew et al., 2009). We studied the activity

of individual RGMa proteins and showed that all cleaved protein

products inhibit neurite growth via Neogenin, while the full-length

uncleaved membrane-bound RGMa is inactive. Hence, proteol-

ysis is required for RGMa activity. Furthermore, we show that

two Proprotein Convertases (PCs), namely Furin and SKI-1 are

involved in RGMa processing and generate N-terminal soluble

and C-terminal membrane-bound proteins with different inhibi-

tory activities. Surprisingly, RGMa fragments with no apparent

sequence homology all interacted with the same Fibronectin

domains in Neogenin to inhibit axonal growth.

Regulation of the activity of extracellular proteins by proteo-

lytic cleavage is an emerging theme within the CNS (Adams

et al., 1997). PCs form a family of nine proteinases with a large

array of functions within the CNS (Seidah and Chrétien, 1999).

Somemembers of the family have been shown to process extra-

cellular proteins thereby regulating axonal growth. For instance,

Furin activates members of the Semaphorin family (Adams et al.,
400 Developmental Cell 22, 391–402, February 14, 2012 ª2012 Elsev
1997). Similarly, PC5/6A cleaves the neural adhesion molecule

L1, an event that appears important for L1-dependent neurite

growth of cerebellar neurons (Kalus et al., 2003). Thus far,

SKI-1 has not been shown to play any role within theCNS. There-

fore, this study uncovers an unexpected aspect of SKI-1 function

in the CNS. SKI-1 knockout mice die at embryonic days 2–3

(Mitchell et al., 2001) and that of Furin die of heart defect at

embryonic day 11 (Roebroek et al., 1998). Thus, a function for

these proteins could not be assessed within the developing

CNS. Using local perturbation of SKI-1 and Furin function in

the developing tectum, we generated evidence that both

proteins regulate axonal growth in vivo.

RGMa and ephrin-A5,-A2 are GPI-anchored proteins that

guide retinal fibers (Monnier et al., 2002; Drescher et al., 1997).

Thus, they have both been assumed to function as membrane-

bound cues. Here, however, we show that soluble RGMa

proteins also strongly inhibit fiber growth. This is in stark contrast

to ephrins, which require oligomerization in membrane clusters

to be functionally active (Egea and Klein, 2007). Activity of eph-

rins is also regulated by proteolytic processing. For instance,

ephrin-A2 is cleaved by Kuzbanian after binding to its receptor,

a mechanism that leads to axon detachment and termination

of signaling (Hattori et al., 2000). Strikingly, release of RGMa

from the membrane has the opposite effect since uncleaved

membrane-bound protein is inactive, and proteolysis creates

active soluble RGMa proteins. Thus, our data invoke an unex-

pected mechanism of action for RGMa in which the combination

of long (soluble) and short (membrane-bound) range guidance

regulates topographic mapping.

Surprisingly, unrelated N- and C-terminal fragments inhibit

axonal growth via the same Fibronectin domains in Neogenin.

At first sight this result confirms a recent study in which we

showed that both domains are involved in retino-tectal path-

finding (Tassew et al., 2009). Because in COS-7 cells, N- and

C-RGMa are linked to each other by a disulfide bridge, the logical

interpretation was that RGMa simultaneously requires N- and

C-RGMa for interaction with Neogenin. We now postulate that

pathfinding toward the optic tectum can be controlled by inde-

pendent and unrelated N- and C-terminal RGMa fragments. It

is known for other proteins such as Nogo or NG2 that multiple

distinct regionsmight contribute to their inhibitory activity (Oertle

et al., 2003). However, unlike RGMa, each one of these regions

uses a distinct receptor to transmit its inhibitory activities (Oertle

et al., 2003). Ephrins have two domains that interact with the

Eph receptors; however, only one of these domains has an

inhibitory action on growing fibers (Carvalho et al., 2006). Slit2

is processed into several peptides, however only the D2 inhibi-

tory domain binds to robo-receptor whereas the other inhibitory

domain D4 interacts with heparin sulfate (Seiradake et al., 2009).

Thus, to our knowledge, RGMa represents the first example in

which multiple inhibitory fragments from a single ligand regulate

axonal growth through the same receptor domain.

As well as controlling connections within the developing

CNS, RGMa is involved in neurodegenerative diseases. Thus,

it is a major impediment to neuronal regeneration and anti-

bodies that neutralize C-RGMa promote regeneration (Hata

et al., 2006). Moreover, there is growing evidence that RGMa

is a key player in multiple sclerosis (Muramatsu et al., 2011;

Nohra et al., 2010). In the light of our new data, multiple
ier Inc.
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RGMa-fragments may contribute to the negative environment

that hampers regeneration following CNS injury. Optimal

approaches to deactivate RGMa should target all inhibitory

C- and N-terminal fragments. The RGM family is implicated

in the disease hemochromatosis (Papanikolaou et al., 2004),

and accordingly it will be important to determine whether the

complex processing we uncovered here affects the activity of

other RGM proteins.

EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification

All RGMa constructs were cloned in pSectag2B vector (Invitrogen) with an

N-terminal His-tag. They were then transferred to RCAS BP(B) vector for viral

production. SKI-1 and ppFurin were cloned in the bicistronic eGFP-containing

pIRES vector (Invitrogen) as we published before (Pullikotil et al., 2004).

C-RGMa-TEV was cloned by inserting a TEV cleavage site between

N-RGMa and C-RGMa. Membranes were prepared from transfected cells,

washed and resuspended in 13 TEV buffer and cleaved with AcTEV protease

(Invitrogen) ON at 4�C. Membranes were washed to remove the cleaved

N-terminal part, and resuspended in PBS.

Soluble proteins were purified using Ni-NTA agarose (Invitrogen) and dia-

lyzed in PBS. Anti-His (QIAGEN) and anti-RGMa (8B6; Tassew et al., 2009)

were used.

Binding Assay

A 96-well plate was coated with (1) poly-L-lysine (100 ml, 10 mg/ml) and (2)

membrane suspensions (100 ml) adjusted to an OD of 0.1 (at 220 nm) were

added to the wells. Plates were then centrifuged at 3,000 rpm (15 min at

4�C), blocked with 5%BSA for 1 hr, and different concentrations of AP-tagged

proteins were added for 3 hr. Wells were washed with PBS, incubated at 65�C
for 1 hr to deactivate endogenous AP and developed with 1 mg/ml pNPP.

For binding assay, wells were coated with purified proteins (3 hr at room

temperature [RT]), and blocked with 5% BSA (1 hr), followed by incubation

with AP-tagged proteins (2 mg/well; 3 hr at RT). To quantify the binding, absor-

bance at 405 nm was measured by using a microplate reader (EL 311SX,

Bio-TEK Instruments Inc.). Kd and scatchard plots were obtained after fitting

the data using a nonlinear curve fit by GraphPad Prism 5 software.

Neogenin Silencing and Neurite Outgrowth

Mouse Neogenin shRNA and control shRNA were gifts from Dr. Yamashita T.

NIE-115 cells which endogenously express Neogenin were cotransfected with

shRNA and GFP. Twenty-four hours later, cells were plated on coverslips

coated with membranes from Mock, wtRGMa, D149A and H151A (OD of 0.1

at 220 nm). Alternatively, cells were cultured on molar equivalent amounts of

soluble proteins, RGMaD (20 mg/ml), N-RGMa (10 mg/ml) and NN-RGMa

(5 mg/ml). Cells were differentiated in 2% DMSO and neurite length was

measured 48 hr later.

Retinal Explants Outgrowth Assay

Glass coverslips were coated with 10 mg/ml poly-L-lysine, treated with laminin

(10 mg/ml), and membrane preparations from transfected cells were added

and centrifuged for 15 min at 3,000 3 g and 4�C. Alternatively, different

concentrations of soluble proteins mixed with laminin (10 mg/ml) were added

to the coverslips and incubated for 3 hr at RT. Explants from the temporal

and Nasal retina were then added to either membrane-or protein-coated

surfaces in DMEM F-12 media (2% chick serum, 10% FBS) and incubated

(37�C, 5% CO2) for 18 hr. Explants were fixed in 4%PFA, permeablized with

0.1% Triton X-100, stained with Alexa488-fluor-phalloidin and viewed under

a fluorescence microscope (Zeiss). The number and length of fibers were

then quantified using Image Pro 5.0. Only explants which displayed growth

were considered.

Cell Treatments

HEK cells transfected with RGMa and grown for 24 hr were treated with 50 mM

RVKR, 300 mM AEBSF (ENZO life science), and 50 mM RRLL (BACHEM) for

12 hr before membranes or supernatants were processed.
Developm
Pull-Down Assay

Proteins were coupled to activated-CNBr Sepharose (Pharmacia). Beadswere

then blocked with 100 mM Tris-HCl, (pH 8) and washed. Supernatants from

transfected cells were added to coupled beads for 2 hr at RT. Beads were

then washed six times with PBS +0.02% Tween 20, and SDS loading buffer

was added. Samples were boiled and subjected to western blotting.

Preparation of Viral Stocks

DF1 cells (DSHB) were transfected with RCAS constructs using lipofectamine

2000 (Invitrogen). Cultures were expanded and supernatants were collected,

pooled, and concentrated by centrifugation (21,000 rpm, 2 hr) in a SW 28

rotor (Beckman). Viral titer was determined by infecting DF1 cells with

serial dilutions and staining for the gag protein (AMV-3C2 Ab; DSHB). Titers

of 1 3 108 IU/ml were used for infections.

In Ovo Injection and DiI Tracing

Eggs (White Leghorn) were incubated at 38�C in high-humidity. At E1.5 viral

solution (viral titers of 13 108 IU/ml) was injected in the tectum. At E15, a small

DiI crystal (Molecular Probes) was placed in the temporodorsal part of the

right eye. At E17, tecta were fixed in 4% PFA. DiI tracing was viewed under

a fluorescent microscope (Olympus BX61) after cutting the tecta in half. Digital

Images were taken and processed using Photoshop (Adobe).

Statistical Analysis

Quantifications were done for binding and outgrowth assays from at least

three independent experiments. Statistical analysis was performed using

ANOVA by XLSTAT. Results are expressed as the average ± SEM.
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